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Quasiparticles at the NS junction

Recap of BdG

A generic Fock space Hamiltonian of a superconductor is recast with the help of the BdG trick as

H =
∑
ij

hijc
†
i cj + ∆ijc

†
i c
†
j + h.c. (1)

=
1

2

(
c† c

)( h ∆
−∆∗ −h∗

)
︸ ︷︷ ︸

HBdG

(
c
c†

)
+

1

2
Tr[h]I,

where we introduced the Nambu spinor

(
c
c†

)
=


c1
...

c†1
...

 built from creation and annihilation operators. Remember that

hermiticity of H requires h = h† and ∆ = −∆>. The positive eigenvalues of the BdG matrix give the excitation spectrum.

HBdGψn = Enψn (2)

The BdG trick forces PHS on HBdG this is not physical it is built in the formalism. PHS is represented

P = σxKR (3)

where σx is the appropriate Pauli matrix in Nambu space and the operator KR is complex conjugation in real space. The e�ect
of PHS is

PHBdGP−1 = −HBdG (4)

p-wave and s-wave models in k-space

We have so far investigated the Kitaev wire extensively, this shell be our p-wave model:

HKitaev = −
∑
m

µc†mcm −
∑
m

(
vc†mcm+1 + h.c.

)
−
∑
m

(
∆c†m+1c

†
m + h.c.

)
=

1

2

∑
k

f†kHKitaev(k)fk + const (5)

Where in the last step we performed �rst the BdG trick and than a Fourier transform in the Nambu basis

fm =

(
cm
c†m

)
→ fk =

(
ck
c†−k

)
=
∑
m

fme
ikm. (6)

Thus the BdG matrix for the Kitaev model reads

HKitaev(k) =

(
−µ− 2v cos (k) −2i sin (k) ∆

2i sin (k) ∆∗ µ+ 2v cos (k)

)
. (7)
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For the s-wave case we

Hs-wave = −
∑
mσ

µc†mσcmσ −
∑
mσ

(
vc†mσcm+1σ + h.c.

)
−
∑
m

(
∆c†m↑c

†
m↓ + h.c.

)
=

1

2

∑
k

f†kHFull s-wave(k)fk + const, (8)

here the Nambu spinor has four component, and thus the BdG matrix will also be 4× 4

fm =


cm↑
cm↓
c†m↑
c†m↓

→ fk =


ck↑
ck↓
c†−k↑
c†−k↓

 =
∑
m

fme
ikm (9)

HFull s-wave(k) =


−µ− 2v cos (k) 0 0 −∆

0 −µ− 2v cos (k) ∆ 0
0 ∆∗ µ+ 2v cos (k) 0
−∆∗ 0 0 µ+ 2v cos (k)

 . (10)

Due to the absence of spin mixing terms and p-wave like pair correlations, this model can be separated in-to two disjoint
copies. The physics is similar in both hence we shall focus on the �outer� block and were it is necessary we shall discuss relevant
changes for the �inner� block. For simplicity the inner block will be referred to as Hs-wave(k), with elements

Hs-wave(k) =

(
−µ− 2v cos (k) −∆

−∆∗ µ+ 2v cos (k)

)
. (11)

Interpreting the spectrum of HBdG in the absence of superconductivity

Figure 1: The spectrum of HBdG in the absence of ∆. Particle like excitations are denoted by solid lines and hole like excitations
are depicted by a dashed line. Taking out a particle below the Fermi sea corresponds to introducing a hole at positive energy.
The two blue lines denote the parallel tangents corresponding to the group velocities of particle and hole excitations above and
below the Fermi level as a graphical proof that these particles have the same velocity.

• The positive-energy half of the BdG spectrum contains all the physical information: the eigenstates can be used to con-
struct the single-particle excitations of the many-body Hamiltonian, and the eigenvalues give the corresponding excitation
energies. The negative-energy part of the BdG spectrum is hence redundant. (We need to pay special attention to 0-energy
eigenstates, as we discuss later).

• At positive energies for ∆ = 0 we have two disjoint part of the spectrum, particles and holes. (Discuss what we mean by
particle and hole type excitations!!)

We shall call an excitation a particle if its Nambu spinor is

(
1
0

)
, while we shall call an excitation a hole if its spinor

is

(
0
1

)
. In Fig. 1 we denote particles and holes with solid and dashed lines respectively. Draw attention to possible

alternative de�nitions used in the literature.

