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edgments for discussion and support: János Asbóth, György Frank, László Oroszlány, Dávid Pataki.

In these notes, I try to translate the content of Chapter 1 (the one-dimensional SSH model) of our book (Asboth et
al., A Short Course on Topological Insulators) to the language of topology, an established branch of mathematics. I
think the treatment in our book is very useful, because it exposes the key ideas with simple physical pictures, without
the complexity of formal mathematics. Nevertheless, I believe it is very useful to familiarize with the underlying
mathematical concepts and relations, at least for the reasons that (1) it hopefully enables you to efficiently discuss
with, and learn from, mathematicians about this subject, and (2) to provide a framework for understanding topology
in condensed-matter systems in more generality, beyond the specific examples treated in the course.

In particular, I plan to connect the SSH model to basic concepts of topology such as continuity, homeomorphism,
chart, atlas, transition map, manifold, (smooth manifold and orientable manifold), homotopy, degree, and the complete
homotopy invariant.

After my 45-minute lecture, which is roughly covered in this write-up, Gergő Pintér will give another 45-minute
lecture, mostly focusing on the extension of the above topology concepts for two-dimensional lattice models, in relation
to the Qi-Wu-Zhang model.

I. CONTINUITY AND HOMEOMORPHISM

1. A key concept in topology is a continuous function. Roughly speaking, a continuous function is a function
for which small changes in the input result in small changes in the output. Let’s introduce continuity via an
example: the Brillouin zone of the 1D SSH model.

2. Naively, based on band-structure diagrams seen throughout this course, we’d think that the Brillouin zone is
the ] − π, π] interval. However, we also remember that k = π is equivalent to k = −π. But that means that
actually the Brillouin zone is the unit circle.

3. Mathematicians denote the unit circle as S1. (Sometimes they call it the one-dimensional torus, and denote it
as T 1.) Throughout this lecture, we will identify the unit circle either with the unit circle in the real plane R2

(the set {(x, y) ∈ R2, x2 + y2 = 1}), or with the unit circle in the complex plane C (the set {u ∈ C, |u|2 = 1}).

4. So we see that the ]−π, π] interval is quite similar to S1, but they are not the same. In fact, we can parametrize
S1 with ]− π, π] in a continuous fashion:

ϕ0 :]− π, π]→ S1, α 7→
(

cosα
sinα

)
. (1)
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FIG. 1. The continuous bijective parametrization of the unit circle, see Eq. (1).

5. This parametrization ϕ0 is a continuous function: if you pick any point α ∈] − π, π], and approach this point
with some α′, then the value ϕ0(α′) will approach ϕ0(α).

6. The parametrization ϕ0 is a one-to-one function, i.e., a bijection, and therefore it has an inverse, ϕ−10 . Writing
out explicitly,

ϕ−10 : S1 →]− π, π],

(
x
y

)
7→ arg(x+ iy), (2)

where arg : C→]− π, π] outputs the phase of a complex number.

7. Interestingly, ϕ−10 is not continuous, even though it is the inverse of a continuous function. The point −ex =(
−1

0

)
is a point that is mapped to π, but if r ∈ S1 approaches −ex from below the x axis, then the value of

ϕ−10 at r approaches −π instead of π.

FIG. 2. The inverse of the continuous bijective map ϕ0 is not continuous, hence ϕ0 is not a homeomorphism.
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8. Another key concept in topology is homeomorphism, which is a name for functions that are continuous, bijective,
and their inverse is also continuous. We have seen that ϕ0 above is not a homeomorphism: although it is
continuous and invertible, its inverse is not continuous. But it is easy enough to use that counterexample to
come up with an example: just leave out π from the domain of ϕ0:

ϕ′0 :]π, π[→ S1 \ {−ex}, α 7→ ϕ0(α). (3)

This is now a homeomorphism.

FIG. 3. A continuous bijective map with a continuous inverse: such a map is called a homeomorphism.

II. MANIFOLD

1. Another key concept in topology is the manifold. What is it, what are the simplest examples, and how are they
related to topological insulators?

2. In fact, the Brillouin-zone of a 1D lattice model, which we have identified above with the unit circle S1, is a
one-dimensional manifold: it locally resembles the one-dimensional Euclidean space R near each of its points.
More precisely, each of its point has a neighborhood that can be parametrized with an open interval of R through
a homeomorphism.

3. For example, take the point ex =

(
1

0

)
of the unit circle. Consider the neighborhood U of this point that

contains the whole circle except the opposite point −ex:

U = S1 \ {−ex} (4)

Luckily enough, ϕ′0 defined above is just a parametrization of U on an open interval of R, and we have also seen
that ϕ′0 is a homeomorphism.

