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This is a tutorial review of methods to braid the world lines of non-Abelian anyons (Majorana
zero-modes) in topological superconductors. That “Holy Grail” of topological quantum information
processing has not yet been reached in the laboratory, but there now exists a variety of platforms
in which one can search for the Majorana braiding statistics. After an introduction to the basic
concepts of braiding we discuss how one might be able to braid immobile Majorana zero-modes,
bound to the end points of a nanowire, by performing the exchange in parameter space, rather
than in real space. We explain how Coulomb interaction can be used to both control and read out
the braiding operation, even though Majorana zero-modes are charge neutral. We ask whether the
fusion rule might provide for an easier pathway towards the demonstration of non-Abelian statistics.
In the final part we discuss an approach to braiding in real space, rather than parameter space, using
vortices injected into a chiral Majorana edge mode as “flying qubits”.

Lecture notes for the Les Houches summer school on Quantum Information Machines (July 2019).
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FIG. 1. World lines in a space-time (x, t) diagram, describing
the braiding (exchange) of four particles. When the particles
are non-Abelian anyons each topologically distinct braid cor-
responds to a different unitary operation on the ground state.

I. INTRODUCTION

Non-Abelian anyons have the property that a pairwise
exchange operation in a two-dimensional plane may pro-
duce a different state at the same energy, related to the
initial state by a unitary matrix rather than by a scalar
phase factor [1]. The exchange of a set of anyons can
be described by the interlacing of their world lines in a
space-time diagram (see Fig. 1). One speaks of “braid-
ing”, with reference to the way strands of wire or hair
are interlaced in a zigzag manner.1 Topologically dis-
tinct braids, which cannot be transformed into each other
without cutting the world lines, correspond to distinct
unitary matrices that can be used as building blocks for
a quantum computation [2].

Because the braiding operation transforms between lo-
cally indistinguishable ground states it is protected from
local sources of decoherence. One speaks of topological
protection and calculations performed by braiding are
called topological quantum computations [3]. In princi-
ple, a platform of non-Abelian anyons could provide a ro-
bust alternative to qubits formed out of conventional two-

1 Because the anyons are indistinguishable particles, each world
line in a braid is equivalent. This distinguishes braiding from
weaving, which involves inequivalent perpendicular strands.
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level systems (such as electron or nuclear spins). This
opportunity is motivating an intense search to find such
exotic quasiparticles and to demonstrate the non-Abelian
exchange statistics.

Charge e/4 quasiparticles in the ν = 5/2 quantum Hall
effect were the first candidates for non-Abelian anyons
[4], followed by vortices in topological superconductors
[5, 6]. There is experimental evidence for non-Abelian
anyons in the quantum Hall effect [7, 8], but most of the
recent experimental effort (spearheaded by Microsoft re-
search [9]) has focused on the superconducting platforms
[10] — where one can benefit from the macroscopic co-
herence of the superconducting state.

While the mathematical description of the braiding
operation is the same in both platforms, the way in
which braiding can be implemented is altogether dif-
ferent: Quasiparticles in quantum Hall edge channels
can move around localized quasiparticles in the bulk to
demonstrate non-Abelian statistics via the electrical con-
ductance [11–13]. In contrast, the Majorana fermions
that propagate along the edge of a topological supercon-
ductor [5] have conventional fermionic exchange statis-
tics, while the non-Abelian anyons are midgap states
(“zero-modes”) bound to a defect (a vortex [14, 15] or
the end-point of a nanowire [16–18]) and are therefore
typically immobile. For that reason most proposals to
demonstrate non-Abelian statistics generate the unitary
braiding operation without physically moving the zero-
modes in real space [19–23] — although there might be
a real-space braiding alternative [24].

Here we present an overview of the diversity of ideas for
Majorana braiding in superconductors. There are only
ideas so far, no experiments yet. We see a parallel with
our review of the search for the observation of Majoranas
[25], which we wrote in 2011 — one year before the first
experiment appeared [26]. There now exist many updates
on the observational state of affairs, to which we refer for
background [10, 27–34]. In what follows we focus on the
“how-to” of the braiding operation, expecting physical
implementations to follow in the near future.

II. BASIC CONCEPTS

For starters we discuss the conceptual basics of braid-
ing of Majorana zero-modes in vortices. This section
summarizes text book material, see for example Refs.
35–39.

A. The magic of braiding

An operational description of braiding has the magical
flavor of a cups and balls performance. The “cups” are
magnetic vortices penetrating a topological superconduc-
tor. The “balls” are fermions (electrons or holes) that
appear when two of the vortices are brought together

FIG. 2. Excitation spectrum of two pairs of vortices in a
topological superconductor. In isolation each vortex contains
a midgap level at E = 0 (a Majorana zero-mode). The levels
split when the vortices from a pair come into proximity. The
left vortex pair has even fermion parity (lower level filled), the
right vortex pair has odd fermion parity (upper level filled).

FIG. 3. The effect on the fermion parity of two pairs of
vortices (panel a), when a vortex from one pair encircles the
vortex from another pair (panel b, σx operation), or when two
vortices exchange positions (panel c,

√
σx operation).

(“fused”). The operation starts with two pairs of vor-
tices, one pair without a fermion, the other pair with a
fermion. “Braiding” means that a vortex from one pair
is moved around a vortex from the other pair, at a large
distance without ever approaching it. And, surprise: a
fermion has jumped from one pair to the other!

Following Ivanov [6], the physics of vortex braiding can
be explained as follows.2 In Fig. 2 the initial situation is
illustrated in terms of an excitation spectrum. Each pair
of vortices contributes two energy levels within the super-
conducting gap, symmetrically arranged around E = 0.
The vortices share an unpaired electron or hole when the
upper level is occupied, while all fermions are paired if
the upper level is empty. The state of odd fermion parity
is denoted by |−〉 and the state of even fermion parity by
|+〉.

The two states |±〉 of vortices 1 and 2 are eigenstates

2 The Wikipedia entry on cups and balls cites the Roman writer
Seneca: “With the juggler’s cup and dice, it is the very trickery
that pleases me. But show how me how the trick is done, and
I have lost my interest therein.” I like to think physics is differ-
ent: a seemingly magical effect becomes more interesting if it is
explained.

https://en.wikipedia.org/wiki/Cups_and_balls


3

with eigenvalue ±1 of a parity operator P12, and simi-
larly P34 is the parity operator for vortices 3 and 4. The

representation Pkl = 1 − 2a†klakl in terms of fermionic

creation and annihilation operators a†kl and akl is incon-
venient because it does not distinguish the contributions
from the individual vortices k, l that make up the pair.
For that purpose we decompose

a†kl = 1
2 (γk + iγl)

akl = 1
2 (γk − iγl)

}
⇒ Pkl = iγkγl. (1)

Two different γ-operators anticommute, just like the a-
operators, but they don’t square to zero:

γkγl = −γlγk if k 6= l, γ2
k = 1. (2)

The Hermitian operator γ is called a Majorana fermion
operator, while the non-Hermitian operator a represents
a Dirac fermion (an electron or a hole). Colloquially, it
is said that “a Majorana fermion is half an electron”,
because one a-operator corresponds to two γ-operators.
Referring to Fig. 2, the operators γ1 and γ2 each rep-
resent half of the two-level system formed by vortices 1
and 2. When the vortices are moved far apart, the level
spacing vanishes and we are left with two levels at E = 0,
one localized in vortex 1 represented by γ1 and the other
localized in vortex 2 represented by γ2. One speaks of
a Majorana “zero-mode”, avoiding the word “state” or
“particle” because it is not possible to associate an occu-
pation number to the E = 0 level in a single vortex.