• If a particle-type positive-eigenvalue BdG excitation with momentum k and energy Ek is present in the many-body state,
then this many-body state has an excess energy Ek, and this many-body state carries an excess current e∂kEk compared
to the ground state.

• A hole at momentum k and energy Ek corresponds to the absence of a particle from the Fermi sea at momentum −k
and energy −Ek. As such it carries −e charge but crucially its velocity is the same as the particle whose absence it
signi�es, that is ∂kEk. (HF: show if this is true from simple Fock space 5 site TB ring with µ = 0, v < 0!)
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Figure 2: Linearized spectrum and Andreev processes.

Envelope function approximation for k ≈ ±kF
Series expansion at kF , here −µ− 2v cos (kF ) = 0

HKitaev(k) ≈ vFσz(k − kF ) + 2 sin (kF ) ∆σy (12)

In the spirit of the EFA we relabel k − kF as -i∂x = p̂ thus we arrive at:

HehKitaev =

(
vF p̂ −i∆̃
i∆̃∗ −vF p̂

)
, (13)

where we introduced vF = |2v sin (kF )| and ∆̃ = 2 sin (kF ) ∆. Note that for ∆ = 0, this EFA Hamiltonian describes particles
propagating to the right and holes propagating to the left.

Series expansion at −kF , gives the slightly di�erent result:

HheKitaev =

(
−vF p̂ i∆̃

−i∆̃∗ vF p̂

)
(14)

notice that the sign of ∆̃ changes! Note that for ∆̃ = 0, this EFA Hamiltonian describes particles propagating to the left and
holes propagating to the right. Since the phase of ∆̃ is not relevant for investigating junctions where only a single superconductor
is present, we �x it such that i∆̃ is real and introduce ∆′ = i∆̃. For the Kitaev wire hence the two valleys will be described by

HehKitaev =

(
vF p̂ −∆′

−∆′ −vF p̂

)
, HheKitaev =

(
−vF p̂ ∆′

∆′ vF p̂

)
(15)

For the s-wave the two valleys give the same sign in both valleys:

Hehs-wave =

(
vF p̂ −∆
−∆ −vF p̂

)
, Hhes-wave =

(
−vF p̂ −∆
−∆ vF p̂

)
(16)

and we �x the phase of ∆ to make it real.
We shall use the above derived EFA matrices in the spirit of the EFA approach and make the ∆-s position dependent. We

shall be �rst and foremost interested in interfaces between a conducting channel and a superconductor. In this case we need to
take in to account both of the �valley�-s at which we just produced

Landauer's approach extended for superconductors

Recap Landauer's approach for a conventional 1D single modded wire.

Recall from the previous semester that according to Landauer the current at �nite bias of a wire with a single mode (no spin
degeneracy assumed) in the presence of a scatterer is

I =
e2

h

∫
T (E)︸ ︷︷ ︸
1−R(E)

[fL(E)− fR(E)]dE. (17)

Where T (E) ans R(E) is the transmission and re�ection probability of a particle impinging on the scatterer, fL(E)and fR(E) are
Fermi-Dirac distribution functions of particle reservoirs, possibly at di�erent chemical potential. The simple relation T = 1−R
is a consequence of the continuity relation of the particle �ow expressed by the unitarity of the scattering matrix.
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SC

some dirt
Figure 3: Elementary processes for an impinging particle at a dirty SN junction. A particle can either be re�ected from the dirt
with amplitude r or transmitted through it with amplitude t. From the superconductor it can be re�ected back as a hole with
amplitude rA. As a consequence of these elementary processes there is a �nite probability of re�ection as a particle R and a
�nite probability as a re�ection as a hole A.

Andreev re�ection

As we saw above in the BdG picture we have to take in to account both particles and holes at a given energy. Further more
holes have to be counted as carriers with opposite charge as particles!

In the case of a superconducting electrode particles can be converted to holes thus we have an additional term A(E) describing
Andreev scattering the process by which a superconductor converts particle like excitations impinging on it to hole like excitations
and vice versa .

