Topological Insulators 2 (Topological superconductors)
2020 Spring, Lecture 4

Majorana zero modes and robust ground-state degeneracy of the Kitaev chain
(Dated: March 10, 2020)

Last week, we have discussed simple quantum information protocols using a Kitaev double dot,
a minimal model for 1D topological superconductors. In this lecture, we extend the discussion to
larger system sizes and the presence of disorder. We discuss that the ground state of a long Kitaev
chain is almost degenerate, even in the presence of disorder. This protected degeneracy suggests
that these quantum states might be used for reliable storage of quantum information.
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I. A LONG, DISORDERED TOPOLOGICAL KITAEV CHAIN HAS A TWOFOLD DEGENERATE
GROUND STATE

1. Recall (see Lecture 2) that the Kitaev double dot has the following BAG Hamiltonian in the ‘local ordering’ (1e,
1h, 2e, 2h):
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2. From this, it is straightforward to see that the BAG Hamiltonian of a half-infinite Kitaev chain in the topological
fully dimerized limit (v = A =1, g = 0) reads
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0 0/-1-1/0 0
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H=| 1 -1{0 0|-1 -1 , 2)
0 0|1 -1/0 0
0 0|1 -1/0 0

where we used the local ordering again, (1le, 1h, 2e, 2h, 3e, 3h, ...).

3. Just by inspection, it is clear that there is a zero-eigenvalue eigenvector of this H: with
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we have Hip1+ = 0= 0-¢14+. Hence, we call 114 a zero-energy mode or just zero mode for short.
4. Remarks:

(a) 114 is its own particle-hole partner: o, K11, = t¢14. Note that this is possible because it is a zero mode.
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(b) The Fock-space excitation operator corresponding to ¢4 is not fermionic: dl = (¢! + ¢1)/v2. This
operator is self-adjoint: dJ{ 4 = di4. Therefore, certain fermionic anticommutator relations are violated:
{diy,d1+} = {cl{JH dh} =1 # 0, whereas for fermionic operators these would be zero.

(c¢) The BAG eigenvector 1) is an example of Majorana zero modes (MZM). In general, an eigenvector of a
BdG Hamiltonian is called a MZM, if it is a localized zero mode that is its own particle-hole partner.

(d) Robustness. The key observation is as follows. Even if the Hamiltonian is deformed adiabatically away
from the fully dimerized topological limit, the MZM survives: it can get deformed, but its zero-energy
nature, its localized character, and its Majorana property are all robust.

This is true, because as long as the bulk gap is not closed, its energy of the state developing from
cannot move away from zero, since it is its on particle-hole partner, and the built-in particle-hole symmetry
of the BAG description ensures an up-down symmetric BdG spectrum.

Importantly, this argument does not rely on homogeneity. Therefore, it applies also in the presence of
disorder. In contrast to the SSH model, where the zero-mode edge states are robust against chiral-symmetric
disorder, the edge-localized MZMs of the Kitaev chain are protected against any type of disorder as long as
the Fock-space Hamiltonian is quadratic. This robustness is a strong hint that one could ‘hide’ quantum
information against disorder and noise in quantum bits based MZMs.

Henceforth, we will use x to denote the MZM BdG wave function that developes from ;1 as the topological
fully dimerized limit is left behind.

By definition, as long as the deformation of the Hamiltonian is adiabatic, the bulk gap remains open. This
implies that the MZM x must have an exponentially decaying wave function as the function of the distance
from the edge. We’ll denote the corresponding decay length as £.

(e) We note that since the previous argument relies on particle-hole symmetry, therefore it does not speak about
the situation when non-quadratic terms are introduced adiabatically in the Hamiltonian; for example, four-
operator products describing electron-electron interaction. For those cases, we cannot conclude that the
MZM is robust against adiabatic deformations.

5. From the previous considerations on a half-infinite Kitaev chain, we can draw the following conclusions for a
finite Kitaev chain:

(a) MZMs should be robust, as long as the chain is much longer than the decay length of the MZMs on the
two edges, that is, if £ < N.

(b) For a finite chain in the topological fully dimerized limit, there is a MZM 4 at the left edge, and there
is another MZM ¢ _ at the right edge:

0 |- (4)

Note that (—1)1;+ and (—1)Yy_ are also MZMs, but in general, multiplying these with an arbitrary
global phase factor can destroy their Majorana character, by making them different from their particle-
hole partner.

