
1) Dynamical Pauli principle 1 

Confine a pair of electrons in a double potential well in the triplet state, where both 
spins are polarized down. The two electrons are localized in the two wells, and they 
are very far away from each other so their interaction is negligible. Exchange them 
adiabatically by exchanging the two potential wells, such that their interaction is 
negligible all along the way.  

What is the geometrical phase factor picked up by the two-electron wave function by 
the end of the exchange? 

(A) +1 
(B) -1 (Dude, electrons are fermions!) 
(C) i or -i 
(D) The question does not make sense.



Topological Insulators 2 (Topological superconductors)
2020 Spring, Lecture 6

Braiding of Majorana zero modes
(Dated: April 1, 2020)

I. DYNAMICAL PAULI PRINCIPLE 1-2-3

Single-particle states:

 L(r)�"(s), (1)

with r 2 R3 and s 2 {+,�}.

Notation: (r, s) ⌘ x.

Notation:

L"(x) ⌘  L(r)�"(s). (2)

Notation:  (r1, s1, r2, s2) ⌘  (x1, x2) ⌘  (1, 2).

Two-particle triplet state (modulo normalization)

 (1, 2) = L"(1)R"(2)�R"(1)L"(2). (3)

Adiabatic exchange results in L" $ R":

 0(1, 2) = R"(1)L#(2)� L#(1)R"(2) = � (1, 2). (4)

Conclusion: minus sign picked up!

Two-particle up-down state:

 (1, 2) = L"(1)R#(2)�R#(1)L"(2). (5)

Adiabatic exchange results in L" ! R", and R# ! L#:

 0(1, 2) = R"(1)L#(2)� L#(1)R"(2). (6)

That has nothing to do with  .

Two-particle singlet state:

 (1, 2) = [L"(1)R#(2)�R#(1)L"(2)]

� [L#(1)R"(2)�R"(1)L#(2)] . (7)

Adiabatic exchange results in L" $ R", and R# $ L#:

 0(1, 2) = [R"(1)L#(2)� L#(1)R"(2)]

� [R#(1)L"(2)� L"(1)R#(2)] . (8)

First term of  matches fourth term of  0, etc.
Hence  =  , despite dealing with 2 fermions.

II. CONTROL QUESTIONS FOR
”HAMILTONIANS, TOPOLOGY AND

SYMMETRY”

1. Consider a spin-z-conserving Hamiltonian for spin-
1/2 particles on two sites:

Ĥ = EL(|L "i hL "|� |L #i hL #|) + ER(|R "i hR "|� |R #i hR #|) + v(|L "i hR "|+ |L #i hR #|+ h.c.),(9)

with real parameters 0 < v < EL < ER. Now
change ER to �ER. Is this change a topological
phase transition or not? (Hint: is there a level that
crosses zero energy along the way?)
A) Not topological.
B) Topological.
C) Depends on the value of v.
D) This type of change is forbidden by spin-z con-
servation law.

Answer: B) The z component of the spin is con-
served, so first we should consider the " block and
the # block separately. For both blocks, there
will be an energy eigenvalue crossing zero energy,
and this satisfies the definition of topological phase
transition for a zero-dimensional system.

2. List all symmetries mentioned in the chapter, and
categorize them! Note that there are multiple ways
to categorize.

Answer: A few ways to categorize them:

1) unitary/antiunitary,

2) maps the Hamiltonian H to itself / to �H

3) generically, are there ”gap closings” at zero en-
ergy (e.g., no symmetry), or there’s level repulsion
instead (e.g., sublattice symmetry)

3. Which statements are true?
1) The Pfa�an is a function that maps any square
matrix to a complex number. FALSE, since it’s de-
fined only for anti-symmetric matrices.
2) If you square the Pfa�an of a matrix, then you
get the determinant of that matrix. TRUE.
3) The BdG matrix is always antisymmetric.
FALSE, but it’s true that any BdG matrix can
be transformed to an antisymmetric matrix with a
specific unitary transformation, the so-called ‘Ma-
jorana transformation’.
4) The Pfa�an is defined as the square root of the
determinant. FALSE. The Pfa�an is defined as a
polynomial of the matrix elements, see wikipedia.
The definition ‘square root of the determinant’ can-
not be a equivalent definition with the original one,
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2) Dynamical Pauli principle 2 

Confine a pair of electrons in a double potential well in the state where the electron on 
the left has spin up, and the other one has spin down. The two electrons are localized 
in the two wells, and they are very far away from each other so their interaction is 
negligible. Exchange them adiabatically by exchanging the two potential wells, such 
that their interaction is negligible all along the way.  

