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These lecture notes provide an introduction to some of the main concepts of topo-
logical insulators, a branch of solid state physics that is developing at a fast pace. They
are based on a one-semester course for MSc and PhD students at the Eötvös University,
Budapest, which the authors have been giving since 2012.

Our aim is to provide an understanding of the core topics of topological insula-
tors – edge states, bulk topological invariants, bulk–boundary correspondence – with
as simple mathematical tools as possible. We restricted our attention to one- and two-
dimensional band insulators. We use noninteracting lattice models of topological insu-
lators, and build these up gradually to arrive from the simplest one-dimensional case
(the Su-Schrieffer-Heeger model for polyacetylene) to two-dimensional time-reversal
invariant topological insulators (the Bernevig-Hughes-Zhang model for HgTe). In each
case we introduce the model first, discuss its properties, and then generalize. The pre-
requisite for the reader is quantum mechanics and not much else: solid state physics
background is provided as we go along.

Since this is an introduction, rather than a broad overview, we try to be self-
contained and give citations to the current literature only where it is absolutely nec-
essary. For a broad overview, including pointers to the original papers and current
topics, we refer the reader to review articles and books in the Introduction.

Supporting material for these lecture notes in the form of ipython notebooks will
be made available online.

Despite our efforts, the book inevitably contains typos, errors, and less comprehen-
sible explanations. We would appreciate if you could inform us of any of those; please
send your comments to janos.asboth@wigner.mta.hu.
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Introduction

The band theory of electric conduction was one of the early victories of quantum me-
chanics in the 1920s. It gave a simple explanation of how some crystalline materials
are electric insulators, even though electrons in them can hop from one atom to the
next. In the bulk of a band insulator, the electrons occupy eigenstates that form energy
bands. In a band insulator, there are no partially filled bands: completely filled bands
are separated by an energy gap from completely empty bands, the gap represents the
energy cost of mobilizing electrons. In contrast, materials with partially filled bands
are conductors, where there are plane wave states available to transmit electrons across
the bulk at arbitrarily low energy. Although we now know of situations where band
theory is inadequate (e.g., for Mott insulators), it remains one of the cornerstones of
solid states physics.

The discovery of the Quantum Hall Effect (1980) has shown that the simple division
into band insulators and metals is not the end of the story, not even in band theory. In
the quantum Hall effect, a strong magnetic field confines the motion of electrons in the
bulk, but the same field forces them into delocalized edge states on the surface. A two-
dimensional metal in strong magnetic field is thus an insulator in the bulk, but conducts
along the surface, via a discrete number of completely open edge state channels (in the
language of the Landauer–Büttiker formalism). The number of edge state channels was
linked to the Chern number, a topological invariant of the occupied bands (1982).

Over the last twenty years, theoretical progress over artificial systems has shown
that the external magnetic field is not necessary for an insulator to have robust con-
ducting edge states: instead, the nontrivial topology of the occupied bands is the cru-
cial ingredient. The name topological insulator was coined for such systems, and their
study became a blossoming branch of solid state physics. Following the theoretical
prediction (Bernevig, Hughes and Zhang, 2006 [5]), electronic transport measurements
confirmed that a thin layer of HgTe is a topological insulator (König et al, 2007 [21]).
Since that time, a host of materials have been shown to be three-dimensional topologi-
cal insulators, and thin films and quantum wires shown to be two- and one-dimensional
topological insulators [2].

The intense theoretical interest in topological insulators has led to signature results,
such as the so-called periodic table of topological insulators [29], which shows that
similarly to phase transitions in statistical mechanics, it is the dimensionality and the
basic symmetries of an insulator that decide whether it can be a topological insulator
or not. Although it was derived by different ways of connecting topological insulators
of various dimensions and symmetries (so-called dimensional reduction schemes), the
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mathematically rigorous proof of the periodic table is still missing.
The field of topological insulators is very active, with many experimental chal-

lenges and open theoretical problems, regarding the effects of electron-electron inter-
action, extra crystalline symmetries, coupling to the environment, etc.

Literature

To get a quick and broad overview of topological insulators, with citations for relevant
research papers, we recommend the review papers [17, 25, 7]. For a more in-depth
look, there are already a few textbooks on the subject (by Bernevig and Hughes [4],
by Shen [30], and one edited by Franz and Molenkamp [10]). To see the link between
momentum-space topology and physics in a broader context, we direct the reader to a
book by Volovik[34].

There are also introductory courses on topological insulators with a broad scope.
We recommend the lectures by Charles Kane (the video recording of the version given
at Veldhoven is freely available online), and the online EdX course on topology in
condensed matter by a group of lecturers, with the corresponding material collected at
topocondmat.org.

These lecture notes

Our aim with this set of lecture notes is to complement the literature cited above: we
wish to provide a close look at some of the core concepts of topological insulators with
as simple mathematical tools as possible. Using one-and two-dimensional noninteract-
ing lattice models, we explain what edge states and what bulk topological invariants
are, how the two are linked (this is known as the bulk–boundary correspondence), the
meaning and impact of some of the fundamental symmetries.

