Experimental signatures of Majorana fermions: Zero-bias conductance peak
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Quasiparticles at the NS junction

Recap of BAG

A generic Fock space Hamiltonian of a superconductor is recast with the help of the BdG trick as

H= Zhijc;rcj + Aijczc;r- +h.c. (1)
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where we introduced the Nambu spinor < ; > = C‘T built from creation and annihilation operators. Remember that
1
hermiticity of H requires h = h' and A = —AT. The positive eigenvalues of the BAG matrix give the excitation spectrum.
HBden = nwn (2)

The BdG trick forces PHS on H g this is not physical it is built in the formalism. PHS is represented
P = Ux]CR (3)

where o, is the appropriate Pauli matrix in Nambu space and the operator g is complex conjugation in real space. The effect
of PHS is
PHpacP ™' = —Hpdc (4)

p-wave and s-wave models in k-space
We have so far investigated the Kitaev wire extensively, this shell be our p-wave model:

1
Hxitaey = — Z/wjncm — Z (vcjncmﬂ + h.c.) — Z (chnﬂc;fn + h.c.) =3 Z f,I’HKitaev(k)fk + const (5)
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Where in the last step we performed first the BdG trick and than a Fourier transform in the Nambu basis

fm: < z?@ > _>fk = < C?ka ) :meeikm. (6)
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Thus the BAG matrix for the Kitaev model reads

Hicivaoy (k) = —pu—2vcos (k) —2isin(k)A
Kitaev B 2isin (k) A* o + 2v cos (k) .



For the s-wave case we

1
Hy gave = — Z ,chngcmo - Z (chngcm—i-lo + hC) - Z (ch-nchni + hC) = 5 Z f]I,HFull s—wave(k)fk + const, (8)
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here the Nambu spinor has four component, and thus the BAG matrix will also be 4 x 4

Cmt Cr
ol I Rl I W .
ij CT,N "
—p — 2v cos (k) 0 0 -A
Hpul s-wave (k) = 8 T ZU*COS " A+ 2vAcos (k) 8 (10
_A* 0 0 p+ 2v cos (k)

Due to the absence of spin mixing terms and p-wave like pair correlations, this model can be separated in-to two disjoint
copies. The physics is similar in both hence we shall focus on the “outer” block and were it is necessary we shall discuss relevant
changes for the “inner” block. For simplicity the inner block will be referred to as Hs-wave(k), with elements

[ —p—2vcos (k) -A
Hs-wave(k) - ( s —A* 1+ 2v cos (k) > ' (11)

Interpreting the spectrum of Hggg in the absence of superconductivity
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Figure 1: The spectrum of Hpqg in the absence of A. Particle like excitations are denoted by solid lines and hole like excitations
are depicted by a dashed line. Taking out a particle below the Fermi sea corresponds to introducing a hole at positive energy.
The two blue lines denote the parallel tangents corresponding to the group velocities of particle and hole excitations above and
below the Fermi level as a graphical proof that these particles have the same velocity.

e The positive-energy half of the BAG spectrum contains all the physical information: the eigenstates can be used to con-
struct the single-particle excitations of the many-body Hamiltonian, and the eigenvalues give the corresponding excitation
energies. The negative-energy part of the BdG spectrum is hence redundant. (We need to pay special attention to O-energy
eigenstates, as we discuss later).

e At positive energies for A = 0 we have two disjoint part of the spectrum, particles and holes. (Discuss what we mean by
particle and hole type excitations!!)

We shall call an excitation a particle if its Nambu spinor is ( 0 ), while we shall call an excitation a hole if its spinor

1
alternative definitions used in the literature.

is ( 0 ) In Fig. 1 we denote particles and holes with solid and dashed lines respectively. Draw attention to possible

e If a particle-type positive-eigenvalue BdG excitation with momentum k and energy FEj is present in the many-body state,
then this many-body state has an excess energy Ej, and this many-body state carries an excess current edy Ey compared
to the ground state.

e A hole at momentum k and energy FEj corresponds to the absence of a particle from the Fermi sea at momentum —k
and energy —Fj. As such it carries —e charge but crucially its velocity is the same as the particle whose absence it
signifies, that is Op Fy. (HF: show if this is true from simple Fock space 5 site TB ring with u = 0,v < 0!)
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Figure 2: Linearized spectrum and Andreev processes.

Envelope function approximation for £k ~ +kp
Series expansion at kg, here —p — 2vcos (kp) =0
Hritaev (k) ~ vro.(k — kr) + 2sin (kr) Ao, (12)
In the spirit of the EFA we relabel k — kg as -0, = p thus we arrive at:
o ’U]:"ﬁ —iA
HKltaev - ( iA* _UFﬁ ) ) (13)

where we introduced vy = |2vsin (kr)| and A = 2sin (k) A. Note that for A = 0, this EFA Hamiltonian describes particles
propagating to the right and holes propagating to the left.
Series expansion at —kp, gives the slightly different result:

—vpp  iA
HKltaev - ( —lgf ~ ) (14)
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notice that the sign of A changes! Note that for A = 0, this EFA Hamiltonian describes particles propagating to the left and
holes propagating to the right. Since the phase of A is not relevant for investigating junctions where only a single superconductor
is present, we fix it such that iA is real and introduce A’ = iA. For the Kitaev wire hence the two valleys will be described by

vpp —A —vpp A
HKltaev = ( 7FAp/ —vpp ) ) HKltaev = ( Alj’p vEp ) (15)

For the s-wave the two valleys give the same sign in both valleys:

eh _ ’UFﬁ -A he _ _/UF}a —-A
Hs wave ( _A _'UF]S > ’ Hs—wave - ( _A 'UFﬁ ) (16)

and we fix the phase of A to make it real.

