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!Fig. 1.50. Example: current and noise for a small pumping cycle described in the text. The horizontal lines
represent noise, which does not depend on !. The curves denote the current, which is an
oscillating function of !. The parameter η differs for dashed (η = 0.05) and solid (η = 0.2)
curves, respectively. All other parameters are the same: T = R = 0.5, r = 0.1.

1.8 Andreev scattering

In this section, we consider electron transport in nanostructures which are connected not
only to the reservoirs in the normal state, but also to one or several reservoirs that are in the
superconducting state. Electron properties of superconductors differ from those of normal
metals, as explained in Appendix B. The energies of the quasiparticle states are separated
from the Fermi energy by the superconducting gap !. Let us count energy measured from
the Fermi level. If a piece of a normal metal is brought into a contact with a superconductor,
an electron with an energy above ! can enter the superconductor, where it will be converted
into a quasiparticle of the same energy. This, however, does not work at E < ! since there
are no quasiparticles. Therefore, for voltages and temperatures below !, no current may
flow to the superconductor according to the scattering approach considered in the preceding
sections.

1.8.1 Andreev reflection

Charge transfer may proceed, however, by a different mechanism: an electron coming from
a normal metal to a superconductor can be reflected back as a hole. While this process
conserves energy, it does not conserve charge in the normal metal: since the charges of an
electron and a hole are opposite, a charge deficit of 2e arises. This implies that a Cooper
pair with charge 2e has been added on the superconducting side. This transfers the charge
from the normal metal into the superconductor. Let us note that the momentum of the hole
!kh is almost equal to that of the electron, !kh = !ke − 2E/vF (Fig. 1.51). Since |E | "
EF, kh ≈ ke ≈ kF. However, the velocity of the holes, vh = !−1(∂ E/∂kh) is opposite to
that of electrons; holes with kh > 0 actually move away from the superconductor. This
process is called Andreev reflection [29].
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!Fig. 1.51. Andreev reflection: an electron coming from a normal (N) metal to a superconductor (S) is
reflected as a hole with the same energy and approximately the same momentum.

Let us elaborate on the quantitative description of Andreev reflection. In the presence of
superconductivity, an excitation in a metal is conveniently represented by a two-component
wave function, the components describing electrons (ψe(r)) and holes (ψh(r)). The wave
function obeys the Bogoliubov – de Gennes (BdG) equation, which is a generalization of
the Schrödinger equation:

(
Ĥ !eiϕ

!e−iϕ −Ĥ∗

)(
ψe(r)
ψh(r)

)
= E

(
ψe(r)
ψh(r)

)
. (1.156)

Here the energy is counted from the Fermi level, so that Ĥ = Ĥ0 − EF, Ĥ0 =
−(!2/2m)(∇ + ieA(r)/!c)2 + U (r) being the Hamiltonian for electrons in the absence of
any superconductors. As explained in Appendix B, the superconductivity mixes electrons
and holes. With these cross-terms, the Hamiltonian becomes a 2 × 2 matrix. The cross-
terms are off-diagonal elements of the matrix and are complex numbers with modulus !

and phase ϕ. These values are position-dependent and vanish in the normal part of the
nanostructure. It is enough for our purposes to assume that ! and ϕ are constant in the
superconducting reservoir, with ! being equal to the superconducting energy gap far in
the reservoir.6

To understand the meaning of Eq. (1.156), let us first consider a normal metal, in
which the Hamiltonian is diagonal and the equations for the electron and hole compo-
nents separate. The solutions are plane waves ψe,h(r) ∝ exp(ikr). Substituting this into Eq.
(1.156), and considering only excitations close to the Fermi surface, |E | " EF, we find
k = kF ± E/!vF, where ± represents electron and hole components, respectively. Note
that the momenta of both electron-like and hole-like solutions can be either above or below
kF. This is in conflict with the conventional definition of quasiparticles in a normal metal,

6 Strictly speaking, the values of !(r) and ϕ(r) actually depend on the solutions of BdG equations at all
energies. Consequently, the superconducting pair amplitude ! is suppressed in the region adjacent to the nor-
mal reservoir. However, the suppression does not play an important role and can be disregarded for model
purposes [30].
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where the quasiparticles with k > kF (k < kF) are called electrons (holes). We can eas-
ily sort out this problem for the normal metal. Indeed, BdG equations allow for solutions
with positive energies, E = |ξ |, where we have defined ξ = !vF(k − kF), as well as for
the solutions with negative energies, E = −|ξ |. The latter are not independent from the
former; they are obtained from each other by a flip of components. Thus, BdG equations
contain a double set of solutions. The solutions with negative energies would represent
electrons with k < kF and holes with k > kF – contradicting the conventional definition
of a quasiparticle. To conform to the conventional definition of electrons and holes in a
normal metal, we retain the solutions with positive energies only.