What is the geometrical phase factor picked up by the two-electron wave function by 
the end of the exchange? 

(A) +1 
(B) -1 (Dude, electrons are fermions!)  
(C) i or -i 
(D) The question does not make sense.
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with real parameters 0 < v < EL < ER. Now
change ER to �ER. Is this change a topological
phase transition or not? (Hint: is there a level that
crosses zero energy along the way?)
A) Not topological.
B) Topological.
C) Depends on the value of v.
D) This type of change is forbidden by spin-z con-
servation law.

Answer: B) The z component of the spin is con-
served, so first we should consider the " block and
the # block separately. For both blocks, there
will be an energy eigenvalue crossing zero energy,
and this satisfies the definition of topological phase
transition for a zero-dimensional system.

2. List all symmetries mentioned in the chapter, and
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to categorize.

Answer: A few ways to categorize them:

1) unitary/antiunitary,

2) maps the Hamiltonian H to itself / to �H

3) generically, are there ”gap closings” at zero en-
ergy (e.g., no symmetry), or there’s level repulsion
instead (e.g., sublattice symmetry)

3. Which statements are true?
1) The Pfa�an is a function that maps any square
matrix to a complex number. FALSE, since it’s de-
fined only for anti-symmetric matrices.
2) If you square the Pfa�an of a matrix, then you
get the determinant of that matrix. TRUE.
3) The BdG matrix is always antisymmetric.
FALSE, but it’s true that any BdG matrix can
be transformed to an antisymmetric matrix with a
specific unitary transformation, the so-called ‘Ma-
jorana transformation’.
4) The Pfa�an is defined as the square root of the
determinant. FALSE. The Pfa�an is defined as a
polynomial of the matrix elements, see wikipedia.
The definition ‘square root of the determinant’ can-
not be a equivalent definition with the original one,



3) Dynamical Pauli principle 3

Confine a pair of electrons in a double potential well in the singlet state. The two 
electrons are localized in the two wells, and they are very far away from each other so 
their interaction is negligible. Exchange them adiabatically by exchanging the two 
potential wells, such that their interaction is negligible all along the way.  

What is the geometrical phase factor picked up by the two-electron wave function by 
the end of the exchange? 

(A) +1 
(B) -1 (Dude, electrons are fermions!) 
(C) i or -i 
(D) The question does not make sense.
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(D) The question does not make sense.
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I. DYNAMICAL PAULI PRINCIPLE 1-2-3

Single-particle states:

 L(r)�"(s), (1)

with r 2 R3 and s 2 {+,�}.

Notation: (r, s) ⌘ x.

Notation:

L"(x) ⌘  L(r)�"(s). (2)

Notation:  (r1, s1, r2, s2) ⌘  (x1, x2) ⌘  (1, 2).

Two-particle triplet state (modulo normalization)

 (1, 2) = L"(1)R"(2)�R"(1)L"(2). (3)

Adiabatic exchange results in L" $ R":

 0(1, 2) = R"(1)L#(2)� L#(1)R"(2) = � (1, 2). (4)

Conclusion: minus sign picked up!

Two-particle up-down state:

 (1, 2) = L"(1)R#(2)�R#(1)L"(2). (5)

Adiabatic exchange results in L" ! R", and R# ! L#:

 0(1, 2) = R"(1)L#(2)� L#(1)R"(2). (6)

That has nothing to do with  .

