
Topological Insulators 2 (Topological superconductors)
2020 Spring, Lecture 3

Simple quantum information protocols with the Kitaev double dot (v1)
(Dated: March 4, 2020)

In previous lectures, we have introduced the Bogoliubov-de Gennes method, and we used that
to determine the quasiparticle excitation spectrum of a one-dimensional p-type superconductor,
modelled by an infinite Kitaev chain. Here, we consider a finite, two-site Kitaev chain, which we call
‘Kitaev double dot’ (KDD), and discuss how to define a controllable quantum bit in such a system,
as well as how to carry out certain simple quantum information protocols – initialization, single-
qubit control, readout, dephasing-time measurement – with that qubit. The concept of ‘Majorana
zero modes’ and the ‘topological protection’ of qubits based on 1D topological superconductors will
be discussed in subsequent lectures.

CONTRIBUTORS

Andras Palyi (writeup), Janos Asboth, Peter Boross, Laszlo Oroszlany, Gabor Szechenyi (discussions).

I. THE TOPOLOGICAL FULLY DIMERIZED KITAEV DOUBLE DOT HAS A TWOFOLD
DEGENERATE GROUND STATE

1. The Kitaev double dot (KDD), that is, a two-site Kitaev chain, is shown in Fig. 1a. In this figure, the solid line
depicts the hopping v, whereas the dotted line depicts the (p-wave) pair potential ∆; recall that the latter also
connects nearest-neighbour sites. The Hamiltonian of the system is:

H = ε1c
†
1c1 + ε2c

†
2c2 + v(c†1c2 + c†2c1) + ∆(c†1c

†
2 + c2c1). (1)

ε1 and ε2 are the on-site energies. Throughout the course we use µ and ε interchangeably, with the identification
ε ≡ −µ. Assume v > 0 and ∆ > 0 for simplicity. The Hamiltonian matrix in the 00, 01, 10, 11 ‘occupation
number basis’ reads

H =




0 0 0 ∆
0 ε2 v 0
0 v ε1 0
∆ 0 0 ε1 + ε2


 (2)

2. Note that the even and odd sectors in H are decoupled (which is a generic feature of free fermionic Hamiltonians),
and thereby the eigenvalues and eigenvectors can be found analytically by diagonalizing two 2x2 matrices.

3. We assume that we can realize this Hamiltonian, and we can control its parameters. We will also discuss what
happens when these parameters have some uncontrolled components (disorder/noise).

4. The parameter set ε1 = ε2 = 0, ∆ = v is called the ‘topological fully dimerized’ case. The energy values of
the KDD in this case are E0 = E1 = −v, E2 = E3 = v. That is, the ground state is twofold degenerate. The
eigenvectors and corresponding energy eigenstates have the form:

ψ0 = (1, 0, 0,−1)/
√

2 ≡ |e〉 =
1√
2

(|00〉 − |11〉) (3a)

ψ1 = (0, 1,−1, 0)/
√

2 ≡ |o〉 =
1√
2

(|10〉 − |01〉) (3b)

ψ2 = (1, 0, 0, 1)/
√

2 ≡ |e′〉 =
1√
2

(|00〉+ |11〉) (3c)

ψ3 = (0, 1, 1, 0)/
√

2 ≡ |o′〉 =
1√
2

(|10〉+ |01〉) (3d)
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kitaev wire: twofold degenerate ground state
initialization? readout? a la gharavi; minimal scheme in the absence of noise; e↵ect of noise at least discussed (or

even simulated)
(can you apply the chinese scheme for parity readout?)
even/odd qubit does not work; starting from |0, ei, one can get to ↵ |0, ei + � |1, oi, but that’s not very useful
q info transfer from a charge qubit to two wires following gharavi; minimal scheme; e↵ect of noise: disc/calc
(can you use the chinese scheme? is that more resilient to noise?)
braiding: demonstration via 6 sites, szecska: pi/4 gate in even/odd basis. what is the demonstration? Pedersen et

al. paper for process fidelity, approaching 1 for long times? for a 4-majorana qubit, the two di↵erent braidings (12
and 23) correspond to single-qubit gates ??? and ??? in the ee, oo basis.

do i have a full cli↵ord with majoranas+braiding?
Resources: Leijnse review Leijnse Alicea review Sato and Ando review
In the last lectures, we have determined the quasiparticle excitation spectrum of a one-dimensional p-type super-

conductor, modelled by an infinite Kitaev chain. Here, we consider a finite Kitaev chain, mostly a two-site wire we call
‘Kitaev double dot’ (KDD), and discuss how to define a controllable quantum bit in such a system, as well as how to
carry out certain simple quantum information protocols with that qubit. The concept of ‘Majorana zero modes’ and
the ‘topological protection’ of qubits based on 1D topological superconductors will be discussed in the next lecture.
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(c) ‘Qubit dephasing’ happens, e.g., if the qubit is subject to a Hamiltonian H(t) = ⇠(t)�z with ⇠(t) being a

noise, and the time evolution starts from a superposition of the two basis states, e.g., (|"i + |#i)/
p

2. In
that case, the Bloch vector of the qubit becomes randomized along the equator, meaning that the noise-
averaged Bloch vector approaches the origin. The characteristic time scale of this process is often denoted
as T ⇤

2 , and is called inhomogeneous dephasing time. In the first lecture, we have seen the example of a
charge qubit with hopping noise, with noise strength �, where the inhomogeneous dephasing time was
T ⇤

2,c = ~/�. Similarly, a charge qubit with independent noise on the on-site energies with noise strength �,
in the absence of hopping noise, has the same inhomogeneous dephasing time T ⇤

2,c = ~/�.