Figs. 3a and b illustrate the switch in fermion par-
ity when one vortex circles around another. Each vor-
tex is the origin of a 2π branch cut in the phase φ of
the superconducting pair potential, corresponding to a π
phase jump for fermion operators. When vortex 2 circles
around vortex 3 both γ2 and γ3 cross a branch cut and
change sign, resulting in a sign change of both P12 and
P34. The initial state |+〉|−〉 of even–odd fermion parity
is thus converted into the odd–even state |−〉|+〉, mean-
ing that a fermion has been exchanged between vortex
pairs 1,2 and 3,4 — even though they have not over-
lapped. The nonlocality of the branch cut in the super-
conducting phase allows for this action at a distance. So
much for cups & balls magic.

B. Non-Abelian statistics

The two states |0〉 ≡ |+〉|−〉 and |1〉 ≡ |−〉|+〉 encode
a qubit degree of freedom,3 and the braiding operation
of Fig. 3b acts as a Pauli matrix σx that flips the qubit
(a not gate). In terms of the Majorana operators, one
has σx = iγ2γ3. (Use Eq. (2) to check that σx = iγ2γ3

3 Equivalently, we could encode the qubit in the states |+〉|+〉 and
|−〉|−〉 of even rather than odd total fermion parity. The two
parity sectors do not mix so they can be considered separately.

is Hermitian, squares to unity, and anticommutes with
both P12 and P34.) The state may also acquire a phase
factor, which plays no role in what follows and will be
ignored for simplicity.4

The square root of not,

B23 = e
1
4 iπ(1−σx) =

√
i
2 (1 + γ2γ3), B2

23 = σx, (3)

describes the counterclockwise exchange of the vortices 2
and 3, as in Fig. 3c. (For a clockwise exchange, take

B−1
23 = B†23.) Exchange is also referred to as “half

a braid”, where the full braid is the encircling opera-
tion. The exchange operation transforms a state of even–
odd fermion parity into an equal-weight superposition of
even–odd and odd–even fermion parities,

B23|+〉|−〉 =
√

i
2

(((
|+〉|−〉 − i|−〉|+〉

)))
. (4)

The corresponding unitary transformation of the Ma-
jorana operators is

γ2 7→ B23γ2B
†
23 = −γ3, γ3 7→ B23γ3B

†
23 = γ2. (5)

Which of the two Majorana operators switches sign is
determined by which of the two vortices crosses a branch
cut, and that depends on whether the exchange is clock-
wise or counterclockwise. Note that the transformation
rule (5), and the converse γ2 7→ γ3, γ3 7→ −γ2, are the
only possibilities consistent with the requirement that
the fermion parity P23 = iγ2γ3 of vortices 2 and 3 is not
affected by the exchange.

In a similar way the exchange of vortices 1 and 2 is a
unitary transformation with exchange operator

B12 = e
1
4 iπ(1−σz) =

√
i
2 (1 + γ1γ2), B2

12 = σz. (6)

We have identified B2
12 = iγ1γ2 = P12 with the σz Pauli

matrix because it leaves the |0〉 state unchanged while
the |1〉 state changes sign.

The exchange of vortices 1 and 2 does not commute
with the exchange of vortices 2 and 3: [B12, B23] = iγ1γ3.
Because the order of the exchange matters, Majorana
zero-modes in superconductors have non-Abelian statis-
tics [5, 6]. They realize the non-Abelian anyons discov-
ered in the fractional quantum Hall effect by Moore and
Read [4].5

4 The additional phase factor eiφC associated with a braid can
be determined by encircling vortex 3 jointly by vortices 1
and 2. Since two Majorana zero-modes are equivalent to a
Dirac fermion, this joint encircling operation produces the usual
Aharonov-Bohm phase of a fermion encircling an h/2e flux,
which amounts to a σz operation on the qubit. In terms of the
exchange operators σz = e2iφCB23B2

12B23 = e2iφC iσz , hence
φC = −π/4 modulo π. This phase factor applies to vortices but
it is not universal: It can be different for other realizations of Ma-
jorana zero-modes, for example at the end points of nanowires.

5 The charge e/4 quasiparticles in the filling factor 5/2 state of the
quantum Hall effect have exchange operators that differ only by
phase factors from those of Majorana zero-modes. This class of
non-Abelian anyons is referred to as Ising anyons.
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C. Fusion rules

The Majorana zero-modes in 2N isolated vortices pro-
duce a fermionic state at E = 0 with an exponentially
large degeneracy of 2N (or 2N−1 if restrict ourselves to
a fixed global fermion parity). A unitary evolution in
this manifold is called braiding, and a projective mea-
surement is called fusion. The latter name refers to the
process of bringing vortices together so that the zero-
modes overlap and split, allowing the fermion parity to
be measured.

Because pairs of quasiparticles are absorbed as Cooper
pairs in the superconducting condensate, the measure-
ment outcome is an element of Z2: either the fused vor-
tices leave behind an unpaired quasiparticle or they do
not. The outcome is specified by fusion rules. If two
pairs of Majorana zero-modes γ1, γ2 and γ3, γ4 are each
in a state of definite fermion parity, then the fusion of
one vortex from each pair will produce an equal-weight
superposition of even and odd fermion parity. In a formal
notation the fusion rule is expressed by

γ2 × γ3 = 1 + ψ, (7)

where ψ indicates the presence of an unpaired fermion
and 1 refers to the vacuum (no unpaired fermions).

This fusion rule follows directly from a calculation
of the expectation value of the parity operator of zero-
modes 2 and 3,

〈P23〉 = 〈P12P23P12〉 = −〈P12P12P23〉 = −〈P23〉
⇒ 〈P23〉 = 0,

(8)

where we have used the anticommutation P23P12 =
−P12P23 and P 2

12 = 1. The expectation value of the
fusion outcome vanishes, so even and odd fermion parity
must have exactly equal weight. Moreover

〈P23P12〉 = ±〈P23〉 = 0, 〈P23P14〉 = 〈P12P34〉 = ±1,
(9)

so the parities P12 and P23 are uncorrelated, while P23

and P14 are maximally correlated.

D. Clifford gates

A quantum computation is constructed from elemen-
tary unitary operations, gates, acting on one or two
qubits. The gates that can be realized by braiding Ma-
jorana zero-modes are called Clifford gates, in reference
to the Clifford algebra (2). Clifford gates include the
Pauli matrices σα and their square roots acting on a sin-
gle qubit, in addition to the two-qubit cnot gate. Let
us first discuss the single-qubit Clifford gates.

We have already encountered the not gate, a Pauli
matrix σx = iγ2γ3 realized by moving vortex 2 around
vortex 3. Moving vortex 1 around vortex 2 realizes the
conditional phase shift σz = iγ1γ2. The Pauli matrix

FIG. 4. Braiding operations that result in a
√
σy gate (panel

a) or in a Hadamard gate H (panel b).

σy = iσxσz = iγ1γ3 then follows by composing these two
operations.