Note an apparent paradox here: in Lecture 1, when discussing the BdG trick, we promised that for an
N-site chain, there will be N positive-energy BdG modes that correspond to fermionic quasiparticles. Now,
apparently, we’ve found 2 MZMs, which are not fermionic. The resolution of the apparent paradox is as
follows. We can define a fermionic quasiparticle from the two MZMs:

dor = % (L + ). (5)

where 7, and g are the non-fermionic excitations associated to the two MZMs x and xg, respectively.
Since both 47, and §r are zero-energy excitations, the above considerations imply that a sufficiently long
topological (not necessarily fully dimerized, can even be disordered) Kitaev chain has a twofold degenerate
ground state: if |G) is the ground state which is annihilated by all fermionic excitation operators, including

the relation dy |G) = 0, then cz;f\/_[ |G) is another state which is orthogonal to |G) but has the same energy

as |G). Note that the two ground states |G) and aﬁw |G) have opposite fermion number parities, one is
even, the other is odd.



II. A NUMERICAL DEMONSTRATION

The robustness of the MZMs is demonstrated by the numerical results attached to these notes. Thanks for Peter
Boross for sharing these results.
Here, we highlight the most important features.

A. Definitions

This is the Mathematica code used to obtain the results

B. BdG Hamiltonian

This is the 20 x 20 BdG Hamiltonian of a Kitaev chain. All matrix elements are independently tuned - this feature
is used later when a disordered chain is considered.

C. Fully dimerized

1. This block shows the results corresponding to the topological fully dimerized limit of the 10-site Kitaev chain.

2. The spectrum on the left shows the bulk states away from zero energy as black points, and the two edge-localized
states at zero energy as the red and blue points.

3. The numerical diagonalizer actually (incidentally) gives the Majorana zero modes as the BAG eigenvectors, and
not some linear combinations of them, which would also be valid zero modes. This is seen in the four subfigures
under ”Majorana basis”. Those are converted by a unitary transformation (see 4th line of code above figures) to

bond-antibonding type combinations, which represent a fermionic excitations and its hermitian conjugate (aka
its particle-hole partner), shown under the label ”fermionic basis”.

D. Finite detuning

1. This shows the case when the system is detuned from the topological fully dimerized limit - the first line of code
defines v =1 and A = 0.5.

2. The bulk states away from zero energy do not any more form a flat ensemble.

3. The blue and red zero modes are still at zero energy, even though the system has been detuned from the
topological limit.

4. The apparent zero modes are actually not exactly zero modes: there is an invisibly small minigap between the

red and blue points. As a consequence, the ambiguity of choosing the zero-mode representation is gone, and the
numerical diagonalizer gives fermionic BdG wave functions.

E. Disorder

1. Here, we’re back to the topological fully dimerized limit, but on top of that, disorder in the chemical potential
is switched on: For each of the 10 sites, the on-site energy is drawn from a Gaussian ensemble, with zero mean
and standard deviation o, = 0.5, as defined in the first line of the code.

2. The spectrum reveals that the zero modes are still there, despite disorder.

3. The BdG wave functions are still localized, although their left-right symmetry is gone, due to disorder.



. The scatter plot serves to further illustrate the robustness of the zero modes, and hence the robustness of the
ground-state degeneracy of the Kitaev wire. Here, disorder is introduced in each of the 3 parameters: hopping
(v 14 dv), pair potential (A — 1+ 6A), and chemical potential (u +— du), and these random contributions
v, A and dpu are generated as independent Gaussian random variables with zero mean and varying standard
deviation o.

. For each value of o, the scatter plot shows the full BAG spectrum (20 energy levels) for one random realization
of the BAG Hamiltonian. A BdG eigenvalue is colored red, if its eigenstate is an edge state, defined as having
more than 75% of its weight on the leftmost and rightmost sites together.

. The scatter plot shows, up to a significant level of disorder o < 0.25, that the red-colored zero eigenvalues are
hardly influenced by disorder: they remain localized (red) and their energy remains very close to zero. This
behavior is in stark contrast to the black bulk states, whose energies get randomized in a pace that is roughly
linear in the disorder strength.