Let us now look at the solutions of Eq. (1.156) in a superconductor. Substituting ψe,h in
the form of plane waves and assuming !, E " EF, we find that the corresponding energies
are given by

E =
√

ξ2 + !2, ξ = !vF(k − kF). (1.157)

For E > !, quasiparticles can freely propagate in a superconductor and have an energy
spectrum given by Eq. (1.157) rather than E = |ξ |. For E < !, quasiparticles in a bulk
superconductor do not exist.

We consider next an ideal (no scattering) contact between a normal metal (x < 0) and a
superconductor (x > 0). Since the transport channels are not mixed, it suffices to consider
one transport channel n (this channel index will be suppressed where it does not lead
to the confusion). Let us look at the solutions of the form ψe,h(x) ∝ ψ̃e,h(x) exp(ik(n)

F x)
that correspond to an electron propagating to the right and a hole moving in the opposite
direction. The envelope function ψ̃(x) varies at a space scale that is much bigger than the
electron wavelength and satisfies the following BdG equation:

(−i!vF d/dx !(x)eiϕ

!(x)e−iϕ i!vF d/dx

)(
ψ̃e(x)
ψ̃h(x)

)
= E

(
ψ̃e(x)
ψ̃h(x)

)
. (1.158)

In the normal metal, we take the wave function in the form

ψ̃(x < 0) =
(

eix E/!vF

rAe−ix E/!vF

)
, (1.159)

which describes the incoming electron and the outgoing Andreev-reflected hole. The hole
amplitude acquires an extra factor rA: the amplitude of Andreev reflection.

For E < !, there are no solutions extending to the bulk of the superconductor. There
is, however, an evanescent solution falling off away from the normal reservoir. This is
given by

ψ̃(x > 0) = C
(

fe

fh

)
e−x

√
!2−E2/!vF , (1.160)

where C is an arbitrary constant and the coefficients fe,h are to be found from Eq. (1.158)
(the BdG equation) and the normalization condition | fe|2 + | fh|2 = 1.

Control question 1.20. What are the explicit forms of fe,h?

The typical scale of penetration into the superconductor – the superconducting correla-
tion length – is of the order !vF/! ) λF and diverges at the threshold energy E = !.
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Now let us find the amplitudes rA and C matching both solutions at x = 0. The deriva-

tives do not have to be matched since the effective BdG equation contains the first
derivatives only. The amplitude of Andreev reflection is given by

rA(E) = eiχ = e−iϕ

(
E
!

− i

√
!2 − E2

!

)

, χ = − arccos
(

E
!

)
− ϕ. (1.161)

As expected, the electron is fully Andreev reflected (|rA|2 = 1). The phase of the outgoing
hole is shifted by χ with respect to the phase of the incoming electron. The phase shift
between the amplitudes of an incoming hole and an outgoing electron, calculated similarly,
equals χ̃ = − arccos(E/!) + ϕ.

Exercise 1.17. (i) Write down the solutions of the BdG equation, Eq. (1.158), for
energies above the threshold, E > !. (ii) Matching these solutions with the solutions
in the normal metal, show that the amplitude of Andreev reflection is given by

rA = e−iϕ

(
E
!

−
√

E2 − !2

!

)

. (1.162)

(iii) Note that |rA|2 < 1 and describe the corresponding scattering process. (iv) Find the
asymptotic expression for the probability of Andreev reflection for E ) !.

1.8.2 Andreev conductance

We now consider a more general situation in which a nanostructure is placed between the
normal and superconducting reservoirs. The nanostructure in the normal state is described
by a scattering matrix ŝ(E) that generally depends on energy. Quite amusingly, the same
scattering matrix determines the properties of Andreev reflection, which is now combined
with the common “normal” reflection of electrons or holes coming to the nanostructure
from either side. The scattering theory for Andreev reflection was first put forward by
Blonder, Tinkham, and Klapwijk [31].

To start with, we have to find the scattering matrix for electrons and holes. For electrons
at energy E > 0, this is obviously ŝe(E) = ŝ(E). The holes at the same energy involve
states below the Fermi level, and their scattering is related to ŝ(−E). However, as we
have seen, an electron and a hole at the same momentum have opposite velocities, so the
incoming electrons correspond to outgoing holes and vice versa. To account for this, one
replaces ŝ by ŝ−1. In addition, the holes obey a time-reversed Hamiltonian: to account for
this, the scattering matrix must be transposed. Therefore,

ŝh(E) = (ŝ(−E)−1)T = ŝ∗(−E). (1.163)

Control question 1.21. Which property of the scattering matrix guarantees
Eq. (1.163)?
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nanostructure adjacent to a superconductor (S) is contributed by the processes that differ in the
number of electron trips between the nanostructure and superconductor.

To simplify the notation, we consider a one-channel scatterer. For this setup, re = r (E),
rh = r∗(−E), te = t(E), and th = t∗(−E).