On the Bloch sphere, encircling operations (as in Fig.
3b) rotate the qubit by π around orthogonal axes. Ex-
change operations (as in Fig. 3c) take the square root,
resulting in rotations by π/2. The

√
σx and

√
σz op-

erations are given by Eqs. (3) and (6), while the
√
σy

operation follows from the exchange of vortices 1 and 3,

B13 = e
1
4 iπ(1−σy) =

√
i
2 (1 + γ1γ3), B2

13 = σy. (10)

Vortices 1 and 3 are non-adjacent, to obtain B13 we make
sure not to cross the branch cut of the intermediate vor-
tex 2 in the exchange operation, see Fig. 4a.

The alternative exchange of Fig. 4b, in which vortex 2
is encircled by the exchange of vortices 1 and 3, produces
the Hadamard gate,

B12B23B12 = B23B12B23 =
√

i
2 (σx + σz) ≡ eiπ/4H,

H =
√

1
2

(
1 1
1 −1

)
, H2 = 1. (11)

The first equality in Eq. (11) (known as the Yang-Baxter
equation) shows two equivalent ways to decompose the
exchange of vortices 1 and 3 into three exchanges of ad-
jacent vortices.

It is a remarkable geometrical fact [40] that only one
more square root would be needed to cover the Bloch
sphere uniformly: If we combine π/4 rotations around the
z-axis with π/2 rotations around the x-axis, a rotation
by any irrational multiple of π around any axis can be
approximated with arbitrary accuracy. The missing π/4
rotation

T = e
1
8 iπ(1−σz) =

(
1 0
0 eiπ/4

)
, T4 = σz, (12)

is called a T-gate.6 It cannot be produced by braiding of
vortices, this is a basic limitation of Ising anyons.

So much for the single-qubit gates. Any multi-qubit
unitary operation can be constructed from the combina-
tion of a two-qubit gate with single-qubit rotations, so for

6 The name π/8-phase gate or magic gate is also used for the T-

gate. The π/2 rotation T2 = B12 =
(1 0
0 i

)
is also called an S-gate

or π/4-phase gate.



5

FIG. 5. Two-qubit cnot gate [43, 44] involving four
Hadamard braids (red circles) and three joint fermion par-
ity measurements with an ancilla qubit (blue boxes). The
ancilla is prepared in the state (|0〉 + |1〉)/

√
2 and measured

at the end. The measured parities p1, p2, p3 determine the
Pauli matrices that have to be applied at the end to control
and target qubits in order to complete the cnot operation.

a universal quantum computation it is sufficient to im-
plement the two-qubit cnot (controlled-not) gate. The
cnot gate is a Clifford gate, meaning that it can be re-
alized by braiding if we add one extra ingredient [41, 42]:
The ability to measure the fermion parity of four Majo-
rana zero-modes without gaining any information on the
fermion parity of two of these four.

An implementation [43, 44] using one ancilla qubit is
shown in Fig. 5. The sequence of three parity mea-
surements and four Hadamard rotations carries out the
unitary operation 7

G = 1
2 (1 + p1p3iγ3γ4) + 1

2p2(1− p1p3iγ3γ4)iγ10γ11iγ5γ8

= 1
2 (1 + p1p3σc,z) + 1

2p2(1− p1p3σc,z)σt,x (13)

on the control (c) and target (t) qubit. (In the second
equality we have used that the ancilla is prepared in an
eigenstate of iγ5γ8 = σx.) To complete the cnot we
operate on the control qubit with σz = iγ1γ2 if p2 = −1
and we operate on the target qubit with σx = iγ10γ11 if
p1p3 = +1.

E. Topological protection

Unitary operations performed by braiding are said to
be topologically protected, and a computation based on

7 The Mathematica package sneg [45] is helpful to evaluate the
product of Majorana operators that leads to Eq. (13).

such operations is called a topological quantum compu-
tation [2, 3]. Clifford gates are topologically protected,
the T-gate is not. At the mathematical level the distinc-
tion means that a qubit encoded in Ising anyons can be
rotated by an angle equal to π/4 to all decimal places,
while a π/8 rotation is only approximate. At the phys-
ical level the topological protection of the π/4 rotation
is limited by the finite excitation gap ∆0 in the material
that hosts the non-Abelian anyons [46].

To mimimize errors, the time t0 of the braiding opera-
tion should be neither too short nor too long: it should be
long compared to ~/∆0 to avoid the excitation of quasi-
particles and it should be short compared to the coher-
ence time tφ = min(ttunneling, tthermal, tpoisoning) of the
Majorana qubit. The coherence is limited by the time
ttunneling ∝ eL∆0/~vF for tunneling between two Majo-
rana zero-modes at a distance L, it is limited by the ther-
mal excitation time tthermal ∝ e∆0/kBT , and it is limited
by the time tpoisoning for quasiparticles to leak into the su-
perconductor from the environment. The latter process
is called quasiparticle poisoning and can be suppressed
by the Coulomb charging energy of the superconductor.

III. BRAIDING OF MAJORANA ZERO-MODES
IN NANOWIRES

In typical experimental realizations the Majorana zero-
modes in a superconductor are immobile objects. It
might be possible using magnetic force microscopy [47]
to drag one vortex around another as in Figs. 3 and 4.
But when the zero-modes are bound to the end points of
a nanowire, the motion in real space is not practical and
indirect methods of exchange are needed. We discuss two
varieties, one based on unitary evolution and one based
on projective measurements.

A. The three-point turn

The first obstacle to overcome when one thinks about
braiding Majorana zero-modes in nanowires is how to es-
cape from the 1D confinement. The three-point turn in
a tri-junction shown in Fig. 6 was introduced for that
purpose by Alicea et al. [20]. This is a unitary evolution
of a twofold degenerate ground state, made possible by
the fact that whenever three Majorana zero-modes are
coupled only two can split up at ±Ec, leaving a third
level pinned at E = 0. Together with the fourth un-
coupled zero-mode this preserves a twofold degenerate
ground state manifold. The evolution does not leave this
manifold if it is done slowly (adiabatically) on the time
scale ~/Ec.

Since Majorana zero-modes appear at the point where
the superconducting gap in the nanowire closes, they can
in principle be moved through the tri-junction by opening
and closing the gap in adjacent sections of the nanowire
[20, 48]. However, to protect the adiabatic evolution, it
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FIG. 6. Exchange of Majorana zero-modes via the three-
point turn [20]. Three nanowires meet at a tri-junction, where
a Majorana zero-mode γ0 can be coupled (solid line) or de-
coupled (dashed line) from the zero-modes γ1, γ2, γ3 at the
end points of the nanowires. The coupling splits off two zero-
modes (white circles), leaving the other two Majoranas at
E = 0 (colored circles). By switching the coupling from one
branch to another, a Majorana zero-mode is transferred from
one end point to another. The small diagram above each
arrow shows an intermediate stage, with one zero-mode de-
localized over three coupled sites. The three steps together
exchange zero-modes 1 and 2. [Figure from Ref. 21.]

is preferrable to have a transfer mechanism that keeps
the superconducting gap open throughout the braiding
process [21, 49]. This is possible because a sequence of
coupling and decoupling operations transfers the Majo-
rana operators from one end point of the tri-junction to
another, via the unitary transformation γk 7→ UγkU†.
The time-dependent coupling Hamiltonian that drives
this transformation is

H(t) =

3∑
k=1

∆k(t)iγ0γk, (14)

with ∆k(t) the adjustable coupling energy of the Majo-
rana zero-mode γk at end point k and the zero-mode γ0

at the center of the tri-junction.