. The last subfigure illustrates that the minigap between the apparently zero-energy modes is an exponentially
decaying function of the chain length N. This figure is made in the topological fully dimerized limit, with
disorder of strength 0.1 on all three parameters. The points denote the average minigaps, averaged over 1000
random realizations. The points show an approximately exponential trend. [The lower (higher) error bars
correspond to first (ninth) decile, respectively - see https://en.wikipedia.org/wiki/Decile.]



Definitions

In[9]:= Unprotect[Conjugate];
Conjugate /: MakeBoxes[Conjugate[x ], StandardForm] := TemplateBox[
{Parenthesize[x, StandardForm, Power]},
"Conjugate",
DisplayFunction » (SuperscriptBox[#1, "+"] &) ]
Protect[Conjugate];

MakeBoxes[Abs[x ], StandardForm] := MakeBoxes@BracketingBar[x]

H[~ ] := DiagonalMatrix[FlatteneTable[{-ui, ui}, {i, N}1, 0, {2N, 2 N}] +
DiagonalMatrix[Flattene@eTable[{0, -Conjugate([A; 5,11}, {1, N}], 1, {2N, 2N}] +
DiagonalMatrix[FlatteneTable[{0, -A; i,1}, {1, N}], -1, {2N, 2N}] +
DiagonalMatrix[FlatteneTable[{v;, .1, -Conjugate[v; i,11}, {1, N}], 2, {2, 2N}] +
DiagonalMatrix[Flatten@Table[{Conjugate[V; i,1], -Vi, .1} {1, N}], -2, {2N, 2N}] +
DiagonalMatrix[FlatteneTable[{A; .1, O}, {1, N}], 3, {2N, 2N}] +
DiagonalMatrix[FlatteneTable[{Conjugate[A; i,1], O}, {1, N}], -3, {2N, 2N}];

HIN , {vi 4y 0v 1}, {Ar 4, 0A }y {ps 5 o }] t=H[N] /. Flatten@Table[{
Vi,is1 > v+ If[ov == 0, 0, RandomVariate[NormalDistribution[0, ov]]],
A; i, > As+If[oA = 0, 0, RandomVariate[NormalDistribution[0, 0A]]],

Ui » us+If[oy == 0, 0, RandomVariate[NormalDistribution[0, ox]1]1}, {i, N}]

PlotOpt = {
PlotRange - All,
Frame -» True,
FrameStyle -» Black,
ImageSize -» 400,
LabelStyle » Directive[FontSize » 14, FontFamily » "Gill Sans", FontColor - Black]

}s

PlotOpts = {
PlotRange -» All,
PlotMarkers -» Automatiic,
Frame -» True,
FrameStyle -» Black,
ImageSize -» 200,
LabelStyle » Directive[FontSize » 14, FontFamily » "Gill Sans", FontColor - Black]

}s




In[17]:=

Out[18]=

BdG Hamiltonian

N =103 Clear[v]; Clear[A]; Clear[u];
Grid[H[N], Frame » {None, None, Flatten[Table[{{2 k-1, 2k}, {21-1, 21}} » True, {k, N}, {1, N}], 1]}]
-l 0 V1,2 A1,2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 Uy |-D01,2" -vio” 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Vi,2" D10 | -2 0 Va3 Ay 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A1,2" -Vi,2 0 L2 Ay 3" -V 3" 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 Va3 -0y .3 - U3 0 V3 4 A3,4 0 0 0 0 0 0 0 0 0 0 0 0
0 0 Ay 3" Va3 0 U3 ~A3,4" -V3,4” 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 Vi a® D34 | —Ua 0 Va5 Ng,5 0 0 0 0 0 0 0 0 0 0
0 0 0 0 A3,4"  —V3,4 0 g ~N4,5" —Va5" 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 Va5 -04,5 - Us 0 Vs, 6 As.6 0 0 0 0 0 0 0 0
0 0 0 0 0 0 Ng,5"  —Va,s 0 Us -A5, 6" -Vs,6" 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 Vs.6© -Dse | —Ue 0 Ve,7 Ne,7 0 0 0 0 0 0
0 0 0 0 0 0 0 0 As 6"  -Vs,6 0 Ue -Ng, 7" —Ve,7" 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 Ve, 7" —De,7 ~ L7 0 V7.8 A7.g 0 0 0 0
0 0 0 0 0 0 0 0 0 0 N, 7" —Ve,7 0 U7 -A7.8" V7,8 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 V7.8 -A7g | —Us 0 Vg9 Ag,9 0 0
0 0 0 0 0 0 0 0 0 0 0 0 A7,8"  -V7,8 0 g -Ng, 9" -Vg,o 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 Vg0 —Ngo | —Ho 0 Vo, 10 Ag 10
0 0 0 0 0 0 0 0 0 0 0 0 0 0 NAg,9" —Vg,9 0 Ug -Ng,10" —Vo,10"
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Vg 106" —Dog,10 | —Hioe 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ng 10" —Vo,10 0 U1e




