
Chapter 3

Toy models for
one-dimensional topological
superconductors

In this chapter we will discuss two simple toy models for topological supercon-
ductors, i.e., superconductors whose Bogoliubov-de Gennes (BdG) Hamiltonian
is topologically nontrivial. Both the Kitaev wire and the so-called p + ip two-
dimensional topological superconductor have nonlocal superconducting order
parameters. We will set up the models, and show how the machinery of topo-
logical insulators can be applied to them. (1) They have bulk topological invari-
ants, hence they cannot be adiabatically deformed to the atomic insulator limit.
(2) They have edge states, that are topologically protected. (3) Bulk–boundary
correspondence connects the number of edge states with the bulk topological
invariants.

3.1 One-dimensional topological superconductor:
the Kitaev Wire

The Kitaev wire is a toy model for a p-wave superconducting wire. It describes
spinless fermions (e.g., spin polarized electrons) hopping on a chain consisting
of N sites. The chain lies on top of a superconductor, which has a condensate
of Cooper pairs. Thus, pairs of electrons on neighboring sites can hop off the
chain simultaneously and form a Cooper pair in the superconductor. The inverse
process can also occur: a Cooper pair in the superconductor can be broken, if
the resulting fermions both end up in the chain, on neighboring sites. The grand
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canonical Hamiltonian of this system reads,

ĤK =

N�

m=1

��m
2
ĉ†mĉm − wmĉ†mĉm+1 +Δmĉ†m+1ĉ

†
m

�
+ h.c. (3.1)

The operator ĉm annihilates an electron from site m. The first term describes
the onsite potentials �m, which includes the chemical potential plus any site-
dependent terms (e.g., electric potential from back-gates). The second term
is the hopping of electrons between neighboring sites, with position-dependent
amplitude wm. The last term is the effect of superconductivity in the mean-
field approximation, via the pair potential Δm, a set of complex parameters,
corresponding to the wave function of the Cooper pair condensate. To calculate
Δm self-consistently, we would need a description of the bulk superconductor,
but in these notes, as in a large part of the literature, we treat Δm as parameters
with no dynamics. In most of this chapter we will study the homogeneous
case, with position independent hopping amplitude wm = w and pair potential
Δm = Δ.

3.1.1 Bogoliubov-de Gennes Hamiltonian of the Kitaev
wire: finite chain and bulk momentum-space Hamil-
tonian

We have seen in the previous chapter how the ground state, and the excitations
of any superconductor can be described using a BdG Hamiltonian,
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ĉ
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h Δ
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�
, (3.2)

with hermitian h and antisymmetric Δ matrices. This is the PHS-first-position-
second basis for the BdG Hamiltonian, with, as an example, for the Kitaev wire
for N = 5 sites, the matrices of the blocks that read

h =




�1 −w1 0 w∗
N

−w∗
1 �2

. . . 0

0
. . .

. . . −wN−1

−wN 0 −w∗
N−1 �N




; Δ =




0 −Δ1 0 ΔN

Δ1 0
. . . 0

0
. . . 0 −ΔN−1

−ΔN 0 ΔN−1 0




.

To find the edge states and the bulk momentum-space BdG Hamiltonian
of the Kitaev wire, it is worthwhile to reorder the creation and annihilation
operators. Taking position first, particle-hole second, as

ĉ† = (ĉ†1, ĉ1, ĉ
†
2, ĉ2, . . . , ĉ

†
N , ĉN ). (3.3)

Using this shorthand, the BdG Hamiltonian reads,

Ĥ =
1

2
ĉ†Hĉ, (3.4)
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with

H =



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4 w4
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
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;

Here, for an open chain, take wN = ΔN = 0.
Particle-hole symmetry is here represented by the operator,

P̂ = σx ⊕ σx ⊕ . . .⊕ σx� �� �
N

K, (3.5)

where K is complex conjugation in position space.

3.1.2 Bulk momentum-space Hamiltonian

To find the bulk momentum-space Hamiltonian, we follow the same procedure as
we did for the Su-Schrieffer-Heeger model. We start with the real-space matrix
of the BdG Hamiltonian, Eq. (3.5), with translation invariance, w1 = w2 = . . . =
wN = |w| eiχ ∈ C, �1 = �2 = . . . = �N = −µ ∈ R, and Δ1 = Δ2 = ΔN = Δ ∈ C.
We insert plane wave Ansatzes for the eigenvectors of this matrix, obtaining the
eigenvalue equation,

