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Topological superconductors in one spatial dimension exhibiting a single Majorana bound state
at each end are distinguished from trivial gapped systems by a Z2 topological invariant. Originally,
this invariant was calculated by Kitaev in terms of the Pfaffian of the Majorana representation
of the Hamiltonian: The sign of this Pfaffian divides the set of all gapped quadratic forms of
Majorana fermions into two inequivalent classes. In the more familiar Bogoliubov de Gennes mean
field description of superconductivity, an emergent particle hole symmetry gives rise to a quantized
Zak-Berry phase the value of which is also a topological invariant. In this work, we explicitly show
the equivalence of these two formulations by relating both of them to the phase winding of the
transformation matrix that brings the Majorana representation matrix of the Hamiltonian into its
Jordan normal form.

PACS numbers: 03.65.Vf, 72.15.Nj, 74.45.+c

I. INTRODUCTION

The topological superconductor in one spatial di-
mension (1DTSC) has been discovered and classified
in a pioneering 2001 paper by Kitaev1. This state of
matter features a single isolated Majorana bound state
(MBS) at each of its ends. The 1DTSC is also intriguing
from a conceptual point of view since it is the only
known topological phase in one dimension that is not
symmetry protected. Not symmetry protected means
that a non-trivial 1DTSC cannot be connected to a
trivial state without going through a gap-closing phase
transition. The original proposal considers an effective
spinless p-wave superconductor (SC). More recently,
the 1DTSC phase has also been identified in nanowires
that are proximity coupled to an s-wave SC2,3. In these
systems, the combination of Rashba spin orbit coupling
and a Zeeman splitting is employed to dispose of the
spin degree of freedom in the effective low energy theory.
The first experimental signatures of MBS have been
reported by several experimental groups4–6.

In recent years, there has been enormous interest in
topological states of matter (TSM) that can be under-
stood at the level of quadratic model Hamiltonians7–9.
A complete classification of these TSM, one example of
which is the 1DTSC in symmetry class D10, has been
achieved by different means in Refs. 11–13. Here, we
would like to focus on fully gapped (proximity induced)
SCs without any additional symmetries at mean field
level. In the language of Ref. 12, such systems are
characterized by a quadratic form of Majorana operators
without any physical symmetries. Note that due to the
Majorana algebra, the representation matrix is auto-
matically antisymmetric. In this framework, the 1DTSC
has been distinguished from a trivial fully gapped
system by the sign of the Pfaffian of this representation
matrix1. On the other hand, within the approach of
Refs. 11,13, the Bogoliubov de Gennes (BdG) mean

field Hamiltonian of a SC is treated on the same footing
as the Bloch bands of a non-interacting insulator. The
Nambu spinor structure representing two copies of the
actual excitation spectrum, a particle and a hole copy,
is then reflected in the formal emergence of a particle
hole symmetry (PHS) C with C2 = +1. This antiunitary
PHS implies a quantization of the Zak-Berry phase14,15

associated with a 1D band structure to integer multiples
of π16. Hence, there are only two distinct values,
0 (mod 2π) and π (mod 2π), for the Zak-Berry phase
which defines a Z2 invariant. We refer to Ref. 17 for a
recent overview on the theory of charge polarization in
1D systems.

In this work, we would like to explicitly demonstrate
the equivalence between these two approaches to the
topological Z2-invariant characterizing the 1DTSC. To
this end, we proceed in two steps. First, we express
Kitaev’s Pfaffian invariant as the phase winding between
the two real points of the Fourier transform of the or-
thogonal transformation that brings the antisymmetric
Majorana representation matrix of the mean field Hamil-
tonian into its Jordan normal form. Second, we start
from the Berry connection associated with the BdG band
structure and show that the quantized Berry phase can
be expressed as the same phase winding. Interestingly,
this equivalence implies that Kitaev’s Pfaffian invariant
can also be used as a convenient means to calculate
the quantized Berry phase for a normal insulating 1D
system with a physical PHS, e.g., an insulator similar
to the model introduced by Su, Schrieffer, and Heeger
(SSH)18,19. For a chiral symmetry protected 1DTSC
in symmetry class BDI, a complementary analysis has
been presented in Ref. 20 (see also Ref. 21). There, the
parity of the winding number characterizing a chiral 1D
system13,22 is shown to be equal to Kitaev’s Pfaffian
invariant. In Ref. 23, the Z2 invariant characterizing
the 1DTSC has been calculated in terms of its single
particle Green’s function using a dimensional extension
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to the 2DTSC which extends the domain of the invariant
beyond the set of mean field Hamiltonians.