The physical origin of the coupling can be a tunnel
coupling or a Coulomb coupling. The tunnel coupling
can be adjusted electrostatically by gate electrodes that
raise or lower tunnel barriers separating zero-modes with
overlapping wave functions [49]. The Coulomb coupling
works over longer distances (no wave function overlap
needed), but requires more explanation (isn’t a Majorana
zero-mode charge neutral?). We will return to this a
bit later but we first show, following Ref. 21, how the
unitary evolution operator U in the degenerate manifold
can be derived. This amounts to a calculation of the
non-Abelian Berry phase accumulated along the closed
path in parameter space of Fig. 7, which substitutes for
the closed path in real space when the Majoranas are
immobile.

B. Non-Abelian Berry phase

The occupation numbers 0, 1 of the two fermionic oper-
ators a1 = (γ1 − iγ2) /2 and a2 = (γ0 − iγ3) /2 define the
basis states |00〉, |01〉, |10〉, |11〉. In this basis the coupling

FIG. 7. The braiding path in three-dimensional parameter
space along which the non-Abelian Berry phase is evaluated.
[Figure from Ref. 21.]

Hamiltonian (14) is given by

H =

 −∆3 0 0 −i∆1 −∆2

0 ∆3 −i∆1 −∆2 0
0 i∆1 −∆2 −∆3 0

i∆1 −∆2 0 0 ∆3

 .

(15)
The ground state is twofold degenerate,8 spanned by
states of even or odd fermion parity,

|+〉 = C+

 i(∆̄ + ∆3)
0
0

∆1 + i∆2

 , |−〉 = C−

 0
i(∆̄−∆3)
∆1 + i∆2

0

 .

(16)

(We have abbreviated ∆̄ =
√

∆2
1 + ∆2

2 + ∆2
3 and inserted

normalization constants C±.) This parameterization is
smooth and continuous provided we stay away from the
line ∆1 = ∆2 = 0.

A closed path C in parameter space has non-Abelian
Berry phase [50]

U = exp

(
−
∮
C

∑
k

Ak d∆k

)
, (17)

8 To avoid confusion, keep in mind that E = 0 for a Majorana
zero-mode means vanishing single-particle excitation energy, it
does not imply a many-particle eigenstate at zero energy. The
many-particle spectrum consists of eigenvalues of the opera-
tor H = 1

2

∑
nm γnHnmγm, while the single-particle excitation

spectrum consists of the eigenvalues of the matrix H (known as
the Bogoliubov-De Gennes Hamiltonian). In this case H given
by Eq. (14) has twofold degenerate eigenvalues at ±∆̄, while

H =

(
0 i∆1 i∆2 i∆3

−i∆1 0 0 0
−i∆2 0 0 0
−i∆3 0 0 0

)
has eigenvalues −∆̄, 0, 0, ∆̄.
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obtained by integration of the matrices

Ak =

(
〈+| d

d∆k
|+〉 0

0 〈−| d
d∆k
|−〉

)
, (18a)

A1 =
i∆2

2∆̄(∆̄2 −∆2
3)

(
∆̄ + ∆3 0

0 ∆̄−∆3

)
, (18b)

A2 = −(∆1/∆2)A1, A3 = 0.

The path C corresponding to the three-point turn of
Fig. 6 is shown in Fig. 7. The coupling strengths ∆k

vary between a minimal value ∆min and maximal value
∆max. The contour integral (17) evaluates to

U = exp
[
−i
(

1
4π − ε

)
σz
]
, ε = 3

2

√
2 ∆min/∆max. (19)

In the limit ∆min/∆max → 0 the braiding operator (6)
is recovered up to an Abelian phase factor (which is not
universal).

The ε correction to the π/4 rotation angle does not
spoil the topological protection if it can be made expo-
nentially small in some physical parameter. In addition,
there are corrections to adiabaticity arising from the fi-
nite operation time t0, which are exponentially small in
the parameter t0∆max/~ [46].

C. Coulomb-assisted braiding

Non-Abelian anyons carry a topological charge [3],
which in general is an emergent quantum number un-
related to the electrical charge. Majorana zero-modes
in a superconductor have the special feature that their
topological charge, the fermion parity, equals the elec-
trical charge modulo 2e. This opens up the possibil-
ity to operate on the Majorana zero-modes by means
of Coulomb interactions [51] — even though Majorana
fermions are themselves charge neutral quasiparticles.
Coulomb-assisted braiding has the advantage that no mi-
croscopic control of tunneling amplitudes between zero-
modes is needed, all couplings can be varied by macro-
scopic parameters of the electrical circuit in which the
zero-modes are embedded [21, 52].

The electrical circuit is a socalled Cooper pair box con-
sisting of a superconducting island (capacitance C) con-
nected to a bulk (grounded) superconductor by a split
Josephson junction enclosing a magnetic flux Φ. The
Josephson energy EJ(Φ) = E0 cos(eΦ/~) can be varied
between 0 when Φ = h/4e and a maximal value E0 when
Φ = 0. The Cooper pair box has Hamiltonian [53]

HCPB = 1
2Q

2/C − EJ(Φ) cosφ, (20)

in terms of the canonically conjugate phase φ and charge
Q = −2ei d/dφ of the Cooper pair box.

The Majorana operators γ1, γ2, . . . γ2N from the zero-
modes on the superconducting island do not enter ex-
plicitly in HCPB, but they affect the spectrum through a

FIG. 8. Three Cooper pair boxes (charge Qk, superconduct-
ing phase φk), each containing Majorana zero-modes at the
end points of a nanowire (yellow dots). The three overlapping
Majorana zero-modes at the tri-junction effectively produce a
single zero-mode γ0. The three-point turn of Fig. 6 can imple-
mented by varying the fluxes Φk through the split Josephson
junctions. [Figure from Ref. 21.]

constraint on the eigenstates [54],

Ψ(φ+ 2π) = (−1)(1−P)/2Ψ(φ), P = iN
2N∏
n=1

γn. (21)

This ensures that the eigenvalues of Q are even multiples
of e for P = 1 and odd multiples of e for P = −1. Since
P contains the product of all the Majorana operators on
the island, the constraint (21) effectively couples distant
Majorana zero-modes — without requiring any overlap
of wave functions.

The Cooper pair box is operated in the regime that
the Josephson energy EJ is large compared to the single-
electron charging energy EC = e2/2C. The phase then
has small zero-point fluctuations around φ = 0, with oc-
casional 2π quantum phase slips. In this regime the ef-
fective low-energy Hamiltonian is [51, 55]

HCPB(Φ) = −U(Φ)P, U(Φ) ∝ e−
√

8EJ(Φ)/EC . (22)

The term −UP due to quantum phase slips depends on
the Majorana operators through the fermion parity. This
term acquires a dynamics for multiple coupled islands,
because then the fermion parity of each individual island
is no longer conserved.