Two-particle singlet state:

 (1, 2) = [L"(1)R#(2)�R#(1)L"(2)]

� [L#(1)R"(2)�R"(1)L#(2)] . (7)

Adiabatic exchange results in L" $ R", and R# $ L#:

 0(1, 2) = [R"(1)L#(2)� L#(1)R"(2)]

� [R#(1)L"(2)� L"(1)R#(2)] . (8)

First term of  matches fourth term of  0, etc.
Hence  0 =  , despite dealing with 2 fermions.

II. CONTROL QUESTIONS FOR
”HAMILTONIANS, TOPOLOGY AND

SYMMETRY”

1. Consider a spin-z-conserving Hamiltonian for spin-
1/2 particles on two sites:

Ĥ = EL(|L "i hL "|� |L #i hL #|) + ER(|R "i hR "|� |R #i hR #|) + v(|L "i hR "|+ |L #i hR #|+ h.c.),(9)

with real parameters 0 < v < EL < ER. Now
change ER to �ER. Is this change a topological
phase transition or not? (Hint: is there a level that
crosses zero energy along the way?)
A) Not topological.
B) Topological.
C) Depends on the value of v.
D) This type of change is forbidden by spin-z con-
servation law.

Answer: B) The z component of the spin is con-
served, so first we should consider the " block and
the # block separately. For both blocks, there
will be an energy eigenvalue crossing zero energy,
and this satisfies the definition of topological phase
transition for a zero-dimensional system.

2. List all symmetries mentioned in the chapter, and
categorize them! Note that there are multiple ways
to categorize.

Answer: A few ways to categorize them:

1) unitary/antiunitary,

2) maps the Hamiltonian H to itself / to �H

3) generically, are there ”gap closings” at zero en-
ergy (e.g., no symmetry), or there’s level repulsion
instead (e.g., sublattice symmetry)

3. Which statements are true?
1) The Pfa�an is a function that maps any square
matrix to a complex number. FALSE, since it’s de-
fined only for anti-symmetric matrices.
2) If you square the Pfa�an of a matrix, then you
get the determinant of that matrix. TRUE.
3) The BdG matrix is always antisymmetric.
FALSE, but it’s true that any BdG matrix can
be transformed to an antisymmetric matrix with a
specific unitary transformation, the so-called ‘Ma-
jorana transformation’.
4) The Pfa�an is defined as the square root of the
determinant. FALSE. The Pfa�an is defined as a
polynomial of the matrix elements, see wikipedia.
The definition ‘square root of the determinant’ can-
not be a equivalent definition with the original one,



4) Find the harmless mechanism

We perform a braiding-based quantum gate on a Majorana qubit defined with four 
Majorana zero modes. Which mechanism does not lead to gate error? 

(A) Opening of a minigap, also known as Majorana hybridization. 
(B) Unwanted tunnel coupling to an electronic reservoir. 
(C) Changing the Hamiltonian too rapidly.  
(D) Phonon-induced relaxation between the globally even and globally odd ground 
state. 
(E) I can’t make my final Hamiltonian exactly the same as the initial Hamiltonian.
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5) Make it longer (in just 60 seconds)

I want to improve my braiding-based quantum gate by making my wires longer. I 
don't want to slow down my topological quantum computer, so I keep the same 
braiding time in the longer device as I had in the shorter device. Thoughts? 

(A) Makes sense. 
(B) You could even shorten the braiding time in the longer device, it will do no harm, 
since the gate is topologically protected. 
(C) No! That way you speed up your Majoranas, risking that you enhance 
quasiparticle creation!
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6) Braiding time

In the plots showing the results of our numerical simulations, the braiding time is 
shown as a dimensionless quantity. Assuming that v = Delta = 200 ueV (e.g., the 
superconducting gap of aluminium is around this value at subkelvin temperatures), 
what is the dimensionful braiding time corresponding to 10^4 dimensionless time 
units? (Hint: use wolframalpha for a quick calculation) 

(A) cca. 3.2 ps 
(B) cca. 3.2 ns 
(C) cca. 32 ns 
(D) cca. 320 ns
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~ = 0.66µeVns
time unit: ~/v ⇡ 3.3 ps

II. CONTROL QUESTIONS FOR
”HAMILTONIANS, TOPOLOGY AND

SYMMETRY”

1. Consider a spin-z-conserving Hamiltonian for spin-
1/2 particles on two sites:

Ĥ = EL(|L "i hL "|� |L #i hL #|) + ER(|R "i hR "|� |R #i hR #|) + v(|L "i hR "|+ |L #i hR #|+ h.c.),(9)
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phase transition or not? (Hint: is there a level that
crosses zero energy along the way?)
A) Not topological.
B) Topological.
C) Depends on the value of v.
D) This type of change is forbidden by spin-z con-
servation law.