3. One could imagine using the even and odd ground states of the topological fully dimerized KDD as a qubit.
As we argue below, one cannot prepare a superposition though; hence we will call this two-level system the
‘fermion-parity pseudoqubit’, FPPQ.

(a) It is not possible to prepare a superposition of |ei and |oi. Argument 1: As long as we consider the KDD
itself, the even and odd sectors are decoupled. Argument 2: We could allow for an environment that helps us
preparing a superposition of the two KDD ground states. In that case, the fermion parity of the full system
(KDD+environment) has a well-defined fermion parity, e.g., even, at the beginning of the preparation
procedure. At the end of the procedure, the fermion parity of the full system should still be even. To
prepare the desired superposition, one aims at a state with the structure 1p

2
(|ei + |oi)⌦(↵ |eienv+� |oienv).

Clearly, this is not an even state of the full system for any value of ↵ and �, so it cannot be prepared.

(b) If the KDD is isolated electronically (no tunneling) from its environment, then the its fermion parity
number is conserved. This means that this pseudoqubit shows no relaxation. Electrons tunneling between
the KDD and its environment, or quasiparticles created, e.g., thermally, can lead to relaxation though;
sometimes the related processes are called ‘quasiparticle poisoning’.

(c) The FPPQ enjoys a certain degree of protection against dephasing due to on-site disorder, if we compare
the corresponding inhomogeneous dephasing time to that of a charge qubit experiencing the same amount
of on-site disorder. Following the arguments above, the minigap in the presence of on-site disorder of

strength � ⌧ v scales as Egap ⇠ �2/v. The e↵ective Hamiltonian of the FPPQ is H =
Egap

2 �z, which
implies T ⇤

2 ⇠ ~/Egap ⇠ (v/�)T ⇤
2,c � T ⇤

2,c, i.e., the dephasing time is indeed prolonged with respect to
that of the charge qubit. Note that the FPPQ in the KDD is not protected against hopping disorder or
pair-potential disorder.

IV. THE FPPQ CAN BE READ OUT USING PARITY-TO-CHARGE CONVERSION

1. The task is the following: we know that the KDD is either in |ei or in |oi, and would like to find out which one.
A general strategy is to convert the parity information to charge information first, and then measure the charge
information. An example protocol realizing this is depicted in Fig. 1c. Here, site 3 is an auxiliary site (quantum
dot) that is used for the charge measurement, and the orange lines denote time-dependent hopping amplitudes
u(t).

2. A remark (thanks to Peter Makk): For a KDD, the fermion parity can be read out without parity-to-charge
conversion: in fact, by applying a strong charge measurement on both sites we obtain the total charge and
thereby the fermion parity. How does that opportunity change if we take a long chain? Is it enough to measure
the charge at the two end sites of the chain? No. By inspecting the ground-state wave functions for longer
chains, we conclude that the fermion parity is revealed only if all local charges are measured.

3. The 2x degeneracy of the GS in the fully dimerized limit is a bit protected: a small on-site energy disorder
✏1, ✏2 ⌧ v splits the degeneracy only in second order, gap ⇠ ✏2/v. (Prove this. Plot the minigap E1 � E0

as function of ✏1 and ✏2. Plot the spectrum against ✏1 = ✏2.) It is not protected against ”hopping noise” or
”pair-potential noise”: if � 6= v, then the degeneracy is split in first order in the deviation.

4. Introduce ‘relaxation’ and ‘dephasing’ via the ‘qubit basis’ and classical longitudinal and transverse noise.
Relaxation is possible only via quasiparticle poisoning. Dephasing from on-site energy noise is suppressed.
Dephasing from hopping noise or pairpotential noise is not suppressed.

5. Can we read out the FPPQ by charge measurement? Not in the fully dimerized limit: he|n1|ei = he|n2|ei =
ho|n1|oi = ho|n2|oi = 1/2. But we can read it out if we adiabatically detune from full dimerization, e.g., set
✏1 = ✏2 = v. Quote numbers from mathematica notebook. This is called parity-to-charge conversion. (Note
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Dephasing from hopping noise or pairpotential noise is not suppressed.

5. Can we read out the FPPQ by charge measurement? Not in the fully dimerized limit: he|n1|ei = he|n2|ei =
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(c) ‘Qubit dephasing’ happens, e.g., if the qubit is subject to a Hamiltonian H(t) = ⇠(t)�z with ⇠(t) being a

noise, and the time evolution starts from a superposition of the two basis states, e.g., (|"i + |#i)/
p

2. In
that case, the Bloch vector of the qubit becomes randomized along the equator, meaning that the noise-
averaged Bloch vector approaches the origin. The characteristic time scale of this process is often denoted
as T ⇤

2 , and is called inhomogeneous dephasing time. In the first lecture, we have seen the example of a
charge qubit with hopping noise, with noise strength �, where the inhomogeneous dephasing time was
T ⇤

2,c = ~/�. Similarly, a charge qubit with independent noise on the on-site energies with noise strength �,
in the absence of hopping noise, has the same inhomogeneous dephasing time T ⇤

2,c = ~/�.

3. One could imagine using the even and odd ground states of the topological fully dimerized KDD as a qubit.
As we argue below, one cannot prepare a superposition though; hence we will call this two-level system the
‘fermion-parity pseudoqubit’, FPPQ.

(a) It is not possible to prepare a superposition of |ei and |oi. Argument 1: As long as we consider the KDD
itself, the even and odd sectors are decoupled. Argument 2: We could allow for an environment that helps us
preparing a superposition of the two KDD ground states. In that case, the fermion parity of the full system
(KDD+environment) has a well-defined fermion parity, e.g., even, at the beginning of the preparation
procedure. At the end of the procedure, the fermion parity of the full system should still be even. To
prepare the desired superposition, one aims at a state with the structure 1p

2
(|ei + |oi)⌦(↵ |eienv+� |oienv).