To keep things as simple as possible, throughout the course we use noninteracting
models for solid state systems. These are described using single-particle lattice Hamil-
tonians, with the zero of the energy corresponding to the Fermi energy. We use natural
units, with h̄ = 1 and length measured by the lattice constant.
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Chapter 1

The Su-Schrieffer-Heeger (SSH)
Model

We take a hands-on approach and get to know the basic concepts of topological insu-
lators via a concrete system: the Su-Schrieffer-Heeger (SSH) model describes spinless
fermions hopping on a one-dimensional lattice with staggered hopping amplitudes. Us-
ing the SSH model, we introduce the concepts of the single-particle Hamiltonian, the
difference between bulk and boundary, chiral symmetry, adiabatic equivalence, topo-
logical invariants, and bulk–boundary correspondence.

1.1 The SSH Hamiltonian
The Su-Schrieffer-Heeger (SSH) model describes electrons hopping on a chain (one-
dimensional lattice), with staggered hopping amplitudes, as shown in Fig. 1.1. The
chain consist of N unit cells, each unit cell hosting two sites, one on sublattice A,
and one on sublattice B. Interactions between the electrons are neglected, and so the
dynamics of each electron is described by a single-particle Hamiltonian, of the form

Ĥ = v
N

Â
m=1

�
|m,Bihm,A|+h.c.

�
+w

N�1

Â
m=1

�
|m+1,Aihm,B|+h.c.

�
. (1.1)

Figure 1.1: Geometry of the SSH model. Filled (empty) circles are sites on sublattice
A (B), each hosting a single state. They are grouped into unit cells: the m = 6th cell is
circled by a dotted line. Hopping amplitudes are staggered: intracell hopping v (thick
lines) is different from intercell hopping w (thin lines). The left and right edge regions
are indicated by blue and red shaded background.

1



2 CHAPTER 1. THE SU-SCHRIEFFER-HEEGER (SSH) MODEL

Here |m,Ai and |m,Bi, with m 2 {1,2, . . . ,N}, denote the state of the chain where the
electron is on unit cell m, in the site on sublattice A, respectively, B, and h.c. stands for
Hermitian Conjugate (e.g., h.c. of z |m,Bihm,A| is z⇤ |m,Aihm,B| for arbitrary z 2 C).

The spin degree of freedom is completely absent from the SSH model, since no
term in the Hamiltonian acts on spin. Thus, the SSH model describes spin-polarized
electrons, and when applying the model to a real physical system, e.g., polyacetylene,
we have to always take two copies of it. In this chapter we will just consider a single
copy, and call the particles fermions, or electrons, or just particles.

We are interested in the dynamics of fermions in and around the ground state of
the SSH model at zero temperature and zero chemical potential, where all negative
energy eigenstates of the Hamiltonian are singly occupied (because of the Pauli prin-
ciple). As we will show later, due to the absence of onsite potential terms, there are N
such occupied states. This situation—called half filling—is characteristic of the sim-
plest insulators such as polyacetylene, where each carbon atom brings one conduction
electron, and so we find one particle (of each spin type) per unit cell.

For simplicity, we take the hopping amplitudes to be real and nonnegative, v,w � 0.
If this was not the case, if they carried phases, v= |v|eifv , and w= |w|eifw , with fv,fw 2
[0,p), these phases could always be gauged away. This is done by a redefinition of
the basis states: |m,Ai ! ei(m�1)(fw+fw) |m,Ai, and |m,Bi ! eifvei(m�1)(fv+fw) |m,Bi.
More on this in an Exercise?

The matrix for the Hamiltonian of the SSH model, Eq. (1.1), represented in the a
real-space basis (|1,Ai , |1,Bi , |2,Ai , . . .), for a chain of N = 4 unit cells, reads

H =

0

BBBBBBBBBB@

0 v 0 0 0 0 0 0
v 0 w 0 0 0 0 0
0 w 0 v 0 0 0 0
0 0 v 0 w 0 0 0
0 0 0 w 0 v 0 0
0 0 0 0 v 0 w 0
0 0 0 0 0 w 0 v
0 0 0 0 0 0 v 0

1

CCCCCCCCCCA

. (1.2)

External and Internal Degrees of Freedom

There is a practical representation of this Hamiltonian, which emphasizes the separa-
tion of the external degrees of freedom (unit cell index m) from the internal degrees of
freedom (sublattice index a). We can use a tensor product basis,

|m,ai ! |mi⌦ |ai 2 Hexternal ⌦Hinternal, (1.3)

with m = 1, . . . ,N, and a 2 {A,B}. On this basis, with the Pauli matrices,

s0 =

✓
1 0
0 1

◆
; sx =

✓
0 1
1 0

◆
; sy =

✓
0 �i
i 0

◆
; sz =

✓
1 0
0 �1

◆
, (1.4)

the Hamiltonian can be written as

Ĥ = v
N

Â
m=1

|mihm|⌦ ŝx +w
N�1

Â
m=1

✓
|m+1ihm|⌦

ŝx + iŝy

2
+h.c.

◆
. (1.5)



1.2. BULK HAMILTONIAN 3

The intracell hopping shows up here as an onsite-potential-like intracell operator, while
the intercell hopping as a hopping operator.