Let us calculate the amplitude of the Andreev reflection assuming E < !. We use the
same approach as in Section 1.6 to sum the amplitudes of various processes that convert
the incoming electron to the outgoing hole (Fig. 1.52). The simplest process involves the
electron transmission through the nanostructure (amplitude te), Andreev reflection from
the superconductor (the phase factor exp(iχ ), see Eq. (1.161)) and transmission through
the nanostructure in the backward direction as a hole (t ′h). Thus, the total amplitude of this
process is given by ra0 = tet ′h exp(iχ ). The next process (Fig. 1.52) involves the reflec-
tion of the hole (amplitude r ′

h). The hole is Andreev-reflected (exp(iχ̃)), the resulted
electron is reflected again (r ′

e), and is converted back into a hole in the superconductor
(exp(iχ )). Finally, the hole transmits through the nanostructure. The extra steps mentioned
result in ra1 = ra1r ′

heiχ̃r ′
eeiχ . More complicated processes differ in the number of elec-

tron trips between the nanostructure and the superconductor, so that ran = ra0(r ′
heiχ̃r ′

eeiχ )n .
Summing them up, we obtain the total amplitude of Andreev reflection:

rA =
∞∑

n=0

ran = tet ′heiχ

1 − r ′
er ′

hei(χ+χ̃ )
. (1.164)

Let us disregard the energy dependence of the scattering matrix: as we have seen, this is
plausible if the energy scale associated with the dwell time in the nanostructure exceeds
the energies involved, i.e. eV or !. In this case, the scattering matrices for electrons and
holes are complex-conjugate.

To simplify, let us assume a low voltage eV " !. We note that χ + χ̃ =
−2 arccos(E/!); since the relevant energies E are of the order of eV , one can approximate
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χ + χ̃ = −π . The Andreev reflection coefficient, RA = |rA|2, is given by

RA = T 2

(2 − T )2 , (1.165)

and is unambiguously determined by T , the transmission eigenvalue of the corresponding
transport channel for the nanostructure in the normal state. The normal reflection coeffi-
cient is RN = 1 − RA. For ideal contact (T = 1), we recover the earlier result RA = 1,
RN = 0. Note that the result in Eq. (1.165) is a consequence of quantum interference. A
“classical” calculation (summing up the probabilities |ran|2 rather than the amplitudes)
would yield a wrong result.

To calculate the conductance, we note the analogy with normal scattering. Indeed, the
fraction RN of incoming electrons is normally reflected; these electrons do not contribute to
the current. The Andreev reflection process (probability RA) results in the charge transfer
of 2e (rather than e in the normal case). Thus, the Andreev conductance becomes GA =
2GQ RA. The same reasoning actually reproduces the whole counting statistics of Andreev
transport: it is given by the Levitov formula with e → 2e and T → RA.

Exercise 1.18. Determine the noise in Andreev transport. Express the result in terms
of the Fano factor (see Eq. (1.64)). What is the upper boundary for the Fano factor?

For many transport channels, one obtains a sum over the channels:

GA = 2GQ
∑

p

(RA)p = 2GQ
∑

p

T 2
p

(2 − Tp)2 . (1.166)

Now we can analyze this formula, employing the notion of the distribution of transmission
eigenvalues.

Exercise 1.19. Assume that the nanostructure is diffusive so that the distribution of
transmission eigenvalues is given by Eq. (1.43). Express the Andreev conductance in
terms of the conductance in the normal state.

If the nanostructure is of a tunnel type, Tp " 1, we end up with GA = GQ
∑

p T 2
p /2.

Andreev conductance is thus proportional to the second power of the transmission eigen-
values. This reflects the fact that Andreev reflection requires two transmission events, one
of an electron and one of a hole. Note that in the normal state the conductance is much
higher, being proportional to the first power of Tp. For an ideal contact (Tp = 1), the sit-
uation is reversed: GA = 2G, the factor of 2 reflecting the fact that Andreev reflection
transfers double charge.

1.8.3 Andreev bound states

Consider now a superconducting junction: a nanostructure placed between two supercon-
ductors that have the same superconducting gap ! but differ in their phases. We assume
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that the nanostructure is sufficiently short, not manifesting the energy dependence of its
scattering matrix at energy scale !. Under these conditions, it is not important whether
the nanostructure is made of a normal metal or a superconductor, or even an insulator.
The absence of energy dependence implies that the electrons spend a very short time τd

in the nanostructure; by virtue of the Heisenberg uncertainty principle, this time is too
short to allow a response to the superconductivity inside the nanostructure, τd! " !. The
scattering matrix of the nanostructure is thus its scattering matrix in the normal state.

Let us consider an electron in the nanostructure at sufficiently low energy. It will
experience Andreev reflections trying to get to either superconductor. The resulting hole
experiences the same problem: it cannot escape the nanostructure and is converted back
to an electron in the course of the escape attempt. We conclude that an electron/hole in
the nanostructure must perform a so-called finite motion. Quantum mechanics teaches us
that any finite motion of a particle gives rise to discrete energy levels. Indeed, a nanos-
tructure between the superconducting reservoirs kept at different phases gives rise to a set
of bound states for quasiparticles – Andreev bound states. Let us calculate the energies of
these states.

