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Proximity e�ect

If a material in the superconducting phase is in close contact to a normal material then superconductivity can �spill over� to the
normal material, this is called the superconducting proximity e�ect. Consider the Hamiltonian

H =
∑

ij

hNij c
†
i cj +

∑

ij

hSijb
†
i bj +

∑

ij

(
∆ijb

†
i b
†
j + h.c.

)
+
∑

ij

(
Γijb

†
i cj + h.c.

)
, (1)

here the ci operators act in the normal system, bi operators act in the superconductor, the term involving Γij-s corresponds to
the coupling between the two. The BdG matrix is then:

H =




hN 0 Γ 0
0 −h∗N 0 −Γ∗

Γ† 0 hS ∆
0 −Γ†∗ −∆∗ −h∗S


 (2)

where we organize the Nambu spinor according to
(
c c† b b†

)T
. A schematic representation of this system and the spectrum

is depicted in Fig. 1. As the schematic spectrum shows one can expect that due to the presence of the superconductor the
normal region will also develop a superconducting gap. We can, using quasi-degenerate perturbation theory, derive an e�ective
BdG matrix

HEff =

(
h

′
N ∆′

−∆′∗ −h′∗
N

)
(3)

where we only act on the Nambu spinor
(
c c†

)T
.

In the appendix we show, in a simple model, that if the pair potential was ∝ b†i↑b
†
i↓ in the bulk then the e�ective pair potential

∆′ will inherit this structure after this step, also that the magnitude of the induced gap is inversely proportional to the bulk gap
and is proportional to the square of the coupling strength. In the next chapter we investigate how topological superconductivity
can be engineered with the help of proximity induced superconductivity.
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Figure 1: Proximity e�ect. a) Geometric representation of a superconductor in close contact with a normal metal. b) A schematic
representation of the BdG spectrum of the whole system without taking the Γ hopping terms in to account. Green solid lines
are the states of the superconductor blue lines represent the metal. c) the spectrum of the joined system after taking Γ in to
account.
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Figure 2: The geometrical setup realizing the Lutchyn wire model. A nanowire with spin-orbit coupling and proximitized by a
bulk s-wave superconductor subject to an external magnetic �led.

Figure 3: Spectrum and spin pattern of the Lutchyn wire model. Black solid and dashed curves correspond to ∆ = 0 with
µ = −0.75 and α = 0.5. Yellow arrows depict the expectation value of the y(horizontal) and z(vertical) spin components for a
given state. The green solid line depicts the spectrum for ∆ = 0.15. The topological invariant Q is calculated by evaluating the
product of the Pfa�ans of the BdG matrix at k = 0 and at k = π.
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Lutchyn wire on a lattice - calculating the topological invariant

A lattice realization of the Lutchyn wire depicted in Fig. 2 can be written as

HLutchyn =
∑

m

(
c†m↑ c†m↓

)( Bz − µ 0
0 −Bz − µ

)(
cm↑
cm↓

)

− 1

2

∑

m

[(
c†m+1↑ c†m+1↓

)( t α
−α t

)(
cm↑
cm↓

)
+ h.c.

]
(4)

−∆
∑

m

[
c†m↑c

†
m↓ + h.c.

]
.

That is we have a Zeeman term in parallel to the z direction, we have normal hopping t along the wire, a spin orbit coupling term
proportional to iασy and s-wave type, onsite pairing term with magnitude ∆. The corresponding BdG matrix in momentum
space is

HLutchyn =




−t cos(k) +Bz − µ −iα sin(k) 0 −∆
iα sin(k) −t cos(k)−Bz − µ ∆ 0

0 ∆ t cos(k)−Bz + µ iα sin(k)
−∆ 0 −iα sin(k) t cos(k) +Bz + µ


 . (5)

This is now an object de�ned in the whole BZ, thus we can calculate the topological invariant of the system by calculating the
Pfa�an at k = 0 and at k = π as was done by Jay Sau on topocondmat (chapter �Bulk-edge correspondence in the Kitaev chain�
). First we need to transform HLutchyn to the Majorana basis as H′Lutchyn = UHLutchynU

†, where

U =
1√
2




1 0 1 0
0 1 0 1
i 0 −i 0
0 i 0 −i


 . (6)

The transformed BdG matrix is

iH′Lutchyn =




0 0 Bz − t cos(k)− µ ∆− iα sin(k)
0 0 −∆ + iα sin(k) −Bz − t cos(k)− µ

−Bz + t cos(k) + µ ∆ + iα sin(k) 0 0
−∆− iα sin(k) Bz + t cos(k) + µ 0 0


 (7)

Thus the topological invariant for this system reads

Q = sign
(
Pf
[
iH′Lutchyn(0)

]
Pf
[
iH′Lutchyn(π)

])
(8)

= sign
[(
B2

z −∆2 − (t+ µ)
2
)(

B2
z −∆2 − (t− µ)

2
)]
.