For the three-point turn we need three Cooper pair
boxes, as in Fig. 8. The effective coupling Hamiltonian
has the form (14), with flux dependent coupling strengths
∆k ∝ U(Φk). The proportionality includes a term that
varies slowly with the flux, but the main flux depen-
dence comes from the exponential Φ-dependence of U(Φ).
The Majorana zero-modes are weakly coupled for Φ = 0,
when the Cooper pair box is strongly coupled to the bulk
superconductor, and it’s the other around for Φ = h/4e.

For E0 � EC the ratio ∆min/∆max ' e−
√

8E0/EC that
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FIG. 9. Exchange of Majorana zero-modes via a sequence of
projective measurements [19]. The fermion parity Pkl = iγkγl
of Majoranas k and l within the oval shape is measured. The
operation proceeds to the next step if Pkl = +1, otherwise one
should start over from the previous step. After four successful
measurements Majoranas 1 and 2 have been exchanged.

governs the accuracy of the braiding operation via Eq.
(19) can then be made exponentially small.

The tri-junction in Fig. 8 is controlled magnetically,
but more generally all one needs for Coulomb-assisted
braiding is a way to control the ratio EJ/EC by a few or-
ders of magnitude. Electrostatic control instead of mag-
netic control has been proposed by Aasen et al. [56], in
a design that uses a gate voltage to modulate the trans-
parency of the Josephson junction and thereby vary the
Josephson energy.

D. Anyon teleportation

A pair of non-Abelian anyons with a definite topolog-
ical quantum number is an entanglement resource that
can be used for the teleportation of topological qubits.
Bonderson, Freedman, and Nayak [19] showed how such
anyon teleportation could implement the braiding trans-
formations through the sequence of projective measure-
ments shown in Fig. 9.

The setup looks like the tri-junction of Fig. 6, but
the coupling and decoupling operations are replaced by
fermion parity measurements. Suppose that Majoranas
0 and 3 are initialized in a state of even fermion parity,
so P03 = iγ0γ3 = +1, and subsequently a measurement
of Majoranas 0 and 1 also has the even parity outcome,
P01 = +1. In that case, because of the global conserva-
tion of fermion parity, any parity information in Majo-
rana 1 must have been transferred, or “teleported”, to
Majorana 3. Further parity measurements then effec-
tively carry out the exchange of Majoranas 1 and 2.

Formally, one can check this by working out the prod-
uct of projection operators Πkl = 1

2 (1 +Pkl) correspond-
ing to the measurement sequence of Fig. 6,

Π03Π02Π01Π03 =
√

1
8 Π03 ⊗ 2−1/2(1 + γ2γ1), (23)

and comparing with the braiding operator (6).
The operation has a probabilistic element, because

each measurement has a probability 1/2 to give odd

rather than even fermion parity. (The prefactor
√

1/8
in Eq. (23) accounts for the reduced success probability
of the first three projections.) If the outcome is odd par-
ity, one has to return to the previous step and repeat the

FIG. 10. Device proposed in Ref. 22 to carry out the
measurement-based braiding operation of Fig. 9. (Similar
structures are described in Refs. 23 and 57.) The fermion
parity Pkl is measured via the electrical conductance of a loop
that contains one normal metal arm and one superconducting
arm. The path through the superconductor involves tunnel-
ing into a pair of Majorana zero-modes γk and γl, selected
by opening a gate-controlled barrier. (In the drawing P02 is
measured.) The magnetoconductance oscillations acquire a
phase shift dependent on the value of Pkl.

process until even parity is obtained, an iterative proce-
dure called a “forced measurement” [19].

Fig. 10 shows one implementation [22] of the abstract
scheme of Fig. 9, which shares with other implementa-
tions [23, 57] the useful feature that no tri-junctions of
nanowires are needed. The fermion-parity measurements
are performed by interferometry, as we will discuss in the
next section.

IV. READ-OUT OF MAJORANA QUBITS

Whichever approach to braiding one chooses, a read-
out of the quantum information stored in the non-
Abelian anyons is an essential step in the procedure: At
the end, to verify that the operation has been performed,
and for the measurement-based approach to implement
the braiding operator itself.

Majorana zero-modes in superconductors store the
quantum information in the fermion parity, which can-
not be accessed if the zero-modes are uncoupled [16]. To
protect the quantum information from decoherence one
therefore needs a tunable coupling term, which can be
switched off with exponential accuracy and then switched
on only during the read-out process. Adjustable tunnel
barriers and Coulomb charging energies provide two such
mechanisms. We also need an observable that couples to
the fermion parity and performs a projective measure-
ment. Electrical interferometry, microwave spectroscopy,
inductive coupling to a squid, or capacitive coupling to
an electrometer are several candidates. We discuss these
various options in this section.

A. Majorana interferometry

We first explain the interferometric measurement of
the fermion parity in the device of Fig. 10 [22]. The tun-
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able coupling term is provided by adjustable tunnel bar-
riers and the measured observable is the electrical con-
ductance. A voltage drives a current to ground via a
normal metal wire, either directly or via a superconduct-
ing side branch. The superconductor is not grounded (it
is “floating”), and a large Coulomb charging energy sup-
presses charge transfer from the normal metal into the
superconductor. Quantum fluctuations of the charge on
the superconductor still allow for the cotunneling process
[58], whereby an electron tunnels into the superconduc-
tor via Majorana zero-mode γk and back into the normal
metal via zero-mode γl.

The cotunneling Hamiltonian is [54]

Hkl = tktlγkγlc
†
l ck + H.c., (24)

in terms of fermion annihilation operators cn on the
normal-metal side of the tunnel junction connected to
zero-mode n, with tunneling amplitude tn. The Coulomb
charging energy of the superconductor selectively couples
the distant Majorana zero-modes γk and γl, depending
on which of the tunnel barriers to the normal metal is
opened up (k = 0, l = 2 in Fig. 10).

The phase difference between the two current paths,
one directly via the normal metal and the other via co-
tunneling through the superconductor, depends on the
fermion parity Pkl = iγkγl and on the magnetic flux
Φkl enclosed by the two paths. The switch from even
to odd fermion parity amounts to a π phase shift, result-
ing in parity-dependent Aharonov-Bohm oscillations in
the magnetoconductance,

Gkl(B) = G0 + PklδG cos(eΦkl/~). (25)

A conductance measurement thus becomes a projective
measurement of the fermion parity [22, 57].

B. Inductive coupling to a flux qubit

The Aharonov-Bohm interferometer of Fig. 10 requires
phase coherence for single electrons propagating through
the normal metal wire out of equilibrium, which limits
the length of the wire. An alternative approach without
that limitation is to make the entire circuit supercon-
ducting and to measure the Josephson supercurrent in
equilibrium [22]. The clockwise or counterclockwise cir-
culating supercurrent forms a flux qubit, which can be
read-out by inductive measurement of its magnetic mo-
ment in a squid [59].

The flux qubit couples to the fermion parity because of
the 4π-periodic Josephson effect of a Josephson junction
containing Majorana zero-modes [16]. The 4π periodicity
refers to the fact that the supercurrent I(Φ) depends on
the enclosed flux Φ with a periodicity of h/e rather than
h/2e,

I(Φ) = I0P sin(eΦ/~). (26)

The usual h/2e periodicity is doubled by fermion parity
conservation, it would be restored if the fermion parity
P of the Majoranas is switched when Φ 7→ Φ + h/2e. A
braiding circuit based on this coupling mechanism has
been proposed in Ref. 60.