First consider again a single channel. The scattering matrix of the nanostructure relates
the amplitudes of outgoing and incoming states with respect to the nanostructure,

(
be

bh

)
=

(
ŝ 0
0 ŝ∗

)(
ae

ah

)
, (1.167)

where the two components of the amplitude vectors correspond to the left and right side of
the nanostructure, respectively,

be =
(

bLe

bRe

)
; bh =

(
bLh

bRh

)
,

and similarly for the incoming amplitudes ae, ah. The scattering of holes, as mentioned, is
given by the complex-conjugate matrix ŝ∗. The nanostructure does not convert electrons to
holes; this is why the matrix appearing in Eq. (1.167) is block-diagonal.

Andreev reflection from the superconductors converts electrons to holes and vice versa,
yielding the following complementary relation between a and b:

(
ae

ah

)
=

(
0 ŝeh

ŝhe 0

)(
be

bh

)
, (1.168)

with

ŝeh =
(

eiχ̃L 0
0 eiχ̃R

)
; ŝhe =

(
eiχL 0

0 eiχR

)
.

The Andreev reflection phases are given by Eq. (1.161): χL,R = −ϕL,R − arccos(E/!),
χ̃L,R = ϕL,R − arccos(E/!), ϕL,R being the superconducting phases of the left and right
reservoirs.

Control question 1.22. Explain the structure of the matrix in Eq. (1.168).
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!Fig. 1.53. (a) The energies of Andreev bound states versus ϕ for Tp, ranging from 0.1 (upper curve) to 1
(lowest curve) with step 0.1. (b) Corresponding superconducting currents (the upper curve at
positive ϕ corresponds to Tp = 1).

Two systems of linear equations, Eqs. (1.167) and (1.168), have non-zero solutions only
if the product *̂ of the 4 × 4 matrices in these relations has an eigenvalue 1. Indeed, if one
excludes a from the equations, the equation for b reduces to the eigenvalue problem *̂b =
b, and solutions exist only if det(*̂ − 1̂) = 0. Transforming this condition, one obtains the
energy of the bound state:

E = !

√
1 − T sin2(ϕ/2), (1.169)

where T is the transmission eigenvalue corresponding to the scattering matrix ŝ, and ϕ =
ϕL − ϕR is the phase difference across the junction [32].

Control question 1.23. Can you trace how Eq. (1.169) emerges from the conditions
imposed on the Andreev phases χL,R?

For many channels, an Andreev bound state appears in each channel with the energy
given by

E p = !

√
1 − Tp sin2(ϕ/2). (1.170)

The energy is modulated by the phase difference ϕ. For ϕ = 0, E p = ! for all channels.
In this case, the states are not really bound: they are at the edge of a continuous quasiparti-
cle spectrum in the superconductor. The minimum value !

√
1 − Tp is achieved at ϕ = π

(Fig. 1.53).

1.8.4 Josephson effect

So far we have considered the bound states for excitations. For example, an excitation can
be a quasiparticle cooled down in the vicinity of the nanostructure: it will be trapped in the



106 Scattering!
bound state. An important property of superconductivity is the correspondence between
the properties of the excitations and those of the ground state of the superconductor. This
is manifested in the symmetry of the BdG equation with respect to positive and negative
energies. The solutions at negative energies can be associated with the filled levels con-
tributing to the ground-state energy, which is the sum of single-particle excitation energies
En , Eg = −∑

En .7

Let us now concentrate on the ground-state energy of the system. It is contributed to by
all excitation energies: those corresponding to propagating quasiparticles above the super-
conducting gap and those of the bound Andreev states. Only the latter contributions depend
on the superconducting phase difference between the reservoirs ϕ. We concentrate on this
phase-dependent part:

E(ϕ) =
∑

p

E p(ϕ) = !
∑

p

√
1 − Tp sin2(ϕ/2). (1.171)

We will see now that the phase-dependent energy gives rise to a persistent current in the
ground state – a supercurrent. Let us slowly vary the phase difference. The energy shift
per unit time is given by

dE
dt

= ∂ E(ϕ)
∂ϕ

dϕ

dt
.

The global gauge invariance (see Appendix B) dictates that the time derivative of the super-
conducting phase is simply the potential of the corresponding superconductor, ϕ̇ = 2eV/!.
The energy change per unit time is the power dissipated at the junction. On the other hand,
this power is the product of current and voltage. We conclude that the current in the junction
is given by

I (ϕ) = −2e
!

∑

p

∂ E p

∂ϕ
= e!

2!
∑

p

Tp sin ϕ
√

1 − Tp sin2(ϕ/2)
. (1.172)

The supercurrent – or Josephson current – is an odd periodic function of the phase differ-
ence, and vanishes at ϕ = 0. In particular, for a tunnel junction Tp " 1, the supercurrent
reads I (ϕ) = Ic sin ϕ, where the amplitude Ic = (e!/2!)