1.2 Bulk Hamiltonian
As every solid-state system, the long chain of the SSH model has a bulk and a bound-
ary. The bulk is the long central part of the chain, the boundaries are the two ends, or
“edges” of the chain, indicated by shading in Fig. 1.1. We first concentrate on the bulk,
since, in the thermodynamic limit of N ! •, it is much larger than the boundaries, and
it will determine the most important physical properties of the model. Although the
treatment of the bulk using the Fourier transformation might seem like a routine step,
we detail it here because different conventions are used in the literature. (We might add
more details at some point in a future Appendix.)

The physics in the bulk, the long central part of the system, should not depend on
how the edges are defined, and so for simplicity we set periodic (Born-von Karman)
boundary conditions. This corresponds to closing the bulk part of the chain into a ring,
with the bulk Hamiltonian defined as

Ĥbulk =
N

Â
m=1

�
v |m,Bihm,A|+w |(mmodN)+1,Aihm,B|

�
+h.c.. (1.6)

We are looking for eigenstates of this Hamiltonian,

Ĥbulk |Yn(k)i= En(k) |Yn(k)i , (1.7)

with n2 {1,2}, where k is the wavenumber and n is the band index, as explained below.

Bulk Momentum-Space Hamiltonian

Due to the translation invariance of the bulk, Bloch’s theorem applies, and we look for
the eigenstates in a plane wave form. We introduce the plane wave basis states only for
the external degree of freedom,

|ki= 1p
N

N

Â
m=1

eimk |mi , for k 2 {dk,2dk, . . . ,Ndk} with dk =
2p
N

, (1.8)

where the wavenumber k was chosen to take on values from the first Brillouin zone.
The bulk momentum-space Hamiltonian Ĥ(k) is defined using the plane-wave states,

Ĥ(k) = hk| Ĥbulk |ki= Â
a,b2{A,B}

hk,a|Hbulk |k,b i · |aihb | . (1.9)

Its eigenstates are vectors in the internal Hilbert space, |un(k)i 2,Hinternal,

Ĥ(k) |un(k)i= En(k) |un(k)i ; |un(k)i= an(k) |Ai+bn(k) |Bi . (1.10)

The Bloch states are eigenstates of the bulk Hamiltonian, and read

|Yn(k)i= |ki⌦ |un(k)i . (1.11)
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As an example, take the SSH model on a chain of N = 4 unit cells. Then, by insert-
ing Eq. (1.11) into the Schrödinger equation (1.7), the latter translates to the following
matrix eigenvalue equation:

0

BBBBBBBBBB@

0 v 0 0 0 0 0 w
v 0 w 0 0 0 0 0
0 w 0 v 0 0 0 0
0 0 v 0 w 0 0 0
0 0 0 w 0 v 0 0
0 0 0 0 v 0 w 0
0 0 0 0 0 w 0 v
w 0 0 0 0 0 v 0

1

CCCCCCCCCCA

0

BBBBBBBBBB@

a(k)eik

b(k)eik

a(k)e2ik

b(k)e2ik

a(k)e3ik

b(k)e3ik

a(k)eNik

b(k)eNik

1

CCCCCCCCCCA

= E(k)

0

BBBBBBBBBB@

a(k)eik

b(k)eik

a(k)e2ik

b(k)e2ik

a(k)e3ik

b(k)e3ik

a(k)eNik

b(k)eNik

1

CCCCCCCCCCA

. (1.12)

The Schrödinger equation defining the matrix H(k) of the bulk momentum-space Hamil-
tonian reads

H(k) =
✓

0 v+we�ik

v+weik 0

◆
; H(k)

✓
a(k)
b(k)

◆
= E(k)

✓
a(k)
b(k)

◆
. (1.13)

Periodicity in Wavenumber

Although Eq. (1.11) has a lot to do with the continous-variable Bloch theorem, Yn,k(x)=
eikxun,k(x), this correspondence is not direct. In a discretization of the continuous-
variable Bloch theorem, the internal degree of freedom would play the role of the co-
ordinate within the unit cell, which is also transformed by the Fourier transform. Thus,
the function un,k(x) is periodic in real space, un,k(x+ 1) = un,k(x), but not periodic in
the Brillouin zone, un,k+2p(x+ 1) 6= un,k(x). Our Fourier transform acts only on the
external degree of freedom, and as a result, we have periodicity in the Brillouin zone,

Ĥ(k+2p) = Ĥ(k); |hun(k)|un(k+2p)i|= 1. (1.14)

A condition for the latter is that the energy En(k) is non-degenerate and therefore
|un(k)i is well defined up to a global complex phase factor. This periodicity in Eq. (1.14)
simplifies the formulas for the topological invariants immensely. Note, however, that
the other convention, the discretization of the Bloch theorem, is also widely used in the
literature. We will compare the two approaches in a future Appendix.

1.2.1 A Staggered Hopping Opens a Gap
The dispersion relation of the bulk can be read off from Eq. (1.13), using the fact that
Ĥ(k)2 = E(k)2Î2. This gives us

E(k) =±
���v+ e�ikw

���=±
p

v2 +w2 +2vwcosk. (1.15)

We show this dispersion relation for five choices of the parameters in Figs. 1.2a-e.
As long as the hopping amplitudes are staggered, v 6= w, (Fig. 1.2a,b,d,e), there is

an energy gap of 2D separating the lower, filled band, from the upper, empty band, with

D = mink |E(k)|= |v�w| . (1.16)
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Figure 1.2: Dispersion relations of the SSH model, Eq. (1.15), for five settings of
the hopping amplitudes: (a): v = 1,w = 0; (b): v = 1,w = 0.6; (c): v = w = 1; (d):
v = 0.6,w = 1; (e): v = 0,w = 1. In each case, the path of the endpoints of the vector
d(k) representing the bulk momentum-space Hamiltonian, Eqs. (1.17) and (1.18), are
also shown on the dx,dy plane, as the wavenumber is swept across the Brillouin zone,
k = 0 ! 2p; see (f)-(j). .