H
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, (3.6)

where u(k) and v(k) are the particle and hole components of the eigenmode.
We can read off the Schrödinger equation for u(k), v(k) and E(k), from, e.g.,
the third and fourth row of the above equation, as

H(k)

�
u(k)
v(k)

�
= E(k)

�
u(k)
v(k)

�
, (3.7)
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with the matrix H(k) of the bulk momentum-space BdG Hamiltonian,

H(k) =

�
−2 |w| cos(k − χ)− µ −2iΔ sin k

2iΔ∗ sin k 2 |w| cos(k + χ) + µ

�
. (3.8)

Particle-hole symmetry of the bulk momentum-space Hamiltonian reads

σ̂xKH(k)Kσ̂x = −H(k). (3.9)

Bear in mind here that K is complex conjugation in position space, and so,

KH(k)K = H(−k)∗, (3.10)

where ∗ denotes elementwise complex conjugation. You can verify using Eq. (3.8)
that particle-hole symmetry is indeed fulfilled.

3.1.3 Bulk invariant: “polarization”

Similarly to the SSH model, the symmetry and the gap of the Hamiltonian
induce quantization of the sum of the Berry phases of the negative-energy bands
of the BdG Hamiltonian,

�
n<0 γn. For an ordinary band insulator, this would

represent the bulk polarization, as we discussed last year.
This holds because the Berry phase of the nth positive energy and −nth

negative energy band are equal. To show that, use particle-hole symmetry of
the BdG Hamiltonian, i.e., if

H(k) |n(k)� = En(k) |n(k)� , (3.11)

then, acting with the particle-hole symmetry on both sides, we obtain

−H(k)σ̂x |n(−k)�∗ = En(k)σ̂x |n(−k)�∗ . (3.12)

Therefore, with a proper choice of gauge, we have

n > 0 : |n(k)� = σ̂x |−n(−k)�∗ . (3.13)

The gauge choice here involved fixing the phase of |−n� relative to the phase
of |n�. Now consider the integral needed to obtain the Berry phase across the
Brillouin zone,

� π

−π

dk �n(k)| ∂k |n(k)� =
� π

−π

dk �−n(−k)|∗ σ̂x∂kσ̂x |−n(−k)�∗

=

�� −π

π

dk �−n(k)| ∂k |−n(k)�
�∗

=

�
−
� π

−π

dk �−n(k)| ∂k |−n(k)�
�∗

. (3.14)

Since the integral above is purely imaginary, we obtain

γn =
1

2πi

� π

−π

dk �n(k)| ∂k |n(k)� = γ−n. (3.15)
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Thus,

�

n<0

γn =
�

n>0

γn. (3.16)

On the other hand, the sum of all Berry phases has to vanish,

�

n<0

γn +
�

n>0

γn = 0 (mod2π). (3.17)

Thus, we have two options for this quantity, the BdG analogue of bulk
polarization:

trivial:
�

n<0

γn = 0 (mod2π); (3.18)

topological:
�

n<0

γn = π (mod2π). (3.19)

A bulk topological invariant represents a restriction. Its nonzero value tells
us that the Hamiltonian cannot be adiabatically deformed into an atomic insu-
lating limit. By adiabatic deformation we mean a smooth, translation invariant
change of the system parameters (possibly including the addition of new, longer
range hopping terms), that respects the symmetries and keeps the bulk gap
open. By atomic insulating limit we mean that the Hamiltonian is a direct sum
of operators acting on the individual unit cells, no hopping.

The bulk polarization of the BdG Hamiltonian of a one-dimensional super-
conductor is a Z2 topological invariant. It can take on one of two distinct values
(hence Z2), and thus cannot change under adiabatic deformation. In the atomic
limit, obviously its value is 0. Thus if the polarization is π, we have a topological
superconductor.

3.1.4 Edge states

We can find and analyze edge states in the BdG Hamiltonian of the Kitaev wire
in the same way as we did for the SSH model.

1) Flat-band limit: edge states
2) Moving away from the flat-band limit: topological protection
3) General bulk–boundary correspondence argument: using polarization.

3.1.5 The Kitaev wire is more robust than the SSH model

The topological protection of the edge states in the SSH model depended on
two fragile features: the robustness of the chiral symmetry and the indivisibility
of the unit cell. An isolated edge state can be moved away from 0 energy by
breaking chiral symmetry. This is easily realized, e.g., using an onsite potential.
On the other hand, just changing the chain termination by adding an extra site
is enough to move a bound state from 0 energy as well.
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Kitaev SSH Kitaev MF
PHS (+1) σxH∗σx = −H σzH

∗
SSHσz = −HSSH A∗ = A

TRS (+1) H∗ = H H∗
SSH = HSSH σzA∗σz = −A

CS σxHσx = −H σzHSSHσz = −HSSH σzAσz = −A

Table 3.1: The symmetries of the Kitaev wire and the Su–Schrieffer–Heeger
(SSH) model. In the last column, the representation of the symmetries on the
real matrix A representing the Kitaev wire with Majorana Fermions.