∑
p Tp = (π!/2e)GN, where

GN is the conductance of the junction in the normal state. Here, Ic is the maximum pos-
sible supercurrent achieved at ϕ = π/2. Historically, the first superconducting junctions
were tunnel ones. Usually, the term Josephson junction implies the above relation, between
the current and phase, that corresponds to the Josephson energy EJ(ϕ) = −EJ cos ϕ, EJ =
!Ic/2e. In principle, any nanostructure can serve as a Josephson junction; the current–
phase characteristics essentially depends on the transmission eigenvalues. For example, a
quantum point contact (Tp = 1) gives I (ϕ) = Ic sin(ϕ/2), Ic = (π!/e)GN and maximum
current is achieved at ϕ = π (Fig. 1.53).

7 Intuitively, one would include the spin degeneracy in the state count. This would be wrong: the sum is
over orbital states. The reason is that the BdG equations provide a double set of solutions, as mentioned in
Section 1.8.1.
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I!Fig. 1.54. The dc SQUID layout: two Josephson junctions with phase differences ϕ1,2. The difference,
ϕ1 − ϕ2, is determined by the flux ! through the SQUID loop.

Exercise 1.20. Find the maximum supercurrent for a one-channel Josephson junction
with transmission coefficient T . At which value of the phase is this current achieved?

The Josephson effect is essentially quantum-mechanical. We have already seen some
examples of phenomena in which quantum mechanics plays an important role, such as the
transmission through a double junction or the Andreev reflection from a single interface;
in those cases, we were always able to present a classical analog of the effect to give
them some meaning. In contrast, the Josephson effect is formulated in a way that cannot
be interpreted classically: in classical physics, the phase of the wave function does not
exist, and therefore a supercurrent cannot occur. The Josephson effect is one of the best
illustrations of the concepts of quantum mechanics.

Josephson junctions are applied in many areas where a sensitive measurement of
magnetic fields is an issue. Such a measurement is performed with a superconducting quan-
tum interference device (SQUID). In the conceptually simplest version (dc SQUID), the
device is a large superconducting loop with two arms intercepted by Josephson junctions
(Fig. 1.54). The current through the device is the sum of the currents through both junc-
tions, I = I1(ϕ1) + I2(ϕ2), where we denote the phase drops at the junctions by ϕ1 and ϕ2,
respectively.

Let us consider a magnetic field B applied perpendicular to the plane of the SQUID.
The magnetic field modifies the phase drops at the junctions making them unequal. Indeed,
the global gauge invariance requires that the phase and the vector potential always come in
the combination ∇ϕ − (2e/!c)A. Let us integrate this combination over the SQUID loop
(the integration contour is given by the dashed curve in Fig. 1.54). In doing so, we can
neglect the phase gradients in the bulk superconductors, but we must keep the phase drops
at the Josephson junctions. This yields

∮
dr (∇ϕ − (2e/!c)A(r)) = ϕ1 − ϕ2 + 2π+/+0,

where we have used the Stokes theorem transforming the contour integral of the vector
potential to the area integral of the field – the magnetic flux + through the SQUID loop,
+0 = π!c/e being the flux quantum (see Section 1.6). The phase shift along the closed
contour is zero: ϕ1 − ϕ2 = −2π+/+0.
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Now we calculate the Josephson current in the SQUID, assuming equal tunnel Josephson

junctions, I = Ic(sin ϕ1 + sin ϕ2). Given the relation between the phase drops, we obtain

I = 2Ic cos
(

π+

+0

)
sin

(
ϕ2 + π+

+0

)
. (1.173)

If we fix the total current I , the only independent parameter that can adjust to the cur-
rent is the phase drop ϕ2. However, this is only possible if the current I does not exceed
Imax = 2Ic| cos(π+/+0)|. Otherwise, the current is not a supercurrent and a finite volt-
age is measured on the SQUID. The area of the loop can be quite large, even of meter
scale. Since the SQUID measures +, the total flux through the whole area of the loop, it is
sensitive to astonishingly small magnetic fields.

Control question 1.24. Which magnetic field significantly changes the critical current
of a SQUID with dimensions 1 m × 1 m?

Exercise 1.21. Consider a SQUID in which one of the junctions is of tunnel origin,
Ib(ϕ) = Ib sin ϕ and another is characterized by Is(ϕ) to be determined from the mea-
surement of the SQUID critical current. Assume Ib ) Is. (i) Show that, in zeroth order
in Is/Ib, the critical current does not depend on the flux. At which value of ϕb is this
critical current achieved? (ii) Compute the critical current in the next order and explain
how to recover Is(ϕ) from the measurement.

1.8.5 Superconducting junction at constant voltage bias

If a constant voltage V is applied across a superconducting junction, the phase difference
increases linearly with time, ϕ = (2eV/!)t . The junction between the two superconductors
reacts to the constant voltage in a manner very different from junctions in the normal state:
it produces an ac current (ac Josephson effect) that oscillates at the Josephson frequency
2eV/!.