Without the staggering, i.e., if v = w, (Fig. 1.2c), the SSH model describes a conductor.
In that case there are plane wave eigenstates of the bulk available with arbitrarily small
energy, which can transport electrons from one end of the chain to the other.

On an interesting note, we mention that the staggering of the hopping amplitudes
occurs naturally in many solid state systems, e.g., polyacetylene, by what is known as
the Peierls instability. A detailed analysis of this process necessitates a model where
the positions of the atoms are also dynamical [32]. Nevertheless, we can understand
this process intuitively just from the effects of a slight staggering on the dispersion
relation. As the gap due to the staggering of the hopping amplitudes opens, the energy
of occupied states is lowered, while unoccupied states move to higher energies. Thus,
the staggering is energetically favourable.

1.2.2 Information Beyond the Dispersion Relation
Although the dispersion relation is useful to read off a number of physical properties
of the bulk of the system (e.g., group velocities), there is also important information
about the bulk that it does not reveal. Stationary states do not only have an energy and
wavenumber eigenvalue, but also an internal structure, represented by the components
of the corresponding vector |un(k)i 2 Hinternal. We now define a compact representa-
tion of this information for the SSH model.

The bulk momentum-space Hamiltonian Ĥ(k) of any two-band model (i.e., a model
with 2 internal states per unit cell), reads

Ĥ(k) = d0(k)ŝ0 +dx(k)ŝx +dy(k)ŝy +dz(k)ŝz = d0(k)ŝ0 +d(k)ŝ . (1.17)

For the SSH model, see the Hamiltonian in Eq. (1.13), we have d0(k) = 0, and the real
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numbers dx,y,z 2R, the components of the k-dependent 3-dimensional vector d(k), read

dx(k) = v+wcosk; dy(k) = wsink; dz(k) = 0. (1.18)

The internal structure of the eigenstates with momentum k is given by the direction in
which the vector d(k) of Eq. (1.18) points (the energy is given by the magnitude of
d(k); for details see Sect. 2.5).

As the wavenumber runs through the Brillouin zone, k = 0 ! 2p , the path that the
endpoint of the vector d(k) traces out is a closed circle of radius w on the dx,dy plane,
centered at (v,0). For more general 2-band insulators, this path need not be a circle,
but it needs to be a closed loop due to the periodicity of the bulk momentum-space
Hamiltonian, Eq. (1.14), and it needs to avoid the origin, to describe an insulator. If the
loop is confined on the dx,dy plane, its topology can be characterized by an integer, the
bulk winding number n . This counts the number of times the loop winds around the
origin of the dx,dy plane. For example, in Fig. 1.2f,g, we have n = 0, in Fig. 1.2i,j, we
have n = 1, while in Fig. 1.2h, the winding number n is undefined.

1.3 Edge States
Like any material, the SSH Hamiltonian does not only have a bulk part, but also bound-
aries (which we refer to as ends or edges). We can expect that in the bulk part, i.e., far
away from the boundaries, local physical properties of the system are well approxi-
mated by calculations using periodic boundary conditions. Near the edges, though,
local physical properties can be quite different. We can find, for example, that eigen-
states of the Hamiltonian exist with energy in the gap of the bulk Hamiltonian: such
states must be edge states, with wavefunctions that decrease exponentially towards the
bulk. In case the bulk is translation invariant, bulk eigenstates will be extended but
edge states localized in the thermodynamic limit of infinite system size. In this section
we will begin with the so-called fully dimerized limits of the SSH model, where the
edge regions can be unambiguously defined. We then move away from these limits,
and use a practical definition of edge states.

1.3.1 Fully Dimerized Limits
The SSH model becomes particularly simple in the two fully dimerized cases: if the
intercell hopping amplitude vanishes and the intracell hopping is set to 1, i.e., v =
1,w = 0, or vice versa, v = 0,w = 1. In both cases the SSH chain falls apart to a
sequence of disconnected dimers, as shown in Fig. 1.3.

The Bulk in the Fully Dimerized Limits Has Flat Bands

In the fully dimerized limits, one can choose a set of energy eigenstates which are
restricted to one dimer each. These consist of the even (energy E = +1) and odd
(energy E =�1) superpositions of the two sites forming a dimer.

In the v = 1,w = 0 case, which we call trivial, we have

v = 1,w = 0 : Ĥ(|m,Ai±|m,Bi) =±(|m,Ai±|m,Bi). (1.19)
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Figure 1.3: Fully dimerized limits of the SSH model, where the chain has fallen apart to
disconnected dimers. In the trivial case (top, only intracell hopping, v= 1,w= 0), every
energy eigenstate is an even or an odd superposition of single-site basis states in the
same unit cell. In the topological case, (bottom, only intercell hopping, v = 0,w = 1),
dimers are shared between neighboring unit cells. Then there is a single isolated site
on each edge, that must host one eigenstate (per edge), at zero energy, since there are
no onsite potentials.