Clearly, this is not an even state of the full system for any value of ↵ and �, so it cannot be prepared.

(b) If the KDD is isolated electronically (no tunneling) from its environment, then the its fermion parity
number is conserved. This means that this pseudoqubit shows no relaxation. Electrons tunneling between
the KDD and its environment, or quasiparticles created, e.g., thermally, can lead to relaxation though;
sometimes the related processes are called ‘quasiparticle poisoning’.

(c) The FPPQ enjoys a certain degree of protection against dephasing due to on-site disorder, if we compare
the corresponding inhomogeneous dephasing time to that of a charge qubit experiencing the same amount
of on-site disorder. Following the arguments above, the minigap in the presence of on-site disorder of

strength � ⌧ v scales as Egap ⇠ �2/v. The e↵ective Hamiltonian of the FPPQ is H =
Egap

2 �z, which
implies T ⇤

2 ⇠ ~/Egap ⇠ (v/�)T ⇤
2,c � T ⇤

2,c, i.e., the dephasing time is indeed prolonged with respect to
that of the charge qubit. Note that the FPPQ in the KDD is not protected against hopping disorder or
pair-potential disorder.

IV. THE FPPQ CAN BE READ OUT USING PARITY-TO-CHARGE CONVERSION

1. The task is the following: we know that the KDD is either in |ei or in |oi, and would like to find out which one.
A general strategy is to convert the parity information to charge information first, and then measure the charge
information. An example protocol realizing this is depicted in Fig. 1c. Here, site 3 is an auxiliary site (quantum
dot) that is used for the charge measurement, and the orange lines denote time-dependent hopping amplitudes
u(t).

2. A remark (thanks to Peter Makk): For a KDD, the fermion parity can be read out without parity-to-charge
conversion: in fact, by applying a strong charge measurement on both sites we obtain the total charge and
thereby the fermion parity. How does that opportunity change if we take a long chain? Is it enough to measure
the charge at the two end sites of the chain? No. By inspecting the ground-state wave functions for longer
chains, we conclude that the fermion parity is revealed only if all local charges are measured.

3. The 2x degeneracy of the GS in the fully dimerized limit is a bit protected: a small on-site energy disorder
✏1, ✏2 ⌧ v splits the degeneracy only in second order, gap ⇠ ✏2/v. (Prove this. Plot the minigap E1 � E0

as function of ✏1 and ✏2. Plot the spectrum against ✏1 = ✏2.) It is not protected against ”hopping noise” or
”pair-potential noise”: if � �= v, then the degeneracy is split in first order in the deviation.

4. Introduce ‘relaxation’ and ‘dephasing’ via the ‘qubit basis’ and classical longitudinal and transverse noise.
Relaxation is possible only via quasiparticle poisoning. Dephasing from on-site energy noise is suppressed.
Dephasing from hopping noise or pairpotential noise is not suppressed.

5. Can we read out the FPPQ by charge measurement? Not in the fully dimerized limit: he|n1|ei = he|n2|ei =
ho|n1|oi = ho|n2|oi = 1/2. But we can read it out if we adiabatically detune from full dimerization, e.g., set
✏1 = ✏2 = v. Quote numbers from mathematica notebook. This is called parity-to-charge conversion. (Note
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FIG. 1. Simple quantum information protocols with the Kitaev double dot. (a) The Kitaev double dot, with on-site
energies ✏1 and ✏2, hopping v, and pair potential �. (b) Energy spectrum of the Kitaev double dot, for � = v and ✏1 = ✏2 = ✏.
(c) Setup for parity-to-charge conversion and parity readout of the Kitaev double dot (sites 1 and 2) using an auxiliary site
(3). (d) Two Kitaev double dots to form a Majorana qubit. (e) Setup for non-protected x-rotation of the Majorana qubit. (f)
Schematics of a Ramsey experiment of a qubit, aiming to measure the inhomogeneous dephasing time T ⇤

2 .
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⌧wait

2. The parameter set ✏1 = ✏2 = 0, � = v will be called the ‘topological fully dimerized’ case, for reasons to become
clear later. The energy values of the KDD in this case are E0 = E1 = �v, E2 = E3 = v. That is, the ground
state is twofold degenerate. The eigenvectors and corresponding energy eigenstates have the form:

 0 = (1, 0, 0,�1)/
p

2 ⌘ |ei =
1p
2

(|00i � |11i) (3)

 1 = (0, 1,�1, 0)/
p

2 ⌘ |oi =
1p
2

(|10i � |01i) (4)

 2 = (1, 0, 0, 1)/
p

2 ⌘ |e0i =
1p
2

(|00i + |11i) (5)

 3 = (0, 1, 1, 0)/
p

2 ⌘ |o0i =
1p
2

(|10i + |01i) (6)

II. FINITE ON-SITE ENERGY OPENS A MINIGAP

1. Starting from the topological fully dimerized limit, switch on identical on-site energies, ✏1 = ✏2 = ✏. The
Hamiltonian is still diagonalized exactly; the spectrum as a function of the on-site energy is shown in Fig. 1b.
The finite on-site energy ✏ splits the ground state degeneracy, i.e., creates a minigap, and the dependence of the
minigap on ✏ is quadratic: Egap = o(✏2/v). One can consider on-site disorder: independent random but small
values of the on-site energies, ✏1, ✏2 ⌧ v. Simple perturbation theory shows that such a disorder does open a
minigap, which is also quadratic: Egap = o(✏21/v) + o(✏1✏2/v) + o(✏22/v). However, it is also easy to see that in
the presence of weak hopping disorder or weak pair-potential disorder, the minigap is linear in the disorder.