I =
e2

h

∫
(1−R(E) +A(E)) [fL(E)− fR(E)]dE (18)

At zero temperature, assuming a �nite bias voltage V such that fL(E) = fR(E − eV ), i.e. we are forcing particles from a
reservoir towards the superconductor we have

I =
e2

h

∫ eV

0

(1−R(E) +A(E)) dE (19)

thus the di�erential conductance at �nite bias is

dI

dV
=
e2

h
(1−R(eV ) +A(eV )) (20)

For energies below the gap R and A are related by unitarity of the scattering process R + A = 1, thus for bias voltages smaller
than the gap we have

dI

dV
=

2e2

h
A(eV ) =

∣∣∣rdirtyA (eV )
∣∣∣ . (21)

In what follows we restrict ourselves to this regime that is E < ∆

Clean interfaces

If the interface between the normal and superconducting region is clean, than the only process which is allowed is Andreev
scattering. In order to �nd the Andreev rA and inverse Andreev r̃A scattering coe�cients we resort to mode matching of
scattering wavefunctions. (See notebook and the appendix!)

This procedure yields

rA =
−E + i

√
∆2 − E2

∆
= ei arccos(−

E
∆ ), (22)

r̃A =
±∆

E + i
√

∆2 − E2
= ±e−i arccos(

E
∆ ) (23)

where the + sign is for the p-wave case and the − sign is for the s-wave.

4



Figure 4: Elementary processes for Andreev re�ection of a particle from a dirty NINS interface

Scattering processes at a generic SN interface

Consider a SN interface with some scattering potential in front of the superconductors To �nd the total amplitude of Andreev
scattering we sum up all paths where a hole is re�ected back to the normal contact.

rdirtyA = t′h

[
1 + (rAr

′
er̃Ar

′
h) + ()

2
+ . . .

]
rAte =

t′hrAte
1− rAr′er̃Ar′h

(24)

The magnitude of ahe gives the total probability of Andreev re�ection

A(E) =
∣∣∣rdirtyA (E)

∣∣∣2 . (25)

In an extremely simple yet generic enough approach we can assume that te = t′h = t similarly r′e = r′h = r and that they do
not depend on energy and are related by unitarity t2 + r2 = 1,

A(E) =

∣∣∣∣ rAt
2

1− (1− t2) rAr̃A

∣∣∣∣2 (26)

An important consequence of the additional − sign for the inverse Andreev re�ection process in the s-wave case can deduced for
E = 0:

AKitaev(0) = |rA|2 = 1 (27)

and

As-wave(0) =

∣∣∣∣ rAt22− t2

∣∣∣∣2 . (28)

That is for a topological p-wave superconductor at zero bias dI/dV is independent for the dirt and is quantized to 2e2

h ! For
s-wave the probability of Andreev re�ection will still depend on the details of the dirty interface, in this case on t. If t = 1,

dI/dV = 2× 2e2

h but otherwise it can take on any value!

Figure 5: dI/dV for p-wave and s-wave NINS junctions for ∆ = 1.
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Appendix

Mode matching

Consider the elementary process where by in the Kitaev model a particle is converted to a hole. for this we investigate the EFA
Hamiltonian in the e-h valley:

HehKitaev =

(
vF p̂ −∆′

−∆′ −vF p̂

)
. (29)

On the left side of the junction at x < 0 we set ∆′ = 0 and thus a scattering wavefunction describing particles impinging to the
interface have the form

ψeh|x<0 =

(
1
0

)
eikx +

(
0
rA

)
e−ikx. (30)

Inside the superconductor there are no propagating states below ∆′, but evanescent solutions for the EFA exist. The

ψeh|x>0 =

(
u
v

)
e−κx (31)

Substituting this ansatz into HehKitaevψ = Eψ yields u, v and κ. Matching the solutions at x = 0, we have(
1
rA

)
=

(
u
v

)
,→ rA =

v

u
=
−E + i

√
∆2 − E2

∆
. (32)

Note that this will be the same fort the s-wave case!
For the inverse process we need to use HheKitaev and Hhes-wave which crucially di�er by the sign of their respective ∆! The

scattering wavefunction on the normal side now is:

ψhe|x<0 =

(
0
1

)
eikx +

(
r̃A
0

)
e−ikx. (33)

In the superconductor we again take a decaying ansatz

ψhe|x>0 =

(
u′

v′

)
e−κx (34)

Matching the solutions at x = 0, we have(
r̃A
1

)
=

(
u′

v′

)
,→ r̃A =

u′

v′
=

±∆

E + i
√

∆2 − E2
. (35)

where the + sign is for the p-wave case and the − sign is for the s-wave.
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