If the voltage is low, eV " !, the origin of the ac current is easy to comprehend. The
linear sweep of the phase gives rise to the oscillating motion of the energies of the Andreev
bound states. The ac current is given by Eq. (1.172), with ϕ = (2eV/!)t . There is no dc
current. The latter would imply the energy dissipation. However, the energies of all bound
states return to the same position over a time period π!/eV .

If the voltage eV is comparable with the value of the superconducting gap !, the situa-
tion is more complicated. Since the Josephson frequency is comparable with the energies
of the states, we cannot expect that the energies adiabatically follow the time-dependent
phase. Besides, there is a dissipation: the junction creates quasiparticles above the gap that
leave the junction region carrying the energy away. Thus, we expect to observe a dc current.

To see how this works, let us first consider an open channel between two superconduct-
ing electrodes biased at finite constant voltage V . As already noted, the current does not
actually depend on the spatial distribution of the voltage. We can assume that the voltage
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!Fig. 1.55. Elementary scattering processes in a voltage-biased open channel between two superconductors.
Electrons (holes) acquire energy eV when crossing the dashed line from the left (right).
Quasiparticle states are available in the shaded regions. (a) If eV > 2#, a quasiparticle can be
transferred from the left to the right in one shot. (b) Alternatively, it may be Andreev-reflected
and get to the left at a higher energy. (c) Multiple Andreev reflections are required for such
processes at eV " #. The process shown transfers five elementary charges and is enabled at
5eV > 2#.

drops over an arbitrary point of the channel (given by the dashed line in Fig. 1.55). When an
electron (hole) crosses the point from the left to the right it increases (decreases) its energy
by eV . It decreases (increases) the energy by the same amount while crossing from the
right to the left. Since the energies are changing in the process of transmission, we cannot
separate positive and negative energies in BdG equations as we did before and we consider
quasiparticle energies of both signs. Then, in both left and right electrodes only quasi-
particle states with |E | > ! are available (Fig. 1.55). Let us consider an electron coming
from the left superconducting electrode with an energy E slightly below −!. It crosses
the point where the voltage drops so it arrives at the right electrode with energy E + eV .
If E + eV > !, it may leave the junction, reaching the quasiparticle states available at
this energy. This requires eV > 2!. Thereby, the electron from negative energies has been
transformed into a quasiparticle at positive energies. This can be seen as the generation
of two quasiparticles of two positive energies: one with energy −E > ! and another with
E + eV > ! (Fig. 1.55 (a)).
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Control question 1.25. Compare the energies of the initial and final states. What
charge is transferred through the junction in the course of the process?

Alternatively, the electron does not leave the junction but instead is converted into a
hole at the superconducting electrode. The hole crosses the voltage drop from the right
to the left, increasing its energy and arriving at the left electrode with energy E + 2eV .
If it escapes to the left electrode, we have quasiparticles with energies −E and E + 2eV ,
and the charge transferred through the junction equals 2e. Otherwise, it is converted into an
electron of the same energy. This brings us back to the beginning of the process: an electron
incoming from the left. We conclude that Andreev reflections can help a process to result in
any number of charges transferred, although only two quasiparticles are created. Since the
probabilities of Andreev reflections (Eq. (1.162)) quickly decrease with increasing energy,
the probabilities of the processes transferred with multiple charge are small.

This is quite different if the voltage is small, eV " !. Let us again consider an incom-
ing electron with energy E slightly below −!. If E + eV > −!, there are no available
quasiparticle states in the right lead, and the electron has to turn into a hole by Andreev
reflection. The hole arrives at the left lead with the slightly larger energy E + 2eV < !,
so Andreev reflection is the only option. The process of subsequent Andreev reflections
continues until the energy of an electron or a hole exceeds !. We conclude that each such
process transfers at least 2!/eV elementary charges. Generally, at eV - ! we find the
processes that differ in the charge transferred, en. The n-process involves n − 1 Andreev
reflections and starts at threshold voltage eVn > 2!/n. The onset of each process pro-
duces a singularity in I –V curves at the corresponding voltage. These singularities –
subgap structure at I –V curves – form an experimental signature of these multiple Andreev
reflections.

The quantitative theory should include the scattering between the superconducting
electrodes. We sketch the general approach below [33, 34].

The setup is the same as the one used to calculate Andreev bound states. The important
difference is that the amplitudes of the electrons and holes are not at the same energy:
instead, the time-dependent amplitude is a superposition of all energies separated by
eV , i.e.

ψ(t) =
∑

n

ψne−i(E+neV )t/!.

Each of the amplitudes ψn can describe incoming or outgoing electrons or holes. These
amplitudes are related by the scattering matrix of the nanostructure,

(
be

bh

)
=

(
ŝ 0
0 ŝ∗

)(
ae

ah

)
, (1.174)

where, in distinction from Eq. (1.167), the amplitudes are shifted in energy by eV to
incorporate the voltage drop,

be =
(

bLe,n

bRe,n+1

)
; bh =

(
bLh,n

bRh,n−1

)
,

and similarly for a.
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!Fig. 1.56. I–V curves of a single-channel superconducting junction. The transmission eigenvalue Tp increases
from 0.1 (lowest curve) to 1 (upper curve) with step 0.1 except for the curve below the upper
curve, for which Tp = 0.98. Vertical dotted lines indicate threshold voltages V1–V6.