2. Exercise: Express the exact energy eigenvalues and energy eigenstates of H away from the dimerized limit, for
arbitrary values of the 4 parameters.
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(c) ‘Qubit dephasing’ happens, e.g., if the qubit is subject to a Hamiltonian H(t) = ⇠(t)�z with ⇠(t) being a

noise, and the time evolution starts from a superposition of the two basis states, e.g., (|"i + |#i)/
p

2. In
that case, the Bloch vector of the qubit becomes randomized along the equator, meaning that the noise-
averaged Bloch vector approaches the origin. The characteristic time scale of this process is often denoted
as T ⇤

2 , and is called inhomogeneous dephasing time. In the first lecture, we have seen the example of a
charge qubit with hopping noise, with noise strength �, where the inhomogeneous dephasing time was
T ⇤

2,c = ~/�. Similarly, a charge qubit with independent noise on the on-site energies with noise strength �,
in the absence of hopping noise, has the same inhomogeneous dephasing time T ⇤

2,c = ~/�.

3. One could imagine using the even and odd ground states of the topological fully dimerized KDD as a qubit.
As we argue below, one cannot prepare a superposition though; hence we will call this two-level system the
‘fermion-parity pseudoqubit’, FPPQ.

(a) It is not possible to prepare a superposition of |ei and |oi. Argument 1: As long as we consider the KDD
itself, the even and odd sectors are decoupled. Argument 2: We could allow for an environment that helps us
preparing a superposition of the two KDD ground states. In that case, the fermion parity of the full system
(KDD+environment) has a well-defined fermion parity, e.g., even, at the beginning of the preparation
procedure. At the end of the procedure, the fermion parity of the full system should still be even. To
prepare the desired superposition, one aims at a state with the structure 1p

2
(|ei + |oi)⌦(↵ |eienv+� |oienv).

Clearly, this is not an even state of the full system for any value of ↵ and �, so it cannot be prepared.

(b) If the KDD is isolated electronically (no tunneling) from its environment, then the its fermion parity
number is conserved. This means that this pseudoqubit shows no relaxation. Electrons tunneling between
the KDD and its environment, or quasiparticles created, e.g., thermally, can lead to relaxation though;
sometimes the related processes are called ‘quasiparticle poisoning’.

(c) The FPPQ enjoys a certain degree of protection against dephasing due to on-site disorder, if we compare
the corresponding inhomogeneous dephasing time to that of a charge qubit experiencing the same amount
of on-site disorder. Following the arguments above, the minigap in the presence of on-site disorder of

strength � ⌧ v scales as Egap ⇠ �2/v. The e↵ective Hamiltonian of the FPPQ is H =
Egap

2 �z, which
implies T ⇤

2 ⇠ ~/Egap ⇠ (v/�)T ⇤
2,c � T ⇤

2,c, i.e., the dephasing time is indeed prolonged with respect to
that of the charge qubit. Note that the FPPQ in the KDD is not protected against hopping disorder or
pair-potential disorder.

IV. THE FPPQ CAN BE READ OUT USING PARITY-TO-CHARGE CONVERSION

1. The task is the following: we know that the KDD is either in |ei or in |oi, and would like to find out which one.
A general strategy is to convert the parity information to charge information first, and then measure the charge
information. An example protocol realizing this is depicted in Fig. 1c. Here, site 3 is an auxiliary site (quantum
dot) that is used for the charge measurement, and the orange lines denote time-dependent hopping amplitudes
u(t).

2. A remark (thanks to Peter Makk): For a KDD, the fermion parity can be read out without parity-to-charge
conversion: in fact, by applying a strong charge measurement on both sites we obtain the total charge and
thereby the fermion parity. How does that opportunity change if we take a long chain? Is it enough to measure
the charge at the two end sites of the chain? No. By inspecting the ground-state wave functions for longer
chains, we conclude that the fermion parity is revealed only if all local charges are measured.

3. The 2x degeneracy of the GS in the fully dimerized limit is a bit protected: a small on-site energy disorder
✏1, ✏2 ⌧ v splits the degeneracy only in second order, gap ⇠ ✏2/v. (Prove this. Plot the minigap E1 � E0

as function of ✏1 and ✏2. Plot the spectrum against ✏1 = ✏2.) It is not protected against ”hopping noise” or
”pair-potential noise”: if � �= v, then the degeneracy is split in first order in the deviation.

4. Introduce ‘relaxation’ and ‘dephasing’ via the ‘qubit basis’ and classical longitudinal and transverse noise.
Relaxation is possible only via quasiparticle poisoning. Dephasing from on-site energy noise is suppressed.
Dephasing from hopping noise or pairpotential noise is not suppressed.

5. Can we read out the FPPQ by charge measurement? Not in the fully dimerized limit: he|n1|ei = he|n2|ei =
ho|n1|oi = ho|n2|oi = 1/2. But we can read it out if we adiabatically detune from full dimerization, e.g., set
✏1 = ✏2 = v. Quote numbers from mathematica notebook. This is called parity-to-charge conversion. (Note
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FIG. 1. Simple quantum information protocols with the Kitaev double dot. (a) The Kitaev double dot, with on-site
energies ✏1 and ✏2, hopping v, and pair potential �. (b) Energy spectrum of the Kitaev double dot, for � = v and ✏1 = ✏2 = ✏.
(c) Setup for parity-to-charge conversion and parity readout of the Kitaev double dot (sites 1 and 2) using an auxiliary site
(3). (d) Two Kitaev double dots to form a Majorana qubit. (e) Setup for non-protected x-rotation of the Majorana qubit. (f)
Schematics of a Ramsey experiment of a qubit, aiming to measure the inhomogeneous dephasing time T ⇤
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II. FINITE ON-SITE ENERGY OPENS A MINIGAP
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(c) ‘Qubit dephasing’ happens, e.g., if the qubit is subject to a Hamiltonian H(t) = ⇠(t)�z with ⇠(t) being a

noise, and the time evolution starts from a superposition of the two basis states, e.g., (|"i + |#i)/
p

2. In
that case, the Bloch vector of the qubit becomes randomized along the equator, meaning that the noise-
averaged Bloch vector approaches the origin. The characteristic time scale of this process is often denoted
as T ⇤

2 , and is called inhomogeneous dephasing time. In the first lecture, we have seen the example of a
charge qubit with hopping noise, with noise strength �, where the inhomogeneous dephasing time was
T ⇤

2,c = ~/�. Similarly, a charge qubit with independent noise on the on-site energies with noise strength �,
in the absence of hopping noise, has the same inhomogeneous dephasing time T ⇤

2,c = ~/�.