The spectrum, spin structure and topological invariant of the model is depicted in Fig. 3 for various system parameters.
Task to tackle at home:
Taking the EFA for k = 0 we have

HEFA
Lutchyn =




p̂2

2m +Bz − µ′ −iαp̂ 0 −∆

iαp̂ p̂2

2m −Bz − µ′ ∆ 0

0 ∆ − p̂2

2m −Bz + µ′ iαp̂

−∆ 0 −iαp̂ − p̂2

2m +Bz + µ


 (9)

=

[(
p̂2

2m
− µ

)
σ0 +Bzσz + αp̂σy

]
⊗ τz + ∆σy ⊗ τy (10)

where we introduced m = 1/t and rede�ned the chemical potential as µ′ = t+ µ.

1. Calculate coe�cients for Andeev and inverse Andreev re�ection from the EFA matrix. Show that the relative sign of the
re�ection coe�cients is the topological invariant calculated above. And show that under the right circumstances the EFA
can be mapped to the Kitaev wire!

2. Calculate the phase diagram in terms of Bz, ∆ and µ.

3. Find Majoranas from the continuum or from the TB model of �xed system size at the interface of a trivial and topological
superconductor phase.
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Delft experiment

What could go wrong:

• Higher magnetic �eld allows for a wider range in µ for the topological phase. However higher magnetic �led tends to align
particles and holes in the same direction, thus it inhibits pairing.

• High magnetic �eld also has detrimental e�ects on the gap itself.

• Orientation of the magnetic �eld is important! If we align the magnetic �eld with the e�ective �eld of the spin-orbit
interaction, then it will not split the spectrum at k = 0, thus the Fermi surface will have two fermionic species.
Task to tackle at home: generalize the models of the previous for any magnetic �eld orientation and check if statement is
true!

• We only focused on a single modded wire! In actual experiments the nanowires have a �nite width and thus potentially
more than one mode, thus making the system more complicated. The signatures of Majorana bound states e.g. ZBCP
could be in�uenced by the presence of additional modes.

Take home messages

• We have seen that a topological superconducting phase can be realized even if the pair potential is not like it was in the
Kitaev model i.e. ∝ c†m+1c

†
m but as it was in a conventional superconductor i.e. ∝ c†m↑c

†
m↓.

• The key ingredients we needed were spin-orbit coupling and an external magnetic �eld.

• In the emerging topological phase the Fermi surface will have only a single fermion species. That is the spectrum of
particle like excitations will have a single left moving and a single right moving state. This is the key similarity between
the investigated model and Kitaev's idealized model.

• There is a growing consensus that this phase was observed in Delft as reported in 2012 and in 2018.

Appendix

We give a short derivation of a proximity induced superconductivity in a simple model system.
Consider the BdG matrix

HBdG =




N︷ ︸︸ ︷


ε1 0
0 ε1

−ε1 0
0 −ε1




Γ̃︷ ︸︸ ︷


t
t
−t

−t







t
t
−t

−t







ε2 0 0 ∆
0 ε2 −∆ 0
0 −∆ −ε2 0
∆ 0 0 −ε2




︸ ︷︷ ︸
S




acting on




c↑
c↓
c†↑
c†↓
b↑
b↓
b†↑
b†↓




. (11)

This model might represent a spinfull qunatum dot next to a single site superconducting island, or making the εi-s momentum
dependent it could also represent an extended system.

In the �rst step we diagonalize the superconductor S → S′ = W †SW this also entails the transformation of the coupling
Γ̃→ Γ̃′ = Γ̃W . The matrix of the transformation is given by

W =




cos (ϕ/2) 0 0 − sin (ϕ/2)
0 cos (ϕ/2) sin (ϕ/2) 0
0 − sin (ϕ/2) cos (ϕ/2) 0

sin (ϕ/2) 0 0 cos (ϕ/2)


 (12)

with cos (ϕ) = ε2√
ε22+∆2

. Next we apply second order quasi-degenerate perturbation theory, assuming ε1√
ε22+∆2

is the small

parameter in the model. We obtain the e�ective BdG describing the N region as

N ′ ≈




ε1 0
0 ε1

−ε1 0
0 −ε1


+

1

ε2
2 + ∆2 − ε2

1




−(ε1 + ε2)t2 t2∆
−(ε1 + ε2)t2 −t2∆
−t2∆ (ε1 + ε2)t2

t2∆ (ε1 + ε2)t2


 (13)

that is the induced gap is ∝ t2

∆ , and it's structure is inherited from the bulk superconductor.
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Aligning the magnetic field with the spin-orbit coupling field kills ZBCPAligning the magnetic field with the spin-orbit coupling field kills ZBCP



Quantized ZBCPQuantized ZBCP

Zhang et al. Nature  Zhang et al. Nature  556556, 74 (2018), 74 (2018)



 ZBCP due to Andreev ZBCP due to Andreev
bound statesbound states