In[19]:=

Out[23]=

Fully dimerized

N=10;v=1;0v=0;A=1; 0A=0; u=0; ou=0;
Eys = SortBy[Transpose[Chop[Eigensystem[N@H[N, {v, ov}, {A, oA}, {u, ou}1]11], First];
{¢1l, ¥y2} = MinimalBy[Eys, Abs[#[1]] &, 2] [All, 2];

Yl + 1 y2 Yl -1 Y2
Wl = ———— 3 Y2/ = ————
V2 V2

Gr'id[{{"", Text[Style["Majorana basis", FontFamily » "Gill Sans"]], Text[Style["Fermionic basis", FontFamily -» "Gill Sans"]]},
{L'istPlot[{#|I1 53 N-17, {#[N]}, {#[IN+1]}, #[N+2 33 -1]} &@Transpose[{Range[2 N], Eys[All, 1]}], PlotOpt, FrameLabel -» {"#state", "E/Vv"},
PlotStyle » {Black, Red, Blue, Black}], Grid[{{
ListLinePlot[Abs[¢1[1 ;35 -1 ;; 2]]1~2, PlotOpts, FrameLabel » {"usite", "|u}’"}, PlotStyle - Red],
ListLinePlot[Abs[¢1[2 ;3 -1 ;3 2112, PlotOpts, FrameLabel » {"susite", "|v|°"}, PlotStyle » Red]}, {
ListLinePlot[Abs[42[1 ;35 -1 ;; 2]]1 "2, PlotOpts, FrameLabel » {"usite", "|u}’"}, PlotStyle - Blue],
ListLinePlot[Abs[42[[2 ;35 -1 ;; 2]]~2, PlotOpts, FrameLabel » {"usite", "|v}|’"}, PlotStyle » Blue]}}],

Grid[{{

ListLinePlot[Abs[y1/[1 ;; -1 ;; 2]] 2, PlotOpt,, FrameLabel -» {"u#site", "|u|2"}, PlotStyle -» Black

Hstate

1>
ListLinePlot[Abs[¢41/[2 ;5 -1 ;3 2]] 2, PlotOpts, FrameLabel » {"usite", "{v|°"}, PlotStyle » Black]}, {
ListLinePlot[Abs[42/[1 ;; -1 ;3 2]] 2, PlotOpts, FrameLabel » {"usite", "ju|’"}, PlotStyle » Black],
ListLinePlot[Abs[42/[2 ;5 -1 ;3 2]] 2, PlotOpts, FrameLabel » {"usite", "|{v|’"}, PlotStyle -» Black]}}]}}]
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Finite detuning

In[24]:= N=10;v=1;0v=0; A=0.5;00A=0; u=0; ou=0;
Eys = SortBy[Transpose[Chop[Eigensystem[N@H[N, {v, ov}, {A, oA}, {u, ou}1]11], First];
{¢1, ¥2} = MinimalBy[Eys, Abs[#[1]] &, 2] [All, 2];