In the Kitaev wire, both the particle-hole symmetry and the indivisibility of
the unit cell are hardwired into the formalism, and therefore are robust. Thus
Majorana fermions as end states are more robust.

3.1.6 The Kitaev wire with real parameters is in the uni-
versality class of the SSH model

We might wonder whether the Kitaev wire – similarly to the SSH model –
might possess a full Z invariant – a winding number – rather than just a Z2

invariant. Indeed, this is the case, if both the hopping amplitudes wm and
the pair potentials Δm are real. In that case the matrix of the real-space BdG
Hamiltonian is real, and therefore possesses time-reversal symmetry, represented
by complex conjugation.

In this case the fundamental symmetries of the Kitaev wire and the SSH
model are listed in Table 3.1. They are the same, so we expect that with real
parameters, the Kitaev wire can have any number of robust edge states at a
single edge, not just 0 or 1.

The mapping is made explicit by a basis transformation

To bring out the similarities between the Kitaev wire and the SSH model, we
can use a unitary rotation to map σx to σz. This is achieved by

H� = eiπ/4σyHe−iπ/4σy =
1

2

�
1 1
−1 1

�
H

�
1 −1
1 1

�
. (3.20)

Substituting Eq. (1.39), this corresponds to

H� =

�
i(Imh+ ImΔ) −Reh+ReΔ
−Reh− ReΔ i(Imh− ImΔ)

�
. (3.21)

This is a Hermitian matrix because h is Hermitian and Δ is antisymmetric. The
symmetries of H� are represented by the same operators as those of the SSH
model.

For the bulk momentum-space Hamiltonian, taking ImΔ = Imw = 0, we
obtain

H�(k) =

�
0 −2w cos k − µ− 2iΔ sin k

−2w cos k − µ+ 2iΔ sin k 0

�
. (3.22)



Chapter 4

Two-dimensional
topological superconductor

The simplest toy model for a two-dimensional topological superconductor is
obtained by transcribing the Qi-Wu-Zhang model. The bulk momentum-space
Hamiltonian of the Qi-Wu-Zhang model reads

ĤQWZ(k) =

�
w cos kx + w cos ky + u w sin kx + iw sin ky
w sin kx − iw sin ky −w cos kx − w cos ky − u

�
, (4.1)

where we used w for the enegy scale of the hopping amplitude. We can reinter-
pret this as a BdG Hamiltonian, introducing some extra parameters, as

Ĥp+ip(k) =

�
−w cos kx − w cos ky − µ −iΔ0 sin kx +Δ0 sin ky
iΔ∗

0 sin kx +Δ∗
0 sin ky w cos kx + w cos ky + µ

�
. (4.2)

The superconducting order parameter in our toy model is not only nonlocal
(p-wave), but also direction-dependent. There is a relative phase of i between
the Cooper pairs created from x− and y− neighbors. For this reason, this model
is called px + ipy, or even shorter, p+ ip. One might worry that this is not too
realistic, and indeed, it is not clear whether it is actually realized in nature,
although SrRuO4 is a strong candidate.

The corresponding real-space lattice Hamiltonian reads,

Ĥp+ip =

N�

m,l=1

�
− wĉ†m,lĉm+1,l − wĉ†m,lĉm,l+1 + h.c.

�
− µ

N�

m,l=1

ĉ†m,lĉm,l

+
N�

m,l=1

�
Δ0ĉ

†
m+1,lĉ

†
m,l + iΔ0ĉ

†
m,l+1ĉ

†
m,l + h.c.

�
. (4.3)
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Figure 4.1: Dispersion relation of a strip of p + ip superconductor. Red/blue
are states localized on lower/upper edge (with 80% of probability within 2 sites
of the boundary). Their wavefunction is equal weight particle and hole, within
numerical accuracy.

4.1 Chern number, edge modes

We can apply everything we know about Chern insulators to this two-dimensional
topological superconductor (maybe it is time for you to revise the first semester).
This can be a gapped system with a bulk topological invariant: the Chern num-
ber Q, with

2w < µ : Q = 0; (4.4a)

0 < µ < 2w : Q = 1; (4.4b)

−2w < µ < 0 : Q = −1; (4.4c)

µ < −2w : Q = 0. (4.4d)

Correspondingly, in the gapped topological phases there are edge states, which
propagate in one direction only along the edge. Such states are called “chiral”.