C. Microwave coupling to a transmon qubit

As we discussed in Sec. III C, Coulomb charging intro-
duces a fermion parity dependent term in the Hamilto-
nian (22) of a Cooper pair box. The control parameter
is the ratio of charging energy EC and Josephson energy
EJ, which can be varied by the magnetic flux through a
Josephson junction [21] or by a gate voltage controlled
tunnel barrier [56]. (The relative merits of the two types
of control have been discussed in Ref. 61.)

To measure the fermion parity the Cooper pair box
must be coupled to a macroscopic observable. A well-
developed non-invasive measurement technique in super-
conducting electronics relies on coupling to microwave
photons [62]. The Cooper pair box is placed in a mi-
crowave transmission line resonator and then the shift is
measured which a fermion parity switch induces in the
resonance frequency [63]. The charge qubit in a trans-
mission line is called a transmon [64],9 motivating the
name top-transmon for a transmon coupled to a topolog-
ical Majorana qubit [51].

The two lowest levels of a Cooper pair box form a two-
level system with spacing given by the plasma frequency
~Ω0 =

√
8EJEC. We denote the Pauli matrices of this

charge qubit by τz and τ± = τx± iτy (not to be confused
with the σα Pauli matrices of the Majorana qubit). In the
transmission line resonator the charge qubit is coupled
to the bosonic operators b, b† of microwave photons at
frequency ω0 by the term ~δω(τ+b + τ−b

†). The top-
transmon Hamiltonian

Htop-transmon = 1
2~Ω0τz + (U+τz + U−)P
+ ~ω0b

†b+ ~δω(τ+b+ τ−b
†) (27)

contains a term τzP that couples the charge qubit to
the fermion parity P of the Majorana zero-modes. The
coupling energies U± are both of order e−~Ω0/EC . (The
energy U in Eq. (22) equals U+ − U−.)

A measurement of the resonance frequency ωeff of the
transmission line now becomes a joint projective mea-
surement of the charge qubit and the topological qubit
[51, 52],

ωeff = ω0 +
τzδω

2

Ω0 − ω0 + 2PU+/~
. (28)

This measurement is performed far off resonance (δω �
|Ω0 − ω0|, the socalled dispersive regime), so the charge

9 A gate-voltage controlled transmon has been called a gatemon
[61].
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FIG. 11. Left panel: Design of a Majorana qubit (a so-
called tetron [23]) consisting of two topological superconduct-
ing nanowires with four Majorana zero-modes. The two wires
are bridged by an ordinary superconductor which fixes the
total parity and thereby protects the qubit from quasiparti-
cle poisoning. A parallel connection is formed by a nanowire
with zero-modes γa and γb at a fixed parity. The supercon-
ducting nanowires are coupled via gate-tunable tunnel bar-
riers to semiconductor quantum dots. Right panel: Tunnel
couplings used to measure the joint fermion parity of six
qubits. The coupled Majorana zero-modes form a super-
conducting loop interrupted by quantum-dot Josephson junc-
tions, with a supercurrent proportional to the joint fermion
parity

∏6
j=1 iγj,1γj,2 (times iγaγb = 1). This parity depen-

dence can be measured capacitively or inductively. [Figure
from Ref. 66.]

qubit is not excited. If it is in the ground state we may
just replace τz 7→ −1 and then ωeff directly measures P.

D. Capacitive coupling to a quantum dot

The transmon read-out exploits superconducting tech-
nology, alternatively one can make use of well-developed
semiconductor technology for capacitive charge read-out
[65]. For that purpose the superconducting nanowires
are connected by tunnel barriers to semiconductor quan-
tum dots. The barrier heights can be adjusted by gate
voltages, so that one can selectively couple and decouple
Majorana zero-modes on the nanowires to the quantum
dots. The charge on the quantum dots is modulated by
the fermion parity of the zero-modes, and this charge can
be read out capacitively [23, 57].

E. Random Access Majorana Memory

The various read-out circuits described above are ready
for few-qubit operations, but for application in a quan-
tum computer it is desirable to have a layout that is scal-
able to many Majorana qubits. A Random Access Majo-
rana Memory (ramm) is a scalable read-out circuit that
can perform a joint parity measurement on Majorana
zero-modes belonging to an arbitrary selection of topo-
logical qubits. A magnetically controlled top-transmon
ramm was proposed in Ref. 52. In Fig. 11 we show an

FIG. 12. Two alternative circuits to measure the Majo-
rana fusion rule. The blue boxes indicate superconducting is-
lands, each containing a nanowire with Majorana zero-modes
at the end points. The black solid line connects zero-modes
whose fermion parity is measured. The linear circuit needs
adjustable tunnel and Coulomb couplings, in the tri-junction
circuit only the Coulomb couplings need to be adjustable. The
fusion rule says that the two measurement outcomes should
be uncorrelated and that the second measurement has zero
expectation value.

alternative design [23, 66] based on electrostatially con-
trolled quantum dot couplings.

A key advantage of a ramm is that products of Pauli
matrices on multiple topological qubits can be measured
directly, which makes it possible to implement quan-
tum error correction without having to introduce ancilla
qubits [52, 66].

V. FUSION OF MAJORANA ZERO-MODES IN
NANOWIRES

The Majorana fusion rule γ×γ = 1+ψ can be tested by
performing two fermion parity measurements on a Majo-
rana qubit formed out of four zero-modes: first on zero-
modes 1 and 2 and then on zero-modes 2 and 3. The first
measurement is a P12 = σz measurement and the second
measurement is a P23 = σx measurement. According to
Eqs. (8) and (9) the second measurement should have
zero expectation value and be uncorrelated with the first
measurement.

A. Linear junction or tri-junction

Two geometries in which to detect the fusion rule are
compared in Fig. 12. The left panel shows the linear
circuit proposed in Ref. 56, consisting of two supercon-
ducting islands, each containing a pair of Majorana zero-
modes. While the couplings between Majoranas on the
same island can be flux-controlled Coulomb couplings,
the inter-island coupling is via a tunnel barrier, which
would require microscopic control by a gate voltage. The
right panel shows an alternative tri-junction circuit that
can be fully controlled by Coulomb couplings [67], at the
expense of requiring three rather than two islands.

The switch from a measurement of P12 to a measure-
ment of P23 involves a coupling and decoupling of zero-
modes on a time scale tc. This switch should be per-
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FIG. 13. Two-qubit cnot gate equivalent to the circuit in Fig.
5, but without any braiding operations. (The corresponding
unitary operator differs from Eq. (13) by an irrelevant mi-
nus sign.) One can do without braiding if non-adjacent zero-
modes can be fused.

formed rapidly enough that quasiparticles from the envi-
ronment cannot leak in. A complicating factor is that tc
cannot be too short, since the presence of even a small
number of higher levels at energies below ~/tc will favor
P23 ≈ 0 — irrespective of the presence of the zero-modes
[68, 69].

B. If we can fuse, do we need to braid?

We expect the fusion of Majorana zero-modes to be
realized earlier than their braiding. Would such an ob-
servation be sufficient to announce the demonstration of
non-Abelian statistics? One can argue that the answer
is “yes”, both from a fundamental and from a computa-
tional perspective.