Can we find similar neighborhoods and parametrizations for all points of S1? Yes. On the one hand, U and
ϕ′0 are just fine for any points except −ex. On the other hand, for −ex, one option is to take its neighborhood
S1 \ {ex}, and use the parametrization

ϕ′π : ]0, 2π[→ S1 \ {ex}, α 7→

(
cosα

sinα

)
. (5)
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FIG. 4. A second homeomorphism (besides ϕ′0) serving as a local homeomorphic parametrization of the unit circle S1.

4. Up to now, we have seen that S1 is a one-dimensional manifold, which means that you can locally parametrize
it with R everywhere, despite the fact that you cannot parametrize it globally with R.

5. The local, homeomorphic R → S1 parametrizations discussed above (ϕ′0 and ϕ′π) will be called charts. (They
are also called coordinate charts, coordinate patches, coordinate maps, or local frames.)

6. A collection of charts that cover the whole manifold is called an atlas. For the unit circle S1, the two charts ϕ′0
and ϕ′π together constitute an atlas.

7. Given two charts, their images might have an intersection. For example, the intersection of the images of ϕ′0
and ϕ′π is S1 \ {ex,−ex}. Taking an open interval in the pre-image of this intersection by ϕ′0, we can map this
interval into the pre-image of this intersection by the other chart ϕ′π. Such a map is called a transition map.

For example, in the figure below we illustrate this transition map:

τ :]π/3, 2π/3[→]π/3, 2π/3[, τ = (ϕ′π)
−1 ◦ ϕ′0. (6)

(Note that the domain and range of a transition map happen to be the same here, incidentally. Also incidentally,
this τ happens to be the identity function.)

FIG. 5. A transition map between two charts of the unit circle S1.
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8. In the context of topological insulators, we consider smooth manifolds: these are manifolds whose transition
maps are smooth, that is, are differentiable as many times as needed. Note that for transition maps, it makes
sense to talk about their differentiability, since they are R→ R functions.

9. The concept of a one-dimensional manifold is naturally generalized to higher dimensions. One example of a
two-dimensional manifold is the Brillouin zone of the Qi-Wu-Zhang model (or other 2D lattice models), where
the Brillouin zone is actually a (two-dimensional) torus, denoted by T 2.

10. Exercise: Write out explicitly an atlas of a torus. Think of this torus as a 2D surface embedded in 3D space.

11. Exercise: Which of these letters are manifolds in the sense defined above: d, D, o, O, x, X, y, Y, 8?

III. ORIENTABLE MANIFOLDS

1. Take the above-defined smooth manifold: the unit circle S1 with the atlas consisting of charts ϕ′0 and ϕ′π.

2. The transition maps are R→ R maps, and they are also bijective (since they are composed of bijective maps).
This implies that for any transition map τ , its derivative τ̇ : R → R has a definite sign, either positive, or
negative. If the derivative of a transition map is positive, then it is called an orientation-preserving transition
map.

3. In our example atlas of S1, any transition map is orientation-preserving. For example, the transition map τ
defined in Eq. (6) has a constant positive derivative: τ̇ = 1.

4. If a smooth manifold can be described by an orientation-preserving atlas, then it is called an orientable smooth
manifold. So, the unit circle S1 is an orientable manifold.

5. Orientability can be naturally extended to larger-dimensional manifolds. For n-dimensional manifolds, the
transition maps are f : Rn → Rn, r 7→ f(r) maps, and therefore the ‘derivative’ is not a number, but a matrix:
the Jacobian: Jij(r) = (∂ifj)(r). Bijectivity of the transition map implies that the sign of the determinant of
the Jacobian of any transition map is either positive or negative in the whole domain of the transition map.
Orientation-preserving maps are those whose Jacobian determinant is positive. An n-dimensional orientable
manifold is one which can be described with an atlas whose transition maps are all orientation-preserving.

6. Exercise: Which manifolds are orientable? Sphere (usually denoted as S2, and meant to be the surface of a
sphere), torus, cylinder, Mobius strip.

IV. AN INSULATOR’S VALENCE BAND IS A MAP BETWEEN TWO MANIFOLDS

1. Consider the example of the one-dimensional SSH model, whose bulk momentum-space Hamiltonian reads:

Hbulk(k) =

(
0 v + we−ik

v + weik 0

)
. (7)

In generalized versions of this model, the function in the off-diagonal matrix element of the Hamiltonian can
involve higher harmonics as well.

2. For each wave number k, we can associate a valence-band Bloch spinor |u1(k)〉, which is a normalized lower-
energy eigenstate of the matrix Hbulk(k). Furthermore, |u1(k)〉 is balanced, meaning that its two components
have the same weight; this is a consequence of the chiral symmetry of the Hamiltonian.