We shall use the above derived EFA matrices in the spirit of the EFA approach and make the A-s position dependent. We
shall be first and foremost interested in interfaces between a conducting channel and a superconductor. In this case we need to
take in to account both of the “valley”-s at which we just produced

Landauer’s approach extended for superconductors

Recap Landauer’s approach for a conventional 1D single modded wire.

Recall from the previous semester that according to Landauer the current at finite bias of a wire with a single mode (no spin
degeneracy assumed) in the presence of a scatterer is

= / ~ fn(B)dB (17

Where T'(E) ans R(FE) is the transmission and reflection probability of a particle impinging on the scatterer, fr(E)and fr(F) are
Fermi-Dirac distribution functions of particle reservoirs, possibly at different chemical potential. The simple relation T'=1— R
is a consequence of the continuity relation of the particle flow expressed by the unitarity of the scattering matrix.
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Figure 3: Elementary processes for an impinging particle at a dirty SN junction. A particle can either be reflected from the dirt
with amplitude r or transmitted through it with amplitude ¢. From the superconductor it can be reflected back as a hole with
amplitude r4. As a consequence of these elementary processes there is a finite probability of reflection as a particle R and a
finite probability as a reflection as a hole A.

Andreev reflection

As we saw above in the BdG picture we have to take in to account both particles and holes at a given energy. Further more
holes have to be counted as carriers with opposite charge as particles!

In the case of a superconducting electrode particles can be converted to holes thus we have an additional term A(E') describing
Andreev scattering the process by which a superconductor converts particle like excitations impinging on it to hole like excitations
and vice versa .

r=5 [0 RE) - AE) 05) - faE)] B (1s)

At zero temperature, assuming a finite bias voltage V' such that fr(F) = fr(E — eV), i.e. we are forcing particles from a
reservoir towards the superconductor we have

2 eV
I= %/ (1- R(E) + A(E))dE (19)
0
thus the differential conductance at finite bias is
dI e?
= (1= 2
v - (1-R(eV)+ A(eV)) (20)

For energies below the gap R and A are related by unitarity of the scattering process R + A = 1, thus for bias voltages smaller

than the gap we have
dl 262 dirty

In what follows we restrict ourselves to this regime that is £ < A

Clean interfaces

If the interface between the normal and superconducting region is clean, than the only process which is allowed is Andreev
scattering. In order to find the Andreev r4 and inverse Andreev 74 scattering coefficients we resort to mode matching of
scattering wavefunctions. (See notebook and the appendix!)

This procedure yields

—E+iVATZEZ
A= +1 < — ol arccOb(fg)’ (22)
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where the + sign is for the p-wave case and the — sign is for the s-wave.



Figure 4: Elementary processes for Andreev reflection of a particle from a dirty NINS interface

Scattering processes at a generic SN interface

Consider a SN interface with some scattering potential in front of the superconductors To find the total amplitude of Andreev
scattering we sum up all paths where a hole is reflected back to the normal contact.

dirt - 2 ty,rate
T4 y :t;z |:].+(7’A7’(/57'A7';L)+() +:| TAte = W (24)
The magnitude of ay. gives the total probability of Andreev reflection
dirty 2
A(E) = ’rA (E)‘ . (25)

In an extremely simple yet generic enough approach we can assume that t. = ¢, =t similarly 7/, =}, = r and that they do
not depend on energy and are related by unitarity ¢2 4+ 2 = 1,

TAt2
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An important consequence of the additional — sign for the inverse Andreev reflection process in the s-wave case can deduced for
E=0:

Axitaey (0) = |ral® =1 (27)
and
rat?
Asave(0) = | 5755 (28)

That is for a topological p-wave superconductor at zero bias dI/dV is independent for the dirt and is quantized to 2%2! For
s-wave the probability of Andreev reflection will still depend on the details of the dirty interface, in this case on t. If t =1,

dI/dV =2 x % but otherwise it can take on any value!
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Figure 5: dI/dV for p-wave and s-wave NINS junctions for A = 1.



Appendix
Mode matching

Consider the elementary process where by in the Kitaev model a particle is converted to a hole. for this we investigate the EFA
Hamiltonian in the e-h valley:
h vpp  —A
Hle(itaev = < Y\ —vpp ) . (29)

On the left side of the junction at z < 0 we set A’ = 0 and thus a scattering wavefunction describing particles impinging to the
interface have the form

1 - 0 e
eh _ ikx —ikx
e S N I (30)
Inside the superconductor there are no propagating states below A’, but evanescent solutions for the EFA exist. The
e u —RI
o= (4 )e (31)

Substituting this ansatz into ’Hfg{taevw = FE yields u,v and x. Matching the solutions at x = 0, we have

N O -

A

Note that this will be the same fort the s-wave case!

For the inverse process we need to use HpS and HI¢ which crucially differ by the sign of their respective A! The

Kitaev s-wave
scattering wavefunction on the normal side now is:
he 0\ ke TA Y\ —ike
(0 x<0—<1)e +<O>e . (33)
In the superconductor we again take a decaying ansatz
u’ _
lsa= (1 ) e (31)

Matching the solutions at « = 0, we have

’FA _ u’ . _u’_ +A 35
1 )"\ )T Ty T B A B (35)

where the + sign is for the p-wave case and the — sign is for the s-wave.