The edge states are not Majorana zero modes, but Majorana fermions,
branches of the dispersion relation whose negative-energy part is the particle-
hole symmetric partner of the positive-energy part. They therefore have to cross
E = 0 at either k = 0 or k = π. At the crossing point there is a state that is its
own particle-home symmetry partner, and thus a Majorana zero mode.

To get more of an intuition for these Majorana fermion modes, we need to do
an envelope function approximation for them, as we did for chiral edge modes
of Chern insulators in the previous semester. We are looking for eigenstates of
the linearized BdG Hamiltonian,

�
−µ Δ(−∂x − i∂y)

Δ∗(∂x − i∂y) µ

��
u(x, y)
v(x, y)

�
= E

�
u(x, y)
v(x, y)

�
. (4.5)
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We take a setup with a boundary tilted at an angle θ with the y-axis (this
also gives us an orientation). On the one side of the boundary is the sample,
with µ > 0 (trivial). On the other side of the boundary is the vacuum: in this
equation, we can realize a vacuum by pushing up the dispersion relation of the
electrons, taking µ to large negative values. For simplicity, we take Δ = |Δ| eiφ
to be constant. This would involve having a pair potential also in the vacuum,
but since there is no density of states at 0 there anyway, this is not a problem.

For each energy E, we are looking for two eigenstates, that are plane-wave-
like along the boundary, with wavenumbers to be specified. Actually, we will fix
the wavenumber k, and find the corresponding energies E during the calculation;
we will then verify if we have found two solutions for every energy. We take
rotated coordinates to fit with the boundary:

x� = cos θx− sin θy; ∂x = cos θ∂x� + sin θ∂y� ; (4.6)

y� = cos θy + sin θx; ∂y = cos θ∂y� − sin θ∂x� , (4.7)

where the equations on the right were derived using the chain rule, e.g., ∂x =
∂xx

�∂x� + ∂xy
�∂y� . Substituting these and −i∂y� = k into the BdG eigenvalue

equation, we obtain

�
−µ Δe−iθ(−∂x� + k)

Δ∗eiθ(∂x� + k) µ

��
u(x�)
v(x�)

�
= E

�
u(x�)
v(x�)

�
. (4.8)

We can now use an Ansatz:

u(x�) = ±ei(φ−θ)v(x�). (4.9)

Substituting this into the eigenvalue equation, we get a system of two equations:

∓µei(φ−θ)v + kΔe−iθv −Δe−iθ∂x�v = ±Eei(φ−θ)v; (4.10)

± |Δ| ∂x�v ± |Δ| kv + µv = Ev. (4.11)

Now taking ±e−i(φ−θ) times the first equation plus and minus the second equa-
tion, we get

± |Δ| k = E; (4.12)

−2µv(x�)∓ 2 |Δ| ∂x�v(x�) = 0. (4.13)

The first equation shows us that these solutions are dispersionless chiral states
propagating along the edge, in positive or negative direction. The second equa-
tion is solved by integration, and we obtain

Ψ(x�, y�) =

�
±ei(φ−θ)

1

�
exp

�� x�

0

±µ(x��)
|Δ| dx��

�
eiky

�
. (4.14)

Although these are both eigenstates, only one of them is normalizable. When
this is a left edge, i.e., µ > 0 for x� → ∞ and µ < 0 for x� → −∞, it is the
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Figure 4.2: Figure with caption from the review “New directions in the pursuit
of Majorana fermions in solid state systems” by Jason Alicea

solution where the ± should be taken as +, a state propagating in the positive
y� direction. On a right edge, i.e., µ < 0 for x� → ∞ and µ > 0 for x� → −∞,
it is the solution where the ± should be taken as −, a state propagating in the
negative y� direction.

So for every energy E we have found only one edge state, propagating with
velocity |Δ| along the boundary in a chiral way. The (Nambu) spinor (u, v)T

describing the particle-hole structure of the Majorana edge modes is in the
xy plane. Moreover, its angle follows the phase of the superconducting pair
potential Δ(k), corresponding to the direction of propagation of the edge mode.