The remainder of this article is organized as follows:
In Section II, we express Kitaev’s Pfaffian invariant as
the phase winding of a determinant between the real k-
points 0 and π. In Section III, the quantized Berry phase
of a 1D BdG band structure is shown to be given by the
same phase winding, using the emergent PHS. Section
IV is dedicated to a discussion of non-superconducting
systems with a physical PHS where the quantized Berry
phase can also be expressed as the sign of the product of
two Pfaffians evaluated at the real k-points. In Section
V, a concluding discussion is presented.

II. PFAFFIAN INVARIANT WITHOUT

PFAFFIANS

The Hamiltonian of a SC at mean field level on a
lattice is a quadratic form in the field operators ψj ,
where j labels the real space position on the lattice and
ψj = (ψj,1, . . . , ψj,n)

T is a spinor comprising n internal
degrees of freedom like spin, orbital-label, etc. With-
out loss of generality we will always consider a lattice
with unit lattice constant here. Since the mean field
SC is not particle number conserving, the Hamiltonian is

not of the form ψ
†
iHijψj but contains terms of the form

ψi∆ijψj + h.c. with some pairing matrix ∆. A conve-
nient formalism to study the properties of such general-
ized quadratic Hamiltonians is to go to a basis of (spinors

of) Majorana fermions γj,x = ψj+ψ
†
j , γj,y = −i(ψj−ψ†

j).
Here, the labels x, y on the Majorana operators allude
to the real (x) and imaginary (y) part of the complex
fermion ψj . The real Majorana operators satisfy the al-
gebra

γ
†
j,a = γj,a, a = x, y

{γi,a, γj,b} = 2δi,jδa,b. (1)

For notational brevity, we will suppress the a = x, y in-

dex, by defining the spinors γj = (γj,x, γj,y)
T
. It then

follows that any mean field Hamiltonian (SC or not) can
be expressed in the form12

H =
i

2

∑

i,j

γTi Aijγj , (2)

which is called the Majorana representation. The rep-
resentation matrix A is real and antisymmetric. Hence,
it has purely imaginary eigenvalues that occur in com-
plex conjugate pairs ±iǫλ, ǫλ > 0. We note that we
consider a gapped system with periodic boundary condi-
tions, in which case there are no zero modes. By means
of a real orthogonal transformationW such a matrix can
be brought into the block-diagonal Jordan form

AJ =WAWT = diagλ

(

0 ǫλ
−ǫλ 0

)

. (3)

The transformation matrix W is here defined up to a
global sign which does not change the determinant of
W due to the even dimension of the real vector space on
which W acts. This is true independent of the system
size since there are always two Majorana fermions per
complex degree of freedom.