The bulk momentum-space Hamiltonian is Ĥ(k) = ŝx, independent of the wavenumber
k.

In the v = 0,w = 1 case, which we call topological, each dimer is shared between
two neighboring unit cells,

v = 0,w = 1 : Ĥ(|m,Bi±|m+1,Ai) =±(|m,Bi±|m+1,Ai), (1.20)

for m= 1, . . . ,N�1. The bulk momentum-space Hamiltonian now is Ĥ(k) = ŝx cosk+
ŝy sink.

In both fully dimerized limits, we can superpose the above-defined localized eigen-
states to form Bloch-type energy eigenstates. These Bloch states inherit the same spec-
trum, E(k) = ±1, i.e., we have dispersionless or flat bands in this case, as seen in
Fig. 1.2a and e. As a consequence, the group velocity is zero throughout each band –
as the chain falls apart to dimers, a particle input into the bulk will not move along the
chain.

The Edges in the Fully Dimerized Limit Can Host Zero Energy States

In the trivial case, v = 1,w = 0, all energy eigenstates of the SSH chain are given by
the formulas of the bulk, Eq. (1.19). A topological, fully dimerized SSH chain, with
v = 0,w = 1, however, has more energy eigenstates than those listed Eq. (1.20). Each
end of the chain hosts a single eigenstate at zero energy,

v = 0,w = 1 : Ĥ |1,Ai= Ĥ |N,Bi= 0. (1.21)

These eigenstates have support on one site only. Their energy is zero because onsite
potentials are not allowed in the SSH model. These are the simplest examples of edge
states.



8 CHAPTER 1. THE SU-SCHRIEFFER-HEEGER (SSH) MODEL

Figure 1.4: Energy spectrum and wave functions of a finite-sized SSH model. The
number of unit cells is N = 10. (a) Energy spectrum of the system for intercell hopping
amplitude w = 1 as a function the intracell hopping amplitude v. v < 1 (v > 1) corre-
sponds to the topological (trivial) phases. (b) and (c) shows the wave functions of the
hybridized edge states, while (d) shows a generic bulk wave function.

1.3.2 Moving Away from the Fully Dimerized Limit

We now examine what happens to the edge states as we move away from the fully
dimerized limit. To be specific, we examine how the spectrum of an open topological
chain, v = 0,w = 1, of N = 10 unit cells changes, as we continuously turn on the
intracell hopping amplitude v. The spectra, Fig. 1.4a, reveal that the energies of the
edge states remain very close to zero energy.

The wavefunctions of almost-zero-energy edge states have to be exponentially lo-
calized at the left/right edge, because the zero of energy is in the bulk band gap. A
plot of the wavefunctions (which have only real components, since the Hamiltonian is
real), Figs. 1.4b and c, reveal that the almost-zero-energy eigenstates are odd and even
superpositions of states localized exponentially on the left and right edge. This is a
result of the exponentially small overlap between the left and the right edge states. We
will later show, in Sect. 1.5.2, that the edge-state energies are also controlled by this
overlap, and are of the order E = e�N/x , with a localization length x = 1/ log(v/w).

There is an important property of the edge states, which is only revealed by the
plot of their wavefunctions, Fig. 1.4b and c. The right edge state has nonvanishing
components only on the A sublattice while the left edge state on the B sublattice.

In the following, we show the generality of these properties, and show the link
between the bulk winding number and the presence/absence of edge states, known as
bulk–boundary correspondence. In the case of the SSH model, all this hinges on a
property of the model known as chiral symmetry.
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1.4 Chiral Symmetry
The SSH model has a very important property, that is often referred to as chiral (or
sublattice) symmetry. It is the property that all nonvanishing matrix elements of the
Hamiltonian connect sites on different sublattices. We here discuss unitary symmetries,
define chiral symmetry, and flesh out its consequences.

Unitary Symmetries are Eliminated

In quantum mechanics, we say that a Hamiltonian Ĥ has a symmetry represented by a
unitary operator Û if

ÛĤÛ† = Ĥ. (1.22)

In case of a symmetry, Û and Ĥ can be diagonalized together, and therefore, Ĥ has
no matrix elements between two eigenstates of Û with different eigenvalues. This can
be understood as a superselection rule: if we partition the Hilbert space into differ-
ent sectors, i.e., eigenspaces of Û , labeled by the corresponding eigenvalues, then the
dynamics as defined by Ĥ can be regarded separately in each sector.

A unitary symmetry can be simply made to disappear if we restrict ourselves to
one sector of the Hilbert space. This is what we do anyway if we want to diagonalize
the Hamiltonian efficiently, and we know that it has a given unitary symmetry. An
extreme example is that of lattice translation symmetry. In Sect. 1.2, to simplify the
bulk Hamiltonian, we essentially rewrote it in the basis of plane wave modes. In this
basis it became block diagonal, with its 2x2 blocks given by the bulk momentum-space
Hamiltonian, evaluated at the one wavenumber per block. There the symmetry was the
lattice translation operator Û = |(m mod N)+1,Aihm,A|+ |m+1,Bihm,B|, and the
labels of the superselection sectors were the quasimomenta k. The 2x2 blocks of Ĥ,
obviously had no translation symmetry left.