Fundamentally, the Majorana fusion rule γ×γ = 1+ψ
says that the ground state is degenerate (quantum di-
mension d > 1). It is known from general principles that
d > 1 implies that the braiding matrix cannot consist
solely of Abelian phase factors eiφ [70]. A fusion experi-
ment with two outcomes can therefore serve as an indi-
rect demonstration of non-Abelian statistics — indirect
because the specific Majorana braiding matrix e

1
4 iσx has

not been measured.
Computationally, braiding is not needed if one has a

ramm with the capability to fuse arbitrary sets of two
and four zero-modes [66]. We illustrate this in Fig. 13,
where we show how the cnot operation (13) carried out
by braiding in Fig. 5 can be equivalently performed by
fusion of non-adjacent zero-modes. It is quite possible
that a topological quantum computer will need to imple-

ment braiding operations for practical reasons, but in a
ramm architecture such as Fig. 11 these are not needed.

VI. HOW TO BRAID MAJORANA EDGE
MODES

Two-dimensional (2D) superconductors with broken
spin-rotation symmetry and broken time-reversal sym-
metry provide the superconducting analogue to the quan-
tum Hall effect in a 2D semiconductor [5]: Both systems
have a gapped bulk with gapless states that propagate
chirally (in a single direction) along the edge. In the
semiconductor the edge states are populated by Dirac
fermions, electrons and holes, while in the superconduc-
tor the quasiparticle excitations are Majorana fermions
— charge-neutral electron-hole superpositions. In this
section we address the question whether one can use the
chiral motion in a Majorana edge mode to braid non-
Abelian anyons in real space, by physically moving one
zero-mode past another.

A. Chiral edge modes in a superconductor

Majorana edge modes support two types of excitations:
fermions ψ and vortices σ. The fermions are called Ma-
jorana fermions because they have a real wave function
ψ(x, t). The vortices are π-phase domain walls on the
edge, across which the fermion field changes sign [71–73].
The domain wall is tied to the fermions, so it moves along
the edge with the same velocity v.

Edge vortices are the mobile counterpart to immobile
Abrikosov vortices in the bulk of the superconductor [14].
They are the chiral counterpart to fluxons in a Josephson
junction [74]. Mobile or immobile, the vortices share the
property that they support a Majorana zero-mode, which
is a non-Abelian anyon. A Majorana fermion, in contrast,
has Abelian fermionic statistics. We have summarized
the nomenclature in an info box.10

It has been suggested [75] that it might be easier to
demonstrate non-Abelian braiding of chiral Majorana
fermions than of localized Majorana zero-modes. How-
ever, a Majorana fermion has conventional fermionic
statistics because it is not attached to a branch cut of
the superconducting phase. That is the essential distinc-
tion between Majorana zero-modes bound to a vortex
core and Majorana fermions propagating along an edge.

10 In the older literature, Majorana fermions are not always distin-
guished from Majorana zero-modes. (The Wikipedia talk page
has an amusing discussion of this conflation: Calling a Majorana
fermion a fermion is like calling a jellyfish a fish.) Looking back,
it would have helped if the word “Majorana” was only used for
the Abelian fermions. If I could change the common practice I
would refer to the non-Abelian Majorana zero-modes as “Ising
anyons”.

https://en.wikipedia.org/wiki/Talk:Majorana_fermion
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Info box: Who is Who in topological superconductors

◦ Bogoliubov quasiparticle: A subgap excitation of a superconductor, obtained by breaking up a Cooper pair. It is
described by a four-component wave function ψ = (ψe↑, ψe↓, ψh↑, ψh↓), representing a coherent superposition of an electron e
(filled state above the Fermi level with spin up or down) and a hole h (empty state below the Fermi level). Charge-conjugation
symmetry relates the electron and hole components, ψeσ(r, t) = ψ∗hσ(r, t).
◦ Dirac fermion: An electron or hole with a linear dispersion and a complex wave function. The edge modes in the
quantum Hall effect are populated by Dirac fermions. A Dirac fermion can split into a superposition of two Majorana
fermions at the interface with a topological superconductor.
◦ Majorana fermion: A fermion is called “Majorana” when it has a real wave function, ψ(r, t) = ψ∗(r, t). A Bogoliubov
quasiparticle that is in an equal-weight electron-hole superposition within a single spin band, ψ = ψe,σ +ψh,σ, is a Majorana
fermion. The Majorana fermion has a purely imaginary Hamiltonian H = iA, with antisymmetric A, so it evolves according
to a real wave equation, ∂ψ/∂t = Aψ.
◦ Majorana zero-mode: A midgap state in a superconductor, bound to a defect (a vortex core or the end point of a
nanowire). Two zero-modes are needed to store one Majorana fermion, so in a single zero-mode the fermion is hidden from
the environment.
◦ non-Abelian anyon: The noun “anyon” means that this particle is neither a boson nor a fermion (it can have any
exchange statistics). The adjective “non-Abelian” means that the order matters when two of the particles are exchanged.
The Majorana zero-mode is a non-Abelian anyon, while the Majorana fermion is, as the name says, a fermion.
◦ Abrikosov vortex: Abrikosov discovered that a magnetic field penetrates a superconductor incrementally with h/2e flux
tubes. The phase φ of the superconducting pair potential winds by 2π around a flux tube, hence the name Abrikosov vortex.
The vortex has a discrete spectrum En = E0(n + ν), n = 0,±1,±2, . . .. Particle-hole symmetry enforces that the offset ν
equals either 0 or 1/2. In a conventional superconductor ν = 1/2, while in a topological superconductor ν = 0, hence the
appearance of a zero-mode E0 = 0.
◦ Josephson vortex: When an Abrikosov vortex is trapped in the insulating region between two superconductors, it is
called a Josephson vortex or fluxon. While the Abrikosov vortex is massive and immobile, the Josephson vortex is massless
and mobile. It can move in both directions along a Josephson junction, its motion is not chiral.
◦ Majorana edge vortex: A phase boundary σ on the edge, at which the Majorana fermion phase jumps by π. Because
of the reality constraint on ψ, a π phase jump (a minus sign) is stable: it can only be removed by merging with another π
phase jump. Just like Abrikosov vortices in the bulk of the topological superconductor or fluxons in a Josephson junction,
edge vortices have non-Abelian exchange statistics. The motion of the edge vortices is unidirectional (chiral).
◦ Majorana edge mode: A reference to both a quasiparticle degree of freedom, the Majorana fermion ψ, and to a
collective degree of freedom, the edge vortex σ. These are independent entities: a Majorana fermion propagating along the
edge can split into two edge vortices and one vortex may tunnel to the opposite edge to become an independent degree of
freedom. Both ψ(x− vt) and σ(x− vt) propagate unidirectionally (chirally) with velocity v along the edge. Opposite edges
may propagate in the same direction or in opposite direction, depending on the way in which time-reversal symmetry is
broken in the topological superconductor.

To obtain a mobile (flying) topological qubit one should
inject individual vortices rather than fermions into the
chiral edge mode. In Fig. 14 we show how one might
exploit the chiral motion of edge vortices to perform the
braiding operation in real space [24] — rather than in
parameter space as for immobile bulk vortices.