Kitaev1 introduces the notion of the ‘Majorana num-
ber’ M(H) = ±1 associated with the Hamiltonian H .
For Hamiltonians that exhibit a MBS in the case of open
boundary conditions, M(H) takes the value −1, which
corresponds to a non-trivial 1DTSC.
Kitaev then relates M(H) to the fermionic parity of

the ground state of a closed chain of length L, denoted
by P

(

H(L)
)

, in the following way

P
(

H(L1 + L2)
)

= M(H)P
(

H(L1)
)

P
(

H(L2)
)

. (4)

For general non-interacting systems, the fermionic parity
of the ground state of a Hamiltonian H can be shown to
take the form

P (H) = sgn {Pf (A)} , (5)

where Pf (A) denotes the Pfaffian of the anti-symmetric
matrix A, given in terms of the totally anti-symmetric
tensor εi1,i2,...,i2n as

Pf (A) =
1

2nn!
εi1,i2,...,i2nAi1,i2Ai3,i4 · · ·Ai2n−1,i2n . (6)

For this reason, M is also referred to as the ‘Pfaffian’
Z2 invariant.
We would now like to bring the Pfaffian Z2 invariant

M1 characterizing the 1DTSC into a form which will al-
low us to make its equivalence to a quantized Zak-Berry
phase manifest. Generally speaking, in differential topol-
ogy, one is concerned with topological invariants associ-
ated with smooth manifolds. For a periodic system in
the thermodynamic limit, the k-space is a smooth man-
ifold on which the invariants of all TSM are defined9,13.
For the invariant defining the 1DTSC, the so called real
k-points k = 0, π where k = −k will be of crucial im-
portance. When doing a numerical calculation, one is
sometimes forced to consider finite system sizes. In this
case, the real k-point π only exists if the number of lattice
sites is even. In agreement with Ref. 1, we hence expect
that the analytical form of the invariants in k-space can
only be extended to finite systems with an even number
of lattice sites which we will assume in the following.
It is then an immediate consequence of Eqs. (4) and

(5) that the topological invariant M is simply given by

M = sgn {Pf (A)} . (7)

Defining the Fourier transform of the Majorana rep-
resentation matrix of a translation invariant system as
Ã(k), Eq. (7) can be expressed as

M = sgn
{

Pf
(

Ã(0)
)

Pf
(

Ã(π)
)}

, (8)
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which is the probably best known form of the invariant
involving, as already mentioned, the real k-points
k = 0 and k = π.

The Pfaffian of the Jordan form AJ (see Eq. (3)) is
easy to evaluate:

Pf (AJ ) =
∏

λ

ǫλ > 0. (9)

Using the elementary algebraic relation Pf
(

WAWT
)

=
Pf (A) det (W ) along with Eq. (7), we immediately get

M = det (W ) = ±1. (10)

For a translation invariant system, the Fourier transform
W̃ (k) of W is block diagonal and we get

M =
∏

k

det
(

W̃ (k)
)

=
∏

k=−k

det
(

W̃ (k)
)

=

det
(

W̃ (0)
)

det
(

W̃ (π)
)

. (11)

The second equality sign here uses the reality of
W which implies W̃ (k)∗ = W̃ (−k). Since W̃ (k) is
unitary for all k, its determinant can be written as

det
(

W̃ (k)
)

= eiϕk . The reality constraint then yields

ϕk = −ϕ−k (mod 2π) implying that ϕk is quantized to
integer multiples of π at the real k-points. The invariant
can hence be expressed as

M = (−1)
ϕ0−ϕπ

π . (12)

The determinant of W̃ (k) is a continuous function of k so
the phase change ∆ϕ = ϕ0 − ϕπ can be written as the
following ‘winding’ integral over half of the Brillouin zone

∆ϕ = i

∫ π

0

[

∂k

(

log det
(

W̃ (k)
))]

dk. (13)

In the next Section, we will derive the same expression
for the quantized Berry phase associated with the BdG
band structure of a mean field SC.

III. RELATION BETWEEN QUANTIZED

BERRY PHASE AND PFAFFIAN INVARIANT

Above, we worked with the Majorana representation of
SC mean field Hamiltonians. We now tie the topological
invariant M obtained in the Majorana representation to
the more widely used BdG picture. In the BdG picture,
the Hamiltonians are represented in the Nambu spinor

basis Ψj = (ψj , ψ
†
j )

T as follows

H =
∑

i,j

Ψ†
i (HBdG)ij Ψj. (14)

In contrast to the Majorana operators γj,x, γj,y that span

the same Hilbert space as ψj , ψ
†
j , the Nambu basis is

not real and neither is the representation matrix HBdG.