A Different Type of Symmetry

The word “symmetry” is also used in a different sense in condensed matter physics.
One example is chiral symmetry. We say that a system with Hamiltonian Ĥ has chiral
symmetry, if

ĜĤĜ† =�Ĥ, (1.23)

with an operator Ĝ that is not only unitary, but fulfils some other criteria as well. Notice
the extra minus sign on the right hand side. This has important consequences, which
we come to later, but first discuss the criteria on the symmetry operator.

First, in order to exclude conventional unitary symmetries (we assume those have
already been eliminated), the chiral symmetry operator has to be not only unitary but
Hermitian as well, Ĝ† = Ĝ. This can be written succintly as

Ĝ†Ĝ = Ĝ2 = 1. (1.24)
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To understand where the requirement of hermiticity comes from, consider the operator
Ĝ2. This represents a conventional unitary symmetry of Ĥ, since

Ĝ2Ĥ(Ĝ2)† = Ĝ(ĜĤĜ†)Ĝ† =�ĜĤĜ† = Ĥ. (1.25)

In order not to have unitary symmetries, we require that the square of the chiral sym-
metry operator is a (state-independent) phase, Ĝ2 = eif . Requiring Ĝ2 = 1 is no loss of
generality, because we can always “gauge the phase away” by Ĝ ! e�if/2Ĝ.

Second, it is also required that the sublattice operator Ĝ be local. The system is
assumed to consist of unit cells, and matrix elements of Ĝ between sites from differ-
ent unit cells should vanish. In the SSH chain, this means that for m 6= m0, we have
hm,a| Ĝ |m0,a 0i = 0, for any a,a 0 2 (A,B). To keep things simple, we can demand
that the sublattice operator act in the same way in each unit cell (although this is not
strictly necessary), its action represented by a unitary operator ĝ acting on the internal
Hilbert space of one unit cell, i.e.,

Ĝ = ĝ � ĝ � . . .� ĝ =
NM

m=1
ĝ, (1.26)

where N is the number of unit cells.
A third requirement, which is often not explicitly stated, is that the chiral symmetry

has to be robust. To understand what we mean by that, first note that in solid state
physics, we often deal with Hamiltonians with many local parameters that vary in a
controlled or uncontrolled way. An example is the SSH model, where the values of the
hopping amplitudes could be subject to spatial disorder. We gather all such parameters
in a formal vector, and call it x 2 X. Here X is the set of all realizations of disorder that
we investigate. Instead of talking about the symmetries of a Hamiltonian Ĥ, we should
rather refer to symmetries of a set of Hamiltonians {Ĥ(x )}, for all x 2 X. This set has
chiral symmetry represented by Ĝ if

8x 2 X : ĜĤ(x )Ĝ =�Ĥ, (1.27)

with the symmetry operator Ĝ independent of the parameters x . This is the robustness
of the chiral symmetry.

Sublattice Symmetry

Chiral symmetry is also called sublattice symmetry. Given the chiral symmetry opera-
tor Ĝ, we can define orthogonal sublattice projectors P̂A and P̂B, as

P̂A = 1
2
�
I+ Ĝ

�
; P̂B = 1

2
�
I� Ĝ

�
, (1.28)

where I represents the identity operator on the Hilbert space of the system. Note that
P̂A + P̂B = I, and P̂AP̂B = 0. The defining relation of sublattice symmetry, Eq. (1.23),
can be written in an equivalent form by requiring that the Hamiltonian induces no
transitions from any site on one sublattice to any site on the same sublattice,

P̂AĤP̂A = PBĤP̂B = 0; Ĥ = P̂AĤP̂B + P̂BĤP̂A. (1.29)
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In fact, using the projectors P̂A and P̂B is an alternative and equivalent way of defining
chiral symmetry. The operator representing the symmetry is then Ĝ = P̂A � P̂B.

Block Off-diagonal structure in the chiral basis

In general, chiral symmetry guarantees that the matrix of the Hamiltonian is block off-
diagonal in a practically chosen basis, a chiral basis. This is similar to how unitary
symmetry guarantees a block diagonal structure in a basis that takes into account the
corresponding symmetry. A chiral basis is such that every basis state is an eigenstate
of the chiral symmetry, and they are ordered so that all the states with eigenvalue +1
(sublattice A) come first, and then all the states with eigenvalue �1 follow. In other
words, in the chiral basis,

chiral basis: Ĝ = diag(1, . . . ,1| {z }
NA

,�1, . . . ,�1| {z }
NB

), (1.30)

where, for the SSH model, NA = NB = N. Chiral symmetry is tantamount to requiring
that the matrix of the Hamiltonian, in the chiral basis, should be block off-diagonal,

Ĥ =

✓
0 h
h† 0

◆
, (1.31)

where h is an NA ⇥NB matrix.
d

1.4.1 Consequences of Chiral Symmetry for Energy Eigenstates
We now come to the consequences of chiral symmetry, which are very different from
those of conventional symmetries, due to the extra minus sign in its definition, Eq. (1.23).

Symmetric Spectrum

The spectrum of a chiral symmetric Hamiltonian is symmetric with respect to the E = 0
line. For any state with energy E, there is a chiral symmetric partner with energy �E.
This is simply seen,

Ĥ |yi= E |yi =) ĤĜ |yi=�ĜĤ |yi=�ĜE |yi=�EĜ |yi . (1.32)

This carries different implications for nonzero energy eigenstates and zero energy
eigenstates.