Answer: B) The z component of the spin is con-
served, so first we should consider the " block and
the # block separately. For both blocks, there
will be an energy eigenvalue crossing zero energy,
and this satisfies the definition of topological phase
transition for a zero-dimensional system.

2. List all symmetries mentioned in the chapter, and
categorize them! Note that there are multiple ways
to categorize.
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1) unitary/antiunitary,

2) maps the Hamiltonian H to itself / to �H
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3) The BdG matrix is always antisymmetric.
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be transformed to an antisymmetric matrix with a
specific unitary transformation, the so-called ‘Ma-
jorana transformation’.
4) The Pfa�an is defined as the square root of the
determinant. FALSE. The Pfa�an is defined as a
polynomial of the matrix elements, see wikipedia.
The definition ‘square root of the determinant’ can-
not be a equivalent definition with the original one,



7) Qubits and Majoranas

You have the task to encode quantum information in 8 Majorana zero modes. Which 
is the worst strategy you could use? 

(A) I encode 1 qubit per 2 Majoranas, so I can encode 4 qubits. 
(B) I encode 1 qubit per 4 Majoranas, so I encode 2 qubits. 
(C) The globally even ground state is 8-fold degenerate, so I encode there 3 qubits 
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8) Fock-space Hamiltonian

What is the size of the Fock-space Hamiltonian matrix of the ball-and-stick model in 
our notes? 

(A) 8 x 8 
(B) 16 x 16 
(C) 256 x 256 
(D) 65536 x 65536

Braiding of Majorana zero modes
Topological Insulators 2 (Topological superconductors)

Lecture 6, 2020/04/01

For this week, there are two pre-lecture reading assignments: to read the topocondmat chapter on braiding (Why
Majoranas are cool: braiding and quantum computation), and to read the first 3 pages of these notes. Please read the
topocondmat chapter first, and these notes second.

I. AN IMPORTANT CONTROL QUESTION TO THE TOPOCONDMAT CHAPTER

Question: Consider a system with only one pair of Majorana modes, thus with two degenerate ground states, having
di↵erent fermion parity. When we exchange the two Majorana modes, starting from a given fermion parity eigenstate,
the wave function picks up a phase that depends on the fermion parity. What is this phase for the even state, what
is it for the odd state, and what is the relative phase between the two phases?

Answer: The individual phases are not well defined, but the relative phase is ⇡/2. This can be deduced from the
4⇥ 4 matrix U12 in section Non-Abelian statistics of Majoranas.

II. SUMMARY

On topocondmat.org, you have read a high-level description of the braiding of Majorana zero modes, and how that
can be used to perform nontrivial quantum operations in the degenerate ground state of topological superconductor
wires. You might now wonder about the following questions:

(i) I’d like to write a numerical simulation of braiding of Majorana zero modes in such a wire network. What is
the simplest time-dependent Hamiltonian that can be used for this? How would I confirm in the simulation that the
di↵erence of the phases picked up by the even and odd ground states is ⇡/2?

(ii) What is the minimal model of an actual experimental setup and experimental protocol which could be used to
prove that braiding indeed provides a ⇡/2 gate?

In these notes, we will focus on these types of questions, and in particular, try to outline an answer to (ii), along
with a numerical demonstration of the experimental setup and protocol we propose.

III. BALL-AND-STICK MODEL OF A TOPOLOGICAL QUANTUM BIT

Here we introduce a ball-and-stick model of a topological quantum bit that is based on Majorana zero modes.
This takes simple quantum information protocols we’ve learned in Lecture 3, such as non-protected Rabi oscilla-
tions and readout via parity-to-charge conversion, and combines it with braiding, which you’ve just read about on
topocondmat.org.