3. We can think of this association as a function from the Brillouin zone S1 to the balanced unit vectors of C2:

u1 : S1 → {balanced unit vectors of C2} (8)

4. Such a Bloch spinor is not necessarily continuous. For example, consider the fully dimerized limit v = 1 and
w = 0, when the ‘energy eigenstates do not depend on k’, but we can still define a strange, non-continuous

Bloch spinor u1 that maps to

(
1

−1

)
from some subset of the wave numbers and maps to

(
−1

1

)
from the

rest of the wave numbers.
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5. To make sure that an SSH insulator defines a continuous function, we substitute the Bloch spinor function with
the Bloch projector function: for any Bloch spinor u1, we can define

P1 : S1 → {balanced 1D projectors of C2}, k 7→ |u1(k)〉 〈u1(k)| . (9)

We can also think about this function as a map from the Brillouin zone and the space of 1D subspaces of C2,

P1 : S1 → {balanced 1D subspaces of C2}. (10)

We call this map P1 the valence band of the SSH model.

6. Physicists know the Bloch sphere, and like to think about the balanced 1D subspaces of C2 as the equator of the
Bloch sphere, which is just the unit circle of the two-dimensional xy plane. The corresponding homeomorphism
is

p : {balanced 1D subspaces of C2} → S1, ρ 7→

(
Tr(ρσx)

Tr(ρσy)

)
, (11)

From now on, we will use the map P = p ◦ P1 to describe the valence band. Clearly,

P : S1 → S1, (12)

hence, indeed, the valence band is a map between two (orientable and smooth) manifolds.

V. HOMOTOPY CLASSES OF SSH VALENCE BANDS ARE CHARACTERIZED BY THEIR DEGREE

1. In our case, we can consider the valence bands P and Q of two different SSH models. Both P and Q are S1 → S1

maps. They are called homotopic, if they can be continuously deformed into each other.

2. Can they? Not necessarily. For example, the ‘trivial fully dimerized limit’ v = 1, w = 0 and the ‘topological
fully dimerized limit’ v = 0, w = 1, cannot be deformed into each other, hence they are not homotopic.

3. The concept of homotopy can be formalized as follows. Two maps f, g : X → Y are homotopic, if there is an
interpolating map or connecting map or deformation map H : X× [0, 1]→ Y that is continuous and f = H(., 0)
and g = H(., 1).

In the context of topological insulators, when we say that two models are ‘adiabatically equivalent’ often we
mean that the corresponding valence band maps are homotopic.

4. The SSH valence bands are maps between one-dimensional manifolds. Maps between same-dimensional mani-
folds can be characterized by their degree. Roughly speaking, the degree deg(P ) of the map P is essentially the
sign-corrected sum of the number of coincidences of an arbitrary point of the target space and the image of P .
(Essentially the same concept is explained in our book, in Figure 1.5.)

FIG. 6. Figure 1.5 from the book, (b) showing an illustration of an S1 → S1 map.

More formally, in the one-dimensional case, for P : S1 → S1 in particular, the degree is defined as follows:
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(a) Can you find a point in the target space which lies outside the image of P? If you can, then the degree is
0.

(b) If you cannot find such a point in the target space, then pick an arbitrary ‘regular’ point n of the target
space.

(c) The point n will have at least one, but possibly more pre-image points in the source space; denote them
with e1, e2, e3, etc.

(d) Take sufficiently small charts ϕ1, ϕ2, ϕ3, etc, for all source-space points e1, etc., and sufficiently small
chart χ for n, such that each R → R map τi = χ−1 ◦ P ◦ ϕi is bijective. If this cannot be done, then the
chosen point n is not regular enough; choose a different one and redo the procedure.

(e) Denote the pre-image of the source-space point e1 by ϕ1 as x1, etc. Calculate the sign s1 of the derivative
τ̇1(x1), etc, and sum up those signs to obtain the degree of P : deg(P ) = s1 + s2 + . . . .

Note that the result of this procedure is independent of the choice of the target-space point n.

FIG. 7. Illustration of the definition of the degree of a P : S1 → S1 map. The colored circles illustrate the image of the map
P : eik 7→ −eik − 0.75e−2ik: the left circle shows the domain, the right circle shows the map itself.

5. Proposition: the degree is a complete homotopy invariant, that is, two S1 → S1 maps are homotopic if and only
if they have the same degree.

6. Remark: the degree can be generalized to two-dimensional manifolds (or higher) using the Jacobian.

7. Remark: valence bands of Rice-Mele models are S1 → S2 maps. They are all trivial.

8. Exercise: There is the famous donut-mug homotopy, see, e.g., at https://en.wikipedia.org/wiki/Homotopy.
What is the source space and what is the target space in that case?