For E 6= 0, the states |yi and Ĝ |yi are eigenstates with different energy, and, there-
fore, have to be orthogonal. This implies that every nonzero energy eigenstate of Ĥ has
equal support on both sublattices,

If E 6= 0 : hy| P̂A |yi= hy| P̂B |yi , (1.33)

which follows from hy| Ĝ |yi= 0.
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For E = 0, zero energy eigenstates can be chosen to have support on only one
sublattice, i.e.,

If E = 0 : ĤP̂A/B |yi= 1
2 Ĥ

�
|yi± Ĝ |yi

�
= 0. (1.34)

These projected zero-energy eigenstates are eigenstates of Ĝ, and therefore are chiral
symmetric partners of themselves.

Just as unitary symmetries help obtain the spectrum of a Hamiltonian (diagonal-
ization of the blocks is numerically cheaper than diagonalizing the whole matrix), so
does chiral symmetry. We need to only calculate with the off-diagonal block of the
Hamiltonian in the chiral basis, i.e., h of Eq. (1.31). This h is an NA ⇥NB matrix,
not necessarily a square matrix; we will take without loss of generality NA  NB. The
eigenvalues and eigenvectors of H can be obtained from the singular value decompo-
sition of h, i.e., from the spectrum of hh†. For every strictly positive eigenvalue E2 of
hh†, with eigenvector u, there is a pair of eigenvectors of H, since

hh†u = E2u =)
✓

0 h
h† 0

◆✓
±Eu
h†u

◆
=±E

✓
±Eu
h†u

◆
. (1.35)

Remark: Every zero eigenvalue of hh† gives a single zero-energy eigenstate of Ĥ, that
lives on sublattice A, obtained from the eigenvector u of hh† as (u,0) in a chiral basis.
Similarly, zero eigenvalues of hh† can be used to construct zero-energy eigenstates of Ĥ
that live on sublattice B. If NA <NB, then we know hh† must have NB�NA eigenvectors
with eigenvalue 0. In other words, if there are more sites on one sublattice than on the
other, the majority sublattice will host eigenstates that are exactly at zero energy.

1.4.2 Sublattice Projectors and Chiral Symmetry of the SSH Model
The Hamiltonian of the SSH model, Eq. (1.1), is bipartite: the Hamiltonian includes
no transitions between sites with the same sublattice index. The projectors to the sub-
lattices read

P̂A =
N

Â
m=1

|m,Aihm,A| ; P̂B =
N

Â
m=1

|m,Bihm,B| . (1.36)

Chiral symmetry is represented by the sublattice operator Ŝz, that multiplies all com-
ponents of a wavefunction on sublattice B by (�1),

Ŝz = P̂A � P̂B. (1.37)

Note that this operator has the properties required of the chiral symmetry operator
above: it is unitary, Hermitian, and local.

The chiral symmetry of the SSH model is a restatement of the fact that the Hamil-
tonian is bipartite,

P̂AĤP̂A = P̂BĤP̂B = 0; , ŜzĤŜz =�Ĥ. (1.38)
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This relation holds because Ĥ only contains terms that are multiples of |m,Aihm0,B|, or
of |m,Bihm0,A| with m,m0 2 Z. Upon multiplication from the left and the right by Ŝz,
such a term picks up a single factor of �1 (because of the multiplication from the left
or because of the multiplication from the right). Note that this relation, equivalent to
an anticommutation of Ĥ and Ŝz, holds whether or not the hopping amplitudes depend
on position: therefore, the chiral symmetry represented by Ŝz has the required property
of robustness.

1.4.3 Consequence of Chiral Symmetry: Bulk Winding Number n
for the SSH Model

We now consider the bulk momentum-space Hamiltonian Ĥ(k) = d(k)ŝ .
The path of the endpoint of d(k), as the wavenumber goes through the Brillouin

zone, k = 0 ! 2p , is a closed path on the dx,dy plane. This path has to avoid the
origin, d = 0: if there was a k at which d(k) = 0, the gap would close at this k, and we
would not be talking about an insulator. Because of chiral symmetry, the vector d(k) is
restricted to lie on the dx,dy plane,

ŝzĤ(k)ŝz =�Ĥ(k) =) dz(k) = 0. (1.39)

The endpoint of d(k) is then a closed, directed loop on the plane, and thus has a well
defined integer winding number about the origin.

Winding Number n as the Multiplicity of Solutions

A simple way to obtain the winding number graphically is counting the number of
times d(k) intersects a curve that goes from the origin of the dx,dy plane to infinity.

1. Since d(k) is a directed curve, it has a left side and a right side. Paint the left side
blue, the right side red, as shown in Fig. 1.5a.

Figure 1.5: (a) Endpoints of the vector d(k) forming a loop, as k is swept through the
Brillouin zone. Red/blue denotes the left/right side of the loop. (b) The loop (gray)
is projected to the unit circle (dashed). This projection (red) allows for the compact
formula (1.41) expressing the winding number of the loop around the origin. We should
display a few arrows showing the direction of the directed curves, both on (a) and (b).
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2. Take a directed curve L going from 0 to infinity. We can call this the “line of
sight to infinity”, although it need not be a straight line. A simple choice is the
half-infinite line, dy = 0, dx � 0. Two other choices are shown in Fig. 1.5a.