The interdependence of ψj and ψ
†
j is then reflected in

an ‘emergent’ PHS C = τxK, i.e., {HBdG, C} = 0, with
C2 = 1. As a consequence, the BdG band structure
in the absence of further symmetries is in the Altland-
Zirnbauer10 symmetry class D. Here, K denotes the com-
plex conjugation and τx is a Pauli matrix acting in the
Nambu space. The approach of Refs. 11,13 to the topo-
logical classification is to treat the Fourier transform
H̃BdG(k) of the BdG Hamiltonian on the same footing
as the Bloch Hamiltonian of an ordinary insulator with
a physical PHS. The corresponding Z2 topological in-
variant is then the 1D Chern-Simons invariant, i.e., a
Zak-Berry phase that is quantized to integer multiples of
π due to the antiunitary PHS. This symmetry also im-
plies that the bands below and above the energy gap are
not independent, but are conjugated by PHS. We employ
this dependence defining

C|uoα(−k)〉 = e−iχα(k)|ueα(k)〉, (15)

where α = 1, . . . , n labels the independent Bloch bands
and |uoα〉, (|ueα〉) denotes the Bloch states associated
with the occupied (empty) bands. Using Eq. (15), one
can show that the Abelian Berry connection Ao(k) =
−i∑α〈uoα(k)|∂k|uoα(k)〉 associated with the occupied
bands is related to the similarly defined Ae(k) by (in24,
an analogous relation was used in the context of time-
reversal invariant systems)

Ao(−k) = Ae(k)−
∑

α

∂kχα(k), (16)

i.e., the Berry connection of the occupied bands at k is
the Berry connection of the empty bands at −k up to
a gauge transformation. With this constraint the Zak-
Berry phase ΦZB can be simplified to an integral over
half of the Brillouin zone as

ΦZB =

∫ π

−π

Ao(k)dk =

∫ π

0

[

A(k)−
∑

α

∂kχα(k)

]

dk,

(17)

where the first equality sign defines the Zak-Berry
phase of the gapped system and Eq. (16) along with
the definition A(k) = Ao(k) + Ae(k) enters the second
equality sign.

To make further progress, we take a look at the rela-
tion between the Majorana representation and the BdG
picture. The Majorana spinor γj = (γj,x, γj,y)

T and the

Nambu spinor Ψj = (ψj , ψ
†
j)

T are related by the unitary
transformation U like

γj =
√
2UΨj, U =

1√
2

(

1 1
−i i

)

. (18)

Hence, the corresponding representation matrices are re-
lated as iA = UHBdGU

†. Since U commutes with the
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Fourier transform, there is a similar relation in k-space,
explicitly iÃ(k) = UH̃BdG(k)U

†. Going to the Jor-
dan form AJ of the Majorana representation matrix, we
note that U brings us to the diagonal form of the BdG-
Hamiltonian, i.e.,

iU †AJU = diagλ

(

ǫλ 0
0 −ǫλ

)

= τzdiagλ(ǫλ). (19)

Defining Ŵ (k) = U †W̃ (k)U we hence obtain

Ŵ (k)H̃BdG(k)Ŵ
†(k) = τz diag (ǫ1(k), . . . , ǫn(k)) . (20)

with the energy eigenvalues ǫα(k) > 0, α = 1, . . . , n of
the empty Bloch bands. This allows us to define a global
gauge for the Bloch states |uσα(k)〉, σ = o, e as follows:

|uσα(k)〉 =
∑

β

Ŵ ∗
α,β(k)|β, σ〉, (21)

where |α, σ〉 = 1√
L

∑

j Ψ
†
j,α,σ|vac〉 is the lattice periodic

part of the canonical basis states 1√
L

∑

j e
ikjΨ†

j,α,σ|vac〉
associated with the Nambu-spinor basis in k-space
(where σ denotes the Nambu index).
In this gauge, the phase factors χα appearing in