Let us consider a scattering state for the case when a quasiparticle with energy E < −!

comes from the left superconducting electrode. At the left superconductor, the energy of
electrons and holes stays the same. The corresponding complementary relation for a, b
does not mix the amplitudes of different energies (different n),

(
aLe,n

aLh,n

)
=

(
0 r (n)

A
r (n)

A 0

)(
bLe,n

bLh,n

)
+

(
u(E)
v(E)

)
δn0, (1.175)

where the Andreev reflection amplitudes r (n)
A are taken at corresponding energies En =

E + eV n and are given by Eqs. (1.161) and (1.162). We disregard the dependence of
the amplitudes on the superconducting phase since the superconducting phase differ-
ence is already taken into account by the voltage drop between the electrodes. We can
thus conveniently set both ϕR,L to 0. The second term in Eq. (1.175) accounts for the
incoming quasiparticle at energy E (hence n = 0). We learn from Appendix B that a
quasiparticle excitation is a superposition of an electron and a hole, with u, v = ((1 ±√

1 − (!/E)2)/2)1/2 being the superposition coefficients. The amplitude of the incom-
ing quasiparticle enters the equations for an and bn as a free term. Similar relations hold at
the right superconductor. Since no quasiparticle comes from the right, one has simply

(
aRe,n

aRh,n

)
=

(
0 r (n)

A
r (n)

A 0

) (
bRe,n

bRh,n

)
. (1.176)

The scattering state is found by solving the resulting (in principle, infinite) system of
equations for an , bn . The solution is cumbersome and has to be analyzed numerically. Each
scattering state, with quasiparticles coming either from the left or from the right at all
negative energies, provides a contribution to the current that is obtained by integration over
all energies. The result is a function of the ratio eV/! and of the transmission coefficient
Tp in the channel, Ip = (GQ!/e)I(eV/!, Tp) (Fig. 1.56). The total current is the sum
over all transmission channels.



112 Scattering!
We note that I is strongly suppressed below the voltage 2!/e if Tp " 1. Indeed, the

charge transfer below this threshold requires at least one Andreev reflection. To perform
this, the electron or hole should traverse the scattering region one more time. The proba-
bility of this is suppressed by a factor Tp. Similarly, the charge transfer below Vn requires
n Andreev reflections and is suppressed by a factor T n

p . At large voltages eV ) !, the
superconductivity is not important for charge transfer, and current approaches its value in
normal metal, I - Tp(eV/!). In principle, there are singularities in I –V curves at each
threshold voltage Vn corresponding to the onset of a process with charge en transferred.
The singularities are clearly visible up to Tp - 0.7. In the tunneling regime, the singulari-
ties are steps (see Section 3.7.2, Eq. (3.102)) that are increasingly rounded upon increasing
Tp. The actual singularities that survive the rounding, even at Tp → 1, are jumps of the
second derivative of the current and are not visible with the naked eye.

Beside the dc current, the scattering approach allows us to find the harmonics Im of
the ac current at multiples of the Josephson frequency, I (t) = ∑

m Im exp(2eV tm/!) [34].
Indeed, each scattering state contributes to the time-dependent current, given by

I (t) ∝
(
|ψe(r, t)|2 − |ψh(r, t)|2

)
,

where ψe,h are electron and hole components of the amplitude. Substituting the time-
dependent amplitudes, we see that

Im ∝
∑

n

(
b∗

Le,nbLe,n+m − b∗
Lh,nbLh,n+m − a∗

Le,naLe,n+m + a∗
Lh,naLh,n+m

)
.

The harmonics also exhibit subgap singularities at V = Vn .
It is clear that the processes involving a transfer of multiple charges should lead to inter-

esting and non-trivial full counting statistics; this has been analyzed in Ref. [35] in detail.
As we have seen, at low voltages and transmissions, an elementary process of charge trans-
fer involves the transfer of many (- 2!/eV ) elementary charges. To make an analogy, the
electrons do not traverse the nanostructure as separate independent vehicles; rather, they
are organized in long trains of - 2!/eV coaches. This enhances the Fano factor, and
accounts for its large values. This enhancement has been confirmed experimentally [36]
for nanostructures with a well controlled set of the transmissions Tp.

1.8.6 Nanostructure pin-code: experimental

We have already mentioned many times that the scattering and transport properties of a
nanostructure are completely determined by the full set of transmission eigenvalues, known
as the “pin-code.” It is very difficult to crack the pin-code in the course of measurement in
the normal state since the Landauer conductance gives only the sum of all Tp. On the con-
trary, the I –V curves of a superconducting junction are reasonably sensitive to individual
eigenvalues Tp. The brilliant experiment described in Ref. [37] demonstrates how one can
extract all the relevant transmission eigenvalues just by measuring the I –V curves.