4.2 Majorana zero modes at the centers of mag-
netic vortices

If we take a sample of the p+ip superconductor with a disk shape, we find chiral
Majorana edge modes around the perimeter. These have allowed wavenumbers
along the edge, which are quantized due to the finite size of the sample. They
have to cross E = 0 at either k = 0 or k = π, and at the crossing point, there
should be a Majorana Zero Mode. However, because of the finite size of the
sample, wavenumber of the edge modes is quantized: not all wavenumbers are
allowed, i.e., compatible with the boundary conditions around the perimeter. Is
k = 0 an allowed wavenumber for Majorana edge modes on a disk?
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Naively, one might expect that the boundary conditions for edge modes are
periodic, and thus, k = 0, which respects these boundary conditions, is always
allowed. However, chiral edge modes also have an internal degree of freedom,
their particle-hole structure, which is analogous to a spin-half. And, just like
with edge states of Chern insulators, their spin is oriented along the boundary.
Therefore, after one round trip, this spin has turned around once, bringing
a factor of (-1). Therefore, the boundary conditions required for Majorana
fermions are in fact antiperiodic. Thus, no edge states at k = E = 0.

A way to create a Majorana Zero Mode edge state at k = 0 and E ≈
0 is to change boundary conditions for edge states by inserting a magnetic
field through the middle of the disk. The magnetic field is shielded by the
superconductor, falling off exponentially with the distance, with a characteristic
London penetration depth λ, as in the Abrikosov vortices. Thus, far away from
the vortex core, the magnetic field is no longer present. However, there is an
Aharonov-Bohm phase picked up by the electrons, and this results in a twisting
of the phase of the superconducting pair potential:

vortex at 0, r � λ: Δ(x = r cos θ, y = r sin θ) = eiΦ/Φ0θΔ(x = r, y = 0),
(4.15)

with Φ denoting the total magnetic flux in the vortex, and Φ0 = e/(π�) the
superconducting flux quantum. Because the pair potential Δ has to be single
valued, the magnetic flux inserted in a vortex has to be an integer multiple of
the flux quantum.

We can now understand why, for a large disk, inserting a flux quantum
through the middle of the disk brings with it a Majorana zero mode on the
boundary, at k = 0. The Nambu spinor of the edge mode should rotate as
we go around the perimeter, because it follows the phase of the pair potential,
which follows the direction of propagation along the edge - one rotation for one
round trip. However, introducing an odd number of flux quanta in a vortex in
the middle of the disk results in an odd number of extra rotations – altogether,
an even number of rotations of the spinor, and thus, no extra phase of −1.
Hence, not antiperiodic, but periodic boundary conditions.

4.2.1 Gauge transformation

In a numerical model, it is convenient to do a gauge transformation to represent
the effects of the vortex with less numerical effort. A gauge transformation
changes the phases of terms in a lattice Hamiltonian, such as Eq. (4.3), in
such a way that the spectrum is invariant. We start with a real phase field,
Λr = Λm,l ∈ R, and we transform the creation and annihilation operators,

ĉr → ĉre
iΛr ; ĉ†r → ĉ†re

−iΛr . (4.16)

If we do this transformation of the Hamiltonian, the spectrum does not change:
the same Bogoliubov tranformation diagonalizes the Hamiltonian as before, only
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in terms of the transformed operators. Formulated differently: the above trans-
formation is a unitary tranformation on the BdG Hamiltonian, and therefore
does not change the spectrum.

The gauge transformation above can also be realized on the amplitudes of the
hopping and superconducting terms in the lattice Hamiltonian. We therefore
learn that the following transformation,

wr�,rĉ
†
r� ĉr; wr�,r → wr�,re

−i(Λr−Λr); (4.17)

Δr�,rĉ
†
r� ĉ

†
r; Δr�,r → Δr�,re

−i(Λr+Λr� ), (4.18)

does not change the spectrum.
When we represent the effects of a vortex carrying one quantum of magnetic

flux, we could include the phase of the pair potential Δ explicitly, but it is more
convenient to transform it out, using

Λ(x = r cos θ, y = r sin θ) = θ. (4.19)

As a result, the phase of the superconductor is uniform. However, all hoppings
and pair potentials crossing the line going from the origin to positive infinity
along x obtain an extra factor of −1, according to the rules of gauge transfor-
mation above. This gives us another way to see that the boundary conditions
along the edge change from antiperiodic to periodic as flux quanta are threaded
through the center of the disk.

4.2.2 Majorana zero mode at the vortex core

The core of a vortex with odd number of superconducting flux quanta hosts
a Majorana zero mode. We can understand this by starting with a Corbino
geometry, as in Fig. 4.2. The core is obtained by letting the radius of the inner
(red) circle go to zero. In the case with an odd number of flux quanta threading
the ring, there is always a Majorana zero mode there with k = 0, which has to
remain there even if the size of the inner circle is 0.