Eq. (15) vanish. This is because of PHS, which in the

Majorana representation implies KW̃ (k)K = W̃ (k)∗ =

W̃ (−k), or, in the current BdG basis,

CŴ (k)C−1 = Ŵ (−k). (22)

From this equation, it directly follows that the phase fac-
tors χα(k) in Eq. (15) vanish. Using Eq. (17), we can
hence write

ΦZB = i

∫ π

0

Tr
[

Ŵ †(k)∂kŴ (k)
]

dk =

i

∫ π

0

[

∂k
(

log det
(

W̃ (k)
))]

dk = ∆ϕ, (23)

where Eq. (13) has been used for the last equality sign.
This makes the equivalence of the expressions (8) and
(17) manifest which was the main purpose of the present
analysis. We note that due to the π-quantization of the
Berry phase ∆ϕ = −∆ϕ (mod 2π). This is reflected in
the expression Eq. (12) for M, which does not depend
on the overall sign of ∆ϕ.

IV. PFAFFIAN INVARIANT FOR

NON-SUPERCONDUCTING SYSTEMS WITH

PHS

In the 1DTSC phase, PHS is not a physical symme-
try but ‘emerges’ from the BdG description of super-
conductivity. However, there are also symmetry pro-
tected topological states in particle number conserving
1D systems that have a physical PHS C with C2 = 1.

The most prominent example of this category is the SSH
model18,19. In this case, the defining Z2 invariant is not
associated with the presence of a single MBS but with a
localized fermionic state with a fractional charge of e

2
25.

However, a Pfaffian invariant can also be defined in this
case as we will discuss now. Generally, the operation of
PHS can be expressed as C = UCK with the unitary part
UC . Under a unitary transformation U this unitary part
transforms like UC → UUCU

T due to the complex con-
jugation involved in C. In particular, because C2 = 1
implies that UC = UT

C , one can always find a unitary
U that satisfies UUCU

T = 1. After this transformation,
C = K, implying that the transformed Hamiltonian is of
the form UHU † = iA, where A is a real antisymmetric
matrix. Although the basis vectors in this representa-
tion are not Majorana fermions, it is formally completely
analogous to the Majorana representation of SC mean
field Hamiltonians. Hence, a Pfaffian invariant can be
defined in terms of the antisymmetric matrix A identical
to Eq. (7) and Eq. (8), respectively. The proof that
this invariant is equal to the quantized Zak-Berry phase,
which is well known to topologically classify PHS pro-
tected topological states in 1D, is analogous to the one
for the superconducting case presented above. We note
that evaluating the Pfaffian invariant can be much more
convenient as it does not involve an integration over the
Brillouin zone but only contains information about the
Bloch Hamiltonian at the two real k-points.

V. CONCLUDING DISCUSSION

We have made the equivalence manifest between the
quantized Zak-Berry phase and the Pfaffian invariant
characterizing a 1DTSC and a PHS conserving 1D
insulator in symmetry class D, respectively. This has
been achieved by expressing both formulations as the
phase winding of the determinant of a unitary matrix
in half of the Brillouin zone. The other half of the
Brillouin zone is redundant due to the antiunitary
constraint of PHS. The equivalence between the two
approaches to the topological invariant is not limited to
superconducting systems but also holds for symmetry
protected topological states in 1D like the SSH model.
Our construction is related to a similar analysis24

(see also Ref. 26) of two-dimensional systems in the
symplectic symmetry class AII , where the relevant
Z2 invariant could be connected to a so called time
reversal polarization. In 1D, the quantized Zak-Berry
phase is well known to correspond to a polarization of
the underlying lattice and so does the equivalent Pfaffian
invariant. However, for the BdG band structure, this
polarization is in general not a charge polarization that
has immediate observable consequences.
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