B. Edge vortex injection

For the deterministic, on-demand injection of individ-
ual edge vortices one can use a Josephson junction with
an externally adjustable phase difference φ of the pair
potential, controlled by a flux bias or voltage bias. Re-
call that a 2π phase shift across the Josephson junction
is a 2π phase shift for Cooper pairs. It corresponds to
a π phase shift for unpaired fermions, which propagates
away from the junction as a phase boundary along the
edge.

The phase profile Λ(x, t) for a Josephson junction at

x = 0, with a time dependent phase difference φ(t), is
given by [24]

Λ(x, t) = (−1)ncutα(t− x/v)θ(x), (29a)

cosα =
cos(φ/2) + tanhβ

1 + cos(φ/2) tanhβ
, β =

W

ξ0
cos(φ/2). (29b)

The integer ncut counts the number of branch cut cross-
ings between the Josephson junction and the point x.
The phase profile is plotted in Fig. 15 for W/ξ0 = 5, with
W the junction width and ξ0 = ~v/∆0 the superconduct-
ing coherence length in the bulk of the superconductor.

The π-phase boundary extends over a time interval

tinj = (ξ0/W )(dφ/dt)−1, ξ0 = ~v/∆0, (30)

the “vortex injection time”, which sets the core size
δxcore = vtinj of the edge vortex. If one increments the
phase φ linearly in time, as in Fig. 15, then one injects
edge vortices spaced by a distance which is larger than
the core size by a factor W/ξ0. This separation of length
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FIG. 14. Left panel: Chiral Majorana modes moving in
the same direction [76, 77] on the 2D surface (grey) of a 3D
topological insulator. The modes appear at the edge (red)
between a superconductor (yellow) and magnetic insulators of
opposite magnetization M↑ and M↓ (shaded). A 2π increment
of the phase difference φ across a Josephson junction injects a
pair of edge vortices σ1, σ2 in a state of even fermion parity.
When σ1 crosses the 2π branch cut of an Abrikosov vortex
a fermion is exchanged, and the fermion parity of the edge
vortices switches from even to odd. Right panel: Braiding
of world lines in space-time: an overpass indicates that the
vortex crosses a branch cut. Two crossings jointly switch the
fermion parity of the edge vortices and of the bulk vortices,
conserving overall fermion parity. [Figure from Ref. 24.]
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FIG. 15. Phase field Λ(x, t) of the Majorana edge vortices,
calculated from Eq. (29) for a linearly varying phase difference
φ(t) = 2πt/∆t across the Josephson junction (of width W =
5 ξ0). The π-phase domain walls are well separated when the
ratio ∆t/tinj 'W/ξ0 � 1.

scales is why it is meaningful to distinguish the injection
of vortices from the injection of fermions, since a Majo-
rana fermion in an edge mode is equivalent to a pair of
overlapping edge vortices.

C. Construction of the vortex operator

The unitary vortex operator σ̂(t) describes how the
unperturbed Fermi sea |0〉 evolves in time, |t〉 = σ̂(t)|0〉.

It is given in terms of the phase field Λ by [78]

σ̂(t) = exp

(
−i
∫
dx ρ̂(x)Λ(x, t)

)
, (31)

ρ̂(x) = 1
2 [Ψ̂†(x), Ψ̂(x)], Ψ̂ = 2−1/2(ψ̂1 − iψ̂2). (32)

The field Ψ̂ is a Dirac fermion field, constructed from the

Majorana fermion fields ψ̂1, ψ̂2 on upper and lower edge.
The charge operator ρ̂ is defined such that it vanishes in
the unperturbed Fermi sea. The commutator

[ρ̂(x), ρ̂(x′)] =
i

2π

∂

∂x
δ(x− x′), (33)

is known from bosonisation theory [79].
The Majorana fermion fields have anticommutator

{ψ̂n(x), ψ̂m(x′)} = δnmδ(x− x′) (34)

⇒ ρ̂(x) = − 1
2 iψ̂1(x)ψ̂2(x). (35)

The corresponding commutator of σ̂ with the spinor ψ̂ =(ψ̂1

ψ̂2

)
is

σ̂(t)ψ̂(x) = eiΛ(x,t)νy ψ̂(x)σ̂(t). (36)

The Pauli matrix νy acts on the two components of ψ̂.
It is instructive to take the limit tinj → 0 when each π-

phase boundary in Fig. 15 becomes a step function. This
corresponds to the neglect of the finite size of the core of
the edge vortex. For a Josephson junction at x = 0 and
a phase difference φ(t) which crosses π at t = 0 one then
has

Λ(x, t) = πθ(vt− x)θ(x)

⇒ σ̂(t) = exp

(
−iπ

∫ vt

0

dx ρ̂(x)

)
.

(37)

Because eiπνy = −1, the commutator (36) no longer cou-
ples the edges,

σ̂(t)ψ̂n(x) =

{
−ψ̂n(x)σ̂(t) if 0 < x < vt,

+ψ̂n(x)σ̂(t) otherwise.
(38)

This relation allows us to identify σ̂ with the “twist field”
from the conformal field theory of Majorana edge modes
[71, 72].

D. Edge vortex braiding

Two edge vortices may be in a state of odd or even
fermion parity, meaning that when they fuse they may
or may not leave behind an unpaired electron. This is the
qubit degree of freedom. The fermion parity cannot be
detected if the edge vortices remain widely separated, so
the qubit is protected from local sources of decoherence
— it is a topological flying qubit.
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Coming back to Fig. 14, the two vortices σ1 and σ2

are injected at the Josephson junction in a state of even
fermion parity, but that may change as they move away
from the junction: If one of the edge vortices crosses the
branch cut of the phase winding around an Abrikosov
vortex, a fermion is exchanged and the fermion parity
switches from even to odd.

The fermion parity switch can be detected electrically
at a metal electrode, where the Majorana modes ψ1 and
ψ2 are fused and can transfer a charge Q [24, 78]. The

current density operator Î(x) = evρ̂(x) has at time t the
expectation value

I(x, t) = ev〈0|σ̂†(t)ρ̂(x)σ̂(t)|0〉. (39)

Using the identity

σ̂†(t)ρ̂(x)σ̂(t) = ρ̂(x) +
1

2π

∂

∂x
Λ(x, t), (40)

which follows from Eqs. (31) and (33), one finds

I(x, t) = ev〈0|σ̂†(t)ρ̂(s)σ̂(t)|0〉 =
ev

2π

∂

∂x
Λ(x, t). (41)

Eqs. (29) and (41) imply that the π-phase domain wall
carries a charge of

Q = v−1

∫
I(x, t)dx = −e

2
× (−1)ncut . (42)

This charge is only detectable when the vortices on oppo-
site edges fuse — a single edge vortex transfers no charge

into the metal contact. When an edge vortex crosses the
branch cut of a bulk vortex, as in Fig. 14, the trans-
ferred charge switches between ±e/2 — as an electrically
detectable signature of the fermion exchange.

We can make a comparison with the elementary ex-
citations of the chiral Dirac edge modes in a quantum
Hall insulator [80]. In that context a charge-e excitation
(a socalled leviton) is produced by a 2π phase increment
of the single-electron wave function [81]. The edge vor-
tices, in contrast, are injected by a 2π phase increment
of the pair potential, which is a π phase shift for single
fermions. This explains why the π-phase domain wall
carries half-integer charge.

VII. OUTLOOK ON THE EXPERIMENTAL
PROGRESS

To be added later.
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