3. One could imagine using the even and odd ground states of the topological fully dimerized KDD as a qubit.
As we argue below, one cannot prepare a superposition though; hence we will call this two-level system the
‘fermion-parity pseudoqubit’, FPPQ.

(a) It is not possible to prepare a superposition of |ei and |oi. Argument 1: As long as we consider the KDD
itself, the even and odd sectors are decoupled. Argument 2: We could allow for an environment that helps us
preparing a superposition of the two KDD ground states. In that case, the fermion parity of the full system
(KDD+environment) has a well-defined fermion parity, e.g., even, at the beginning of the preparation
procedure. At the end of the procedure, the fermion parity of the full system should still be even. To
prepare the desired superposition, one aims at a state with the structure 1p

2
(|ei + |oi)⌦(↵ |eienv+� |oienv).

Clearly, this is not an even state of the full system for any value of ↵ and �, so it cannot be prepared.

(b) If the KDD is isolated electronically (no tunneling) from its environment, then the its fermion parity
number is conserved. This means that this pseudoqubit shows no relaxation. Electrons tunneling between
the KDD and its environment, or quasiparticles created, e.g., thermally, can lead to relaxation though;
sometimes the related processes are called ‘quasiparticle poisoning’.

(c) The FPPQ enjoys a certain degree of protection against dephasing due to on-site disorder, if we compare
the corresponding inhomogeneous dephasing time to that of a charge qubit experiencing the same amount
of on-site disorder. Following the arguments above, the minigap in the presence of on-site disorder of

strength � ⌧ v scales as Egap ⇠ �2/v. The e↵ective Hamiltonian of the FPPQ is H =
Egap

2 �z, which
implies T ⇤

2 ⇠ ~/Egap ⇠ (v/�)T ⇤
2,c � T ⇤

2,c, i.e., the dephasing time is indeed prolonged with respect to
that of the charge qubit. Note that the FPPQ in the KDD is not protected against hopping disorder or
pair-potential disorder.

IV. THE FPPQ CAN BE READ OUT USING PARITY-TO-CHARGE CONVERSION

1. The task is the following: we know that the KDD is either in |ei or in |oi, and would like to find out which one.
A general strategy is to convert the parity information to charge information first, and then measure the charge
information. An example protocol realizing this is depicted in Fig. 1c. Here, site 3 is an auxiliary site (quantum
dot) that is used for the charge measurement, and the orange lines denote time-dependent hopping amplitudes
u(t).

2. A remark (thanks to Peter Makk): For a KDD, the fermion parity can be read out without parity-to-charge
conversion: in fact, by applying a strong charge measurement on both sites we obtain the total charge and
thereby the fermion parity. How does that opportunity change if we take a long chain? Is it enough to measure
the charge at the two end sites of the chain? No. By inspecting the ground-state wave functions for longer
chains, we conclude that the fermion parity is revealed only if all local charges are measured.

3. The 2x degeneracy of the GS in the fully dimerized limit is a bit protected: a small on-site energy disorder
✏1, ✏2 ⌧ v splits the degeneracy only in second order, gap ⇠ ✏2/v. (Prove this. Plot the minigap E1 � E0

as function of ✏1 and ✏2. Plot the spectrum against ✏1 = ✏2.) It is not protected against ”hopping noise” or
”pair-potential noise”: if � �= v, then the degeneracy is split in first order in the deviation.

4. Introduce ‘relaxation’ and ‘dephasing’ via the ‘qubit basis’ and classical longitudinal and transverse noise.
Relaxation is possible only via quasiparticle poisoning. Dephasing from on-site energy noise is suppressed.
Dephasing from hopping noise or pairpotential noise is not suppressed.

5. Can we read out the FPPQ by charge measurement? Not in the fully dimerized limit: he|n1|ei = he|n2|ei =
ho|n1|oi = ho|n2|oi = 1/2. But we can read it out if we adiabatically detune from full dimerization, e.g., set
✏1 = ✏2 = v. Quote numbers from mathematica notebook. This is called parity-to-charge conversion. (Note
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FIG. 1. Simple quantum information protocols with the Kitaev double dot. (a) The Kitaev double dot, with on-site
energies ✏1 and ✏2, hopping v, and pair potential �. (b) Energy spectrum of the Kitaev double dot, for � = v and ✏1 = ✏2 = ✏.
(c) Setup for parity-to-charge conversion and parity readout of the Kitaev double dot (sites 1 and 2) using an auxiliary site
(3). (d) Two Kitaev double dots to form a Majorana qubit. (e) Setup for non-protected x-rotation of the Majorana qubit. (f)
Schematics of a Ramsey experiment of a qubit, aiming to measure the inhomogeneous dephasing time T ⇤

2 .