The experiments were performed with superconducting break junctions. In the break
junction technique [38], a long and narrow wire is deposited on an elastic substrate. In the
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!Fig. 1.57. Experimental determination of nanostructure pin-code [37] (a) Break junction: experimental
layout. (b) A fit of I–V curves in the superconducting state reveals the individual transmission
eigenvalues. (i) T1 = 0.997, T2 = 0.46, T3 = 0.29; (ii) T1 = 0.74, T2 = 0.11; (iii) T1 = 0.46,
T2 = 0.35, T3 = 0.007; (iv) T1 = 0.0025.

course of the experiment, the substrate is bent so that the wire stretches and eventually
breaks; hence the name “break junctions.” The substrate bending can be controlled with
high precision, so that it is possible to stabilize the system immediately before the wire
breaks. At this moment, the narrowest place of the wire is only several atoms wide, and the
voltage drops at narrowest place. Thereby one creates an atomic-size nanostructure with
a few open transport channels. One monitors the conductance during the experiment and
tunes the nanostructure to any desired value of G.

The samples used in Ref. [37] were suspended aluminum microbridges (Fig. 1.57), 2 µm
long and 100 nm thick, constricted in the middle to approximately 100 nm. This is still
too wide for a few-channel junction, and further narrowing of the constriction has been
achieved with the break junction technique. From both sides, the bridge opens to large
(dozens of microns long) pads glued to an elastic organic (polyamide) substrate. The sub-
strate was mounted on a bending mechanism, which was adjusted in such a way that a
micron-long displacement of the mechanism resulted in a well controlled change in the
distance between the clamping points of the bridge of only 0.2 nm. The samples were
first broken and then brought back into contact to form a nanostructure with a few open
transport channels. The experiment was performed at ultra-low temperature (∼ 1 mK, well
below the temperature of the superconducting transition). In the course of the experiment,
the clamping points were slowly pushed apart. This diminishes, and effectively reduces the
number of, transmission eigenvalues: the conductance goes down. The setup was stable
enough that the deformation could be stopped at any point (corresponding to a particular
set of transmission eigenvalues) and the dc current versus the applied voltage could be
measured at this point.

Fitting the I –V curves using a sum of contributions of individual transport channels,
one can very precisely determine all the relevant transmission eigenvalues. The number
of transmissions Tp taken into consideration is determined by the accuracy of the fit, and
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the authors were able to resolve up to the five biggest transmission eigenvalues. Examples
of similar fits are presented in Fig. 1.57, where we see the precision of the fits and of the
transmission eigenvalues extracted.

The importance of these experiments on superconducting break junctions goes far
beyond an experimental check of validity of the theory of non-equilibrium transport in
Josephson junctions. The experiments provide an experimental justification of the basics
of scattering theory of quantum transport.

1.9 Spin-dependent scattering

Electrons have spin 1/2. This implies that the electron wave function is a two-component
quantity – a spinor, given by

ψ(r) =
(

ψ↑(r)
ψ↓(r)

)
,

where ψ↑(↓) correspond to the states with spin “up” (“down”) with respect to a given
axis. Spin is a physical quantity, very much like electric charge or momentum. It has three
components x , y, and z, making a pseudovector. The corresponding operator is expressed
in terms of the pseudovector of 2 × 2 Pauli matrices σ̂ , Ŝ = !σ̂/2 that act on spinors.
Frequently, electron spin can be disregarded, as we have been doing so far. In the absence
of interactions that explicitly depend on spin, the wave functions ψ↑ and ψ↓ are identical.
The only fact to take into account is that the number of electron states is twice that without
spin. In quantum transport, this only leads to the factor 2s in the conductance quantum. In
this section, we consider circumstances in which the spin-dependent interactions cannot
be disregarded. This may happen due to three factors: spin-splitting in a magnetic field,
interaction with an exchange field in ferromagnets, and spin-orbit interaction. All these
factors can be incorporated into the scattering matrix, making it spin-dependent.

Zeeman splitting

A magnetic field B does many things to electrons: it produces phase shifts (described
in Section 1.6), and it also tries to bend electron trajectories into Larmor circles. These
orbital effects will be disregarded in this section. The magnetic field also interacts with
electron spin, so that the spin-dependent Hamiltonian reads Ĥ = gµB B · σ̂/2. Here the
combination of fundamental constants µB = e!/2mc is the Bohr magneton, and g = 2 for
electrons in a vacuum. In semiconductor heterostructures, the value of this g-factor may
be significantly modified and even change sign; for example, g = −0.44 for electrons in
bulk GaAs. Thus, the energy of the state with the spin projection parallel (antiparallel) to
the magnetic field is shifted up (down) by gµB B/2. This is known as Zeeman splitting.
To understand the effect of this splitting on quantum transport, let us recall the model of
an adiabatic wave guide (Section 1.2) that describes a quantum point contact. Within each
transport channel n, the electrons with the spin projection ±!/2 (spin up and spin down)
feel different effective potential energies, given by