Grid[{{"", Text[Style["Fermionic basis", FontFamily -» "Gill Sans"]]},
{L'istPlot[{#[[l 3y N-17, {#[N]}, {#[IN+1]}, #[N+2 35 -1]1} &@Transpose[{Range[2 N], Eys[All, 1]}], PlotOpt, FrameLabel -» {"#state", "E/Vv"},
PlotStyle » {Black, Red, Blue, Black}], Grid[{{
ListLinePlot[Abs[41[1 ;3 -1 ;; 2]]*2, PlotOpts, FrameLabel » {"u#site", "|u}’"}, PlotStyle - Red],
ListLinePlot[Abs[41[2 ;35 -1 ;; 2]]1 "2, PlotOpts, FrameLabel » {"usite", "|v|’"}, PlotStyle - Red]}, {
ListLinePlot[Abs[42[1 ;35 -1 ;; 2]]1~2, PlotOpts, FrameLabel » {"usite", "|u}’"}, PlotStyle - Blue],
ListLinePlot[Abs[¢2[2 ;3 -1 ;3 211 *2, PlotOpts, FrameLabel » {"usite", "{v|°"}, PlotStyle » Blue]}}]}}]
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Disorder

In[28]:= N=10;v=1;0v=0;A=1;0A=0; u=0; ou=0.5;
Eys = SortBy[Transpose[Chop[Eigensystem[N@H[N, {v, ov}, {A, oA}, {u, ou}]1]11], First];
{¢1, ¢y2} = MinimalBy[Eys, Abs[#[1]] &, 2] [All, 21;
Grid[{{"", Text[Style["Fermionic basis", FontFamily -» "Gill Sans"]]},
{L'istPlot[{#[[l 5y N-1T, {#[N]}, {#[N+1]}, #[N+2 ;5 -1]} &@Transpose[{Range[2N], Eys[All, 1]}], PlotOpt, FrameLabel » {"#state", "E/Vv"},
PlotStyle » {Black, Red, Blue, Black}], Grid[{{
ListLinePlot[Abs[1[1 ;35 -1 ;; 2]]1 "2, PlotOpts, FrameLabel » {"usite", "u}’"}, PlotStyle - Red],
ListLinePlot[Abs[1[2 ;35 -1 ;; 2]]1 "2, PlotOpts, FrameLabel » {"usite", "|v|’"}, PlotStyle - Red]}, {
ListLinePlot[Abs[42[1 ;35 -1 ;; 2]]1~2, PlotOpts, FrameLabel » {"usite", "|u}’"}, PlotStyle - Blue],
ListLinePlot[Abs[¢2[[2 ;5 -1 ;; 2]]1 2, PlotOpts, FrameLabel » {"usite", "|v|’"}, PlotStyle -» Blue]}}]}}]
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—————— 0.25F 025 i
o o °] 0.20¢ 0.20}
2t o o o 4 L 0.15} L 0.15}
_ « * 1 2 o.10} Z 0.10¢
I ] 0.05¢ 0.05¢
' i 0.00¢t 0.00E
2 o o
Out[31]= m 0 N
ik ; 0.25F 0.25F
0.20¢ 0.20¢
: o o 1 °_ 0.15} < 0.15¢
-2F ¢ o o 1 2 o.10} Z 0.10
« *° 0.05¢ 0.05¢
Hstate
In[32]:= N=10;v=1;A=1; u=0;
data = Flatten[Table[Transpose[Prepend[Chop[Eigensystem[N@H[N, {v, o}, {A, 0}, {u, 0}]1]], ConstantArray[oc, 2N]]], {0, O, 1, 0.005}], 1];
data = GatherBy[data, Total[Abs[#[-1, {1, 2, 2N-1, 2N}]J] 2] >0.75&]};
ListPlot[data[All, All, {1, 2}], PlotStyle » {Black, Red}, PlotOpt, FrameLabel » {"o/v", "E/Vv"}, PlotMarkers -» {Automatic, 2.9}]
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In[35]:= V=1;0v=0.1;A=1;0A=0.1; u=0; ou=0.1; Nr = 10003
data = Table[{w, Table[Min[Abs[Eigenvalues[H[N, {v, ov}, {A, oA}, {u, ou}]1]11]1, Nrl}, {N, 2, 10}];
ListLogPlot[Map[{#[1], Around[Mean[#[2]], {Mean[#[2]] - Quantile[#[2], ©0.1], Quantile[#[2], 0.9] - Mean[#[2]]1}]1} &, data], PlotRange -» Automatic,
PlotOpt, Fr'am.eLa.be'L —>'{"I'\I",. "mi n'.iga'p/\./"} R P"Lo‘FSt.y'Le - Black]
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