⇡x/2

⌧wait

2. The parameter set ✏1 = ✏2 = 0, � = v will be called the ‘topological fully dimerized’ case, for reasons to become
clear later. The energy values of the KDD in this case are E0 = E1 = �v, E2 = E3 = v. That is, the ground
state is twofold degenerate. The eigenvectors and corresponding energy eigenstates have the form:

 0 = (1, 0, 0,�1)/
p

2 ⌘ |ei =
1p
2

(|00i � |11i) (3)

 1 = (0, 1,�1, 0)/
p

2 ⌘ |oi =
1p
2

(|10i � |01i) (4)

 2 = (1, 0, 0, 1)/
p

2 ⌘ |e0i =
1p
2

(|00i + |11i) (5)

 3 = (0, 1, 1, 0)/
p

2 ⌘ |o0i =
1p
2

(|10i + |01i) (6)

II. FINITE ON-SITE ENERGY OPENS A MINIGAP

1. Starting from the topological fully dimerized limit, switch on identical on-site energies, ✏1 = ✏2 = ✏. The
Hamiltonian is still diagonalized exactly; the spectrum as a function of the on-site energy is shown in Fig. 1b.
The finite on-site energy ✏ splits the ground state degeneracy, i.e., creates a minigap, and the dependence of the
minigap on ✏ is quadratic: Egap = o(✏2/v). One can consider on-site disorder: independent random but small
values of the on-site energies, ✏1, ✏2 ⌧ v. Simple perturbation theory shows that such a disorder does open a
minigap, which is also quadratic: Egap = o(✏21/v) + o(✏1✏2/v) + o(✏22/v). However, it is also easy to see that in
the presence of weak hopping disorder or weak pair-potential disorder, the minigap is linear in the disorder.

2. Exercise: Express the exact energy eigenvalues and energy eigenstates of H away from the dimerized limit, for
arbitrary values of the 4 parameters.

FIG. 1. Simple quantum information protocols with the Kitaev double dot. (a) The Kitaev double dot, with on-site
energies ε1 and ε2, hopping v, and pair potential ∆. (b) Energy spectrum of the Kitaev double dot, for ∆ = v and ε1 = ε2 = ε.
(c) Setup for parity-to-charge conversion and parity readout of the Kitaev double dot (sites 1 and 2) using an auxiliary site
(3). (d) Two Kitaev double dots to form a Majorana qubit. (e) Setup for non-protected x-rotation of the Majorana qubit. (f)
Schematics of a Ramsey experiment of a qubit. It aims to determine the noise-induced inhomogeneous dephasing time T ∗

2 via
measuring the final-state polarization 〈σz〉(τwait).

5. Finite on-site energy opens a minigap. Starting from the topological fully dimerized limit, switch on identical
on-site energies, ε1 = ε2 = ε. The Hamiltonian is still diagonalized exactly; the spectrum as a function of the
on-site energy is shown in Fig. 1b. The finite on-site energy ε splits the ground state degeneracy, i.e., creates
a minigap, and the dependence of the minigap on ε is quadratic: Egap = o(ε2/v). One can consider on-site
disorder: independent random but small values of the on-site energies, ε1, ε2 � v. Simple perturbation theory
shows that such a disorder does open a minigap, which is also quadratic: Egap = o(ε21/v) + o(ε1ε2/v) + o(ε22/v).
However, it is also easy to see that in the presence of weak hopping disorder (v 7→ v+ δv) or weak pair-potential
disorder (∆ 7→ ∆ + δ∆), the minigap is linear in the disorder: Egap = o(δv) + o(δ∆). .

6. Exercise: Express the exact energy eigenvalues and energy eigenstates of H away from the dimerized limit, for
arbitrary values of the 4 parameters.

II. THE FERMION-PARITY PSEUDOQUBIT IS PROTECTED AGAINST RELAXATION AND
ON-SITE DEPHASING

1. A quantum bit is a two-level quantum system. Often a selected pair of basis states is denoted as |↑〉 and |↓〉.
Pauli operators are defined using the basis states in the usual way, e.g., σz = |↑〉 〈↑| − |↓〉 〈↓|.

2. A few features of a quantum bit, in general:

(a) Superposition. It can be prepared in pure superpositions, α |↑〉 + β |↓〉. If the Hamiltonian is set to zero,
then the state does not evolve in time and therefore the prepared quantum state survives forever.

(b) Qubit relaxation. The process called ‘qubit relaxation’ takes place, e.g., in the following situation. Assume
that the qubit dynamics is governed by the Hamiltonian H(t) = B0σz + ξ(t)σz, where the first term is an
intentional one whereas the second one is an uncontrolled one, i.e., noise. In this case, starting from |↑〉
for example, the qubit undergoes time evolution during which the two basis states get superposed (for a
certain noise realization), or mixed (if we average over noise realizations); in other words, the qubit can
‘flip’ or ‘relax’.
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(c) Qubit dephasing. ‘Qubit dephasing’ happens, e.g., if the qubit is subject to a Hamiltonian H(t) = ξ(t)σz
with ξ(t) being a noise, and the time evolution starts from a superposition of the two basis states, e.g.,

(|↑〉+ |↓〉)/
√

2. In that case, the Bloch vector of the qubit becomes randomized along the equator, meaning
that the noise-averaged Bloch vector approaches the origin. (This is randomization is visualised in step 3
of the bottom path of Fig. 1f.) The characteristic time scale of this process is often denoted T ∗2 , and is
called inhomogeneous dephasing time. If the noise ξ(t) of the above Hamiltonian can be characterized by
a characteristic energy scale σ, then the inhomogeneous dephasing time is estimated as T ∗2,c = ~/σ.

(d) Leakage. No quantum system is a perfect two-level system. For example, an electron spin qubit in a
quantum dot is confined to the ground-state orbital of the quantum dot, but higher-energy orbitals are
also in principle available. The term ‘leakage’ corresponds to the process when the noise ‘kicks out’ the
system representing the qubit from the two-dimensional qubit subspace. In the example of the spin qubit,
electromagnetic fluctuations can excite the electron to higher-energy orbitals, i.e., can cause leakage.