The setup is sketched in Fig. 1. It consists of 3 units: a readout dot (black), a Y junction built from Kitaev
chains (sites (1,1), (0,0), (3,1),(2,1)), and a further straight Kitaev chain (sites (-1,1), (-1,2), (-1,3)). Dashed lines
denote connections via electron tunneling and Cooper-pair creation and annihilation. Solid lines denote connections
via tunneling only.

(0,0)
(2,1)

(3,1)

(1,1) (0,1)uT(t)
uT(t)� �

(-1,1) (-1,2) (-1,3)

uS(t)

FIG. 1: Ball-and-stick model of a topological quantum bit, ‘designed’ for an experimental demonstration of the
braiding-based quantum gate. In the simulations, we will set ' = ⇡/2 for concreteness.
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denote connections via electron tunneling and Cooper-pair creation and annihilation. Solid lines denote connections
via tunneling only.
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FIG. 1: Ball-and-stick model of a topological quantum bit, ‘designed’ for an experimental demonstration of the
braiding-based quantum gate. In the simulations, we will set ' = ⇡/2 for concreteness.
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Lecture 6, 2020/04/01

For this week, there are two pre-lecture reading assignments: to read the topocondmat chapter on braiding (Why
Majoranas are cool: braiding and quantum computation), and to read the first 3 pages of these notes. Please read the
topocondmat chapter first, and these notes second.

I. AN IMPORTANT CONTROL QUESTION TO THE TOPOCONDMAT CHAPTER

Question: Consider a system with only one pair of Majorana modes, thus with two degenerate ground states, having
di↵erent fermion parity. When we exchange the two Majorana modes, starting from a given fermion parity eigenstate,
the wave function picks up a phase that depends on the fermion parity. What is this phase for the even state, what
is it for the odd state, and what is the relative phase between the two phases?

Answer: The individual phases are not well defined, but the relative phase is ⇡/2. This can be deduced from the
4⇥ 4 matrix U12 in section Non-Abelian statistics of Majoranas.

II. SUMMARY

On topocondmat.org, you have read a high-level description of the braiding of Majorana zero modes, and how that
can be used to perform nontrivial quantum operations in the degenerate ground state of topological superconductor
wires. You might now wonder about the following questions:

(i) I’d like to write a numerical simulation of braiding of Majorana zero modes in such a wire network. What is
the simplest time-dependent Hamiltonian that can be used for this? How would I confirm in the simulation that the
di↵erence of the phases picked up by the even and odd ground states is ⇡/2?

(ii) What is the minimal model of an actual experimental setup and experimental protocol which could be used to
prove that braiding indeed provides a ⇡/2 gate?

In these notes, we will focus on these types of questions, and in particular, try to outline an answer to (ii), along
with a numerical demonstration of the experimental setup and protocol we propose.

III. BALL-AND-STICK MODEL OF A TOPOLOGICAL QUANTUM BIT

Here we introduce a ball-and-stick model of a topological quantum bit that is based on Majorana zero modes.
This takes simple quantum information protocols we’ve learned in Lecture 3, such as non-protected Rabi oscilla-
tions and readout via parity-to-charge conversion, and combines it with braiding, which you’ve just read about on
topocondmat.org.

The setup is sketched in Fig. 1. It consists of 3 units: a readout dot (black), a Y junction built from Kitaev
chains (sites (1,1), (0,0), (3,1),(2,1)), and a further straight Kitaev chain (sites (-1,1), (-1,2), (-1,3)). Dashed lines
denote connections via electron tunneling and Cooper-pair creation and annihilation. Solid lines denote connections
via tunneling only.
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FIG. 1: Ball-and-stick model of a topological quantum bit, ‘designed’ for an experimental demonstration of the
braiding-based quantum gate. In the simulations, we will set ' = ⇡/2 for concreteness.

9) BdG Hamiltonian

What is the size of the BdG Hamiltonian matrix of the ball-and-stick model in our 
notes? 

(A) 8 x 8 
(B) 16 x 16 
(C) 256 x 256 
(D) 65536 x 65536
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