3. We could imagine using the even and odd ground states of the topological fully dimerized KDD as a qubit.
As we argue below, one cannot prepare a superposition though; hence we will call this two-level system the
‘fermion-parity pseudoqubit’, FPPQ.

(a) Superposition. It is not possible to prepare a superposition of |e〉 and |o〉. Argument 1: As long as we
consider the KDD itself, the even and odd sectors are decoupled. Argument 2: We could allow for an
environment that helps us preparing a superposition of the two KDD ground states. In that case, the
fermion parity of the full system (KDD+environment) has a well-defined fermion parity, e.g., even, at
the beginning of the preparation procedure. At the end of the procedure, the fermion parity of the full
system should still be even. To prepare the desired superposition, one aims at a state with the structure
1√
2

(|e〉+ |o〉)⊗ (α |e〉env + β |o〉env). Clearly, this is not an even state of the full system for any value of α

and β, so it cannot be prepared.

(b) (Pseudo)Qubit relaxation. If the KDD is isolated electronically (no tunneling) from its environment, then
its fermion parity number is conserved. This means that this pseudoqubit shows no relaxation. Electrons
tunneling between the KDD and its environment, or quasiparticles created, e.g., thermally, can lead to
relaxation though; the related processes are often called ‘quasiparticle poisoning’.

(c) (Pseudo)Qubit dephasing. The FPPQ enjoys a certain degree of protection against dephasing due to on-site
disorder. If the on-site disorder has a typical energy scale of σ, then, based on the general qubit-dephasing
consideration above, the inhomogeneous dephasing time is naively expected to scale as T ∗2 ∼ ~/σ. However,
the noise felt by the qubit is not the on-site noise directly, because the qubit Hamiltonian is Egap ∼ σ2/v,
and the minigap shows the scaling Egap ∼ σ2/v in the weak-disorder case σ � v, as argued above. Hence,
in the weak-disorder case, we find T ∗2 ∼ (~/σ)(v/σ), which is prolonged by a large factor v/σ as compared
to the naive expectation. Note that the FPPQ in the KDD is not protected against hopping disorder or
pair-potential disorder, since the minigap scales linearly with those.

(d) Leakage. In principle, the FPPQ is not protected from noise-induced leakage: e.g., starting from the
even ground state |e〉 of the KDD, electrical fluctuations can excite the system to the even excited state
|e′〉, which counts as a leakage error. (An interesting, related discussion can be found in Akmerov PRB
82, 020509R (2010). Also, it is an interesting exercise to study how effective is an electric fluctuation in
inducing these leakage processes.)

III. THE FERMION-PARITY PSEUDOQUBIT CAN BE READ OUT AND INITIALIZED USING
PARITY-TO-CHARGE CONVERSION

1. The task is the following: we know that the topological fully dimerized KDD is either in |e〉 or in |o〉, and
would like to find if it is |e〉 or |o〉. By this we’d achieve (pseudo)qubit readout. Can we do this by simply
measuring a charge? It seems we cannot, because the charge expectation values are the same in the two

states, 〈e|c†1c1|e〉 = 〈e|c†2c2|e〉 = 〈o|c†1c1|o〉 = 〈o|c†2c2|o〉 = 1/2, which can be directly calculated from the energy
eigenstates listed in Eq. (3). Therefore, a general strategy to distinguish between |e〉 and |o〉 is to convert
the parity information to charge information first, and then measure the charge. An example arrangement
that allows to realize this is depicted in Fig. 1c. Here, site 3 is an auxiliary site that is used for the charge
measurement, and the orange lines denote time-dependent hopping amplitudes u(t). We assume that u(t) is a
weak square pulse, that is, u(t) = u0Θ(t)Θ(τu − t) and u0 � 2v.
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2. The Hamiltonian reads

H = H0 +H1 ≡ v(c†1c2 + c†1c
†
2 + h.c.) + u(t)(c†1c3 + c†2c3 + h.c.). (4)

That is, all three on-site energies are zero. The readout protocol goes as follows. At t = 0, the FPPQ formed in
the KDD (sites 1 and 2) is either in |e〉 or |o〉, and site 3 is empty. Then, we apply the symmetric hopping pulse
for a time τu = h/(4u0). After the pulse, we measure the charge on site 3. If the measured charge is zero (one),
then we conclude that the parity of the initial state was odd (even). [For a detailed study of this protocol and
the effect of disorder and other imperfections, see Szechenyi and Palyi, arXiv:1909.02326.]

3. The sketch of the proof is as follows. The energy spectrum and eigenstates of the decoupled system H0 are
known. The ground state is fourfold degenerate, at energy −v, with the four states being |e0〉, |e1〉, |o0〉, |o1〉,
where the number denotes the occupation of site 3. The other four energy eigenstates are at energy v. Since the
hopping pulse is weak, u0 � 2v, we can consider the dynamics to be constrained to the ground-state subspace,
whose projector is P . To describe this restricted dynamics, we project the Hamiltonian to that subspace; the
result expressed in the basis |e0〉, |e1〉, |o0〉, |o1〉 reads:

PHP = u(t)




0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0


 (5)

This result reveals that |e0〉 evolves to |o1〉, but |o0〉 is a stationary state (within this low-energy approximation)
even if the hopping u is switched on.

4. Note that the fact that the initial state |o0〉 does not create an electron transfer to site 3 can be interpreted as
a destructive interference of the two hopping paths 1→ 3 and 2→ 3. In other words, it is a consequence of the
minus sign in |o〉 = (|10〉 − |01〉)/

√
2 and the perfect symmetry of the two u(t) pulses.

5. Note that the measurement procedure described above also serves as an initialization procedure: for both initial
states |e0〉 and |o0〉, the KDD ends up in the state |o〉 after the charge measurement.

6. Dephasing does not cause errors in parity readout. Relaxation, due to quasiparticle poisoning, does cause
readout errors.

7. A remark (thanks to Peter Makk): For a KDD, the fermion parity can be read out without parity-to-charge
conversion: in fact, by applying a strong charge measurement on both sites we obtain the total charge and
thereby the fermion parity. How does that opportunity change if we take a long chain? Is it enough to measure
the charge at the two end sites of the chain? No. By inspecting the ground-state wave functions for longer
chains, we conclude that the fermion parity is revealed only if all local charges are measured.

8. Exercise: Assume that quasiparticle poisoning is a Poisson process: when the KDD is tuned to one topological
fully dimerized case, then the ground state switches between |e〉 and |o〉 randomly, and these switches are
distributed in time according to a Poisson process with time constant Tq. Using the initialization and readout
tools above, devise an ‘experimental’ method to determine Tq. Assume that the quasiparticle poisoning time is
long, Tq � Tr, where Tr is the time required for the initialization or readout of the FPPQ.

IV. TWO KITAEV DOUBLE DOTS FORM A SINGLE MAJORANA QUBIT

1. A qubit can be defined using two KDDs, which are uncoupled from each other, as depicted in Fig. 1d. E.g., one
can choose the ‘globally even’ ground states, denoted as |ee〉 and |gg〉, as the qubit basis states. We will call
this the ‘Majorana qubit’. (We will see in the next lecture that the ground-state degeneracy can be thought of
as a consequence of Majorana zero modes, hence the name.)

2. In the generic qubit example given above, a Hamiltonian H = B(t)σz with the square control pulse B(t) =
B0Θ(t)Θ(τB− t) can be used to perform a rotation of the Bloch vector around the z axis with angle α = 2B0t/~.
Rotations around other axes are analogous.
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3. For the Majorana qubit, an x rotation can be performed by a square control pulse u(t) of the hopping between
sites 2 and 3, see Fig. 1e. To see this, first we write the Hamiltonian as

H = H0 +H1(t) = v(c†1c2 + c†1c
†
2 + c†3c4 + c†3c

†
4 + h.c.) + u(t)(c†2c3 + h.c.), (6)

and again consider the dynamics within the relevant low-energy ‘qubit subspace’ (projector: Pq) of H0, spanned
by |ee〉 and |oo〉,

Hq(t) = PqH1(t)Pq = −1

2
u(t)σx. (7)

That is, a pulse of length t will cause a qubit rotation around the x axis by α = −u0t/~. Using a u0 = 10µeV
pulse strength for a π/2 rotation, the pulse duration should be t ≈ 100 ps.

4. A z rotation can be performed on the Majorana qubit, e.g., by applying a square pulse on the hopping on the

left KDD, H1(t) = u(t)(c†1c2 + h.c.), resulting in the qubit Hamiltonian Hq(t) = 1
2u(t)σz.

5. These single-qubit operations are not protected in any sense. In contrast, operations based on ‘braiding, to be
introduced later in the course, will be protected. Nevertheless, the non-protected operations can still be useful,
e.g., to demonstrate the protected nature of the Majorana qubit as a quantum memory, as shown in the next
section. Also, it is reasonable to assume that the first experiments showing time-resolved measurements with
Majorana qubits will use non-protected single-qubit operations, similar to those discussed here.

6. Exercise: Respecting parity conservation, we could encode one qubit using two Kitaev double dots (4 sites).
How many qubits can you encode in 4 Kitaev double dots?

V. RAMSEY-TYPE EXPERIMENT REVEALS THE PROTECTED NATURE OF THE MAJORANA
QUBIT

1. In section II, we argued that FPPQ is protected against inhomogeneous dephasing caused by on-site disorder,
if we compare the corresponding time scale against the inhomogeneous dephasing time of a similarly disordered
charge qubit. Of course, that sounds as a meaningless claim, since the FPPQ cannot be placed in a superposition,
so the dephasing time cannot be measured. However, the Majorana qubit is composed of two FPPQs, and
therefore it is natural to expect that it enjoys the same kind of protection against on-site disorder as a FPPQ.
An experimental test, which is a simple application of the so-called ‘Ramsey experiment’ applied widely in optics
and magnetic resonance, is outlined below.

2. The Ramsey experiment is used to characterize the lifetime of a qubit. The lifetime obtained with this method
is often called the inhomogeneous dephasing time. The principle of the experiment is shown in Fig. 1f. The
qubit is initialized in |↓〉, then flipped to the y direction with a π/2 rotation around the x axis. After a waiting
time τwait, another π/2 x rotation is applied, and the z component of the qubit is measured. In the absence of
noise, i.e., when H = 0 between the pulses, the final state is |↑〉, and the measurement outcome is 〈σz〉(τwait) = 1
for any value of the waiting time τwait. In the presence of dephasing, when the noisy Hamiltonian is H = ξ(t)σz
between the pulses, the noise-averaged final state typically shows an evolution toward the fully mixed state,
and hence 〈σz〉(τ) decays from 1 to 0. In the simple Gaussian quasistatic noise model, this decay is Gaussian,

〈σz〉(τ) = e−(τ/T
∗
2 )2 . Hence, from this measurement, the inhomogeneous dephasing time T ∗2 can be determined.

3. From the above discussions, it is clear how to implement this measurement for the Majorana qubit. Initialization
and readout is provided by the parity-to-charge conversion procedure discussed in section III. The x rotations
are provided by the hopping pulse between the two KDDs forming the Majorana qubit, see Eq. (7).