3. Identify the intersections of d(k) with L .

4. Each intersection has a signature: this is +1 if the line of sight meets it from the
blue side, �1 for the red side.

5. The winding number n is the sum of the signatures.

We now consider how the winding number n defined above can change under con-
tinuous deformations of L or of d(k). We only allow for deformations that keep both
curves on the plane, maintain L going from the origin to infinity, and do not create
points where d(k) = 0. Due to the deformations the intersections of L and d(k) can
move, but this does not change n . They can also appear or disappear, at points where
L and d(k) touch. However, they can only appear or disappear pairwise: a red and a
blue intersection together, which does not change n . As an example, the two choices
of the line of sight L in Fig. 1.5a, have 1 or 3 intersections, but the winding number is
+1, for either of them.

Winding Number as an Integral

The winding number can also be written as a compact formula using the unit vector d̃,
defined as

d̃ =
d
|d| . (1.40)

The image of the map d̃ is the red loop shown in Fig. 1.5b: it is the projection of the
curve of d(k) (gray loop) to the unit circle (dashed). The vector d̃(k) is well defined
for all k because d(k) 6= 0. You can check easily that the winding number n is given by

n =
1

2p

Z ✓
d̃(k)⇥ d

dk
d̃(k)

◆

z
dk. (1.41)

To calculate n directly from the bulk momentum-space Hamiltonian, note that it is
off-diagonal (in the basis of eigenstates of the chiral symmetry operator ŝz),

H(k) =
✓

0 h(k)
h⇤(k) 0

◆
; h(k) = dx(k)� idy(k). (1.42)

The winding number of d(k) can be written as an integral, using the complex logarithm
function, log(|h|eiargh) = log |h|+ iargh. It is easy to check that

n =
1

2pi

Z p

�p
dk

d
dk

logh(k) =
1

2pi
lim

M!•

M�1

Â
j=1

log
h(k = 2p( j+1)/M)

h(k = 2p j/M)
. (1.43)

Here, during the calculation of the integral, the branch cut for the logarithm is always
shifted so that the derivative is always well defined. The above integral is always
imaginary, and thus, n is always real, since |h(k =�p)|= |h(k = p)|.
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Winding Number of the SSH Model

For the SSH model, the winding number is either 0 or 1, depending on the parameters.
In the trivial case, when the intracell hopping dominates the intercell hopping, v > w,
the winding number is n = 0. In the topological case, when w > v, we have n = 1.

To change the winding number n of the SSH model, we need to either (a) pull the
path of d(k) through the origin in the dx,dy plane, or (b) lift it out of the plane and put
it back on the plane at a different position. This is illustrated in Fig. 1.6. Method (a)
requires closing the bulk gap. Method (b) requires breaking chiral symmetry.

1.5 Number of Edge States as Topological Invariant
We now introduce the notion of adiabatic deformation of insulating Hamiltonians. An
insulating Hamiltonian is adiabatically deformed if

• its parameters are changed continuously,

• but the important symmetries of the system are always maintained,

• and the bulk gap around E = 0 remains open.

The deformation is a fictitious process, and does not take place in time. However, if
we do think of it as a process in real time, the adiabatic theorem [15] tells us, that,

Figure 1.6: The endpoints of the vector d(k) as k goes across the Brillouin zone (red or
blue closed circles), for various parameter settings in the SSH model. In (a), intercell
hopping is kept constant at w = 1, while the intracell hopping is increased from v = 0
to v = 2.3. In the process, the bulk gap was closed and reopened, as the origin (black
point) falls on one of the blue circles. The winding number is changed from 1 to 0. In
(b), we again keep w = 1, and increase v from 0 to 2.3, but this time avoid closing the
bulk gap by introducing a sublattice potential, Hsublattice = uŝz. We do this by tuning a
parameter q from 0 to p , and setting v = 1.15(1� cosq), and u = sinq . At the end of
the process, q = p , there is no sublattice potential, so chiral symmetry is restored. The
winding number has been changed from 1 to 0.
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starting from the many-body ground state (separated from excited states by the energy
gap), and performing the deformation slowly enough, we end up in the ground state,
at least as far as the bulk of the system is concerned. Note that for any finite system
with edges, changes can occur in the ground state even during an adiabatic deformation
(with a subtle point to be made about how the adiabatic deformations has to be slow,
but not too slow, that the edges can still be considered separately). We will come back
to this point in Chap. 4.

Adiabatic Equivalence of Hamiltonians

Two insulating Hamiltonians are said to be adiabatically equivalent or adiabatically
connected if there is an adiabatic deformation connecting them, that respects the im-
portant symmetries. For example, in the phase diagram Fig. 1.7 of the SSH model,
the two Hamiltonians corresponding to the two black points in the topological phase
(w > v) are adiabatically connected, as one can draw a path between them which does
not cross the gapless topological-trival phase boundary w = v.

Topological Invariant

We call an integer number characterizing an insulating Hamiltonian a topological in-
variant, or adiabatic invariant, if it cannot change under adiabatic deformations. Note
that the use of adiabatic deformations implies two properties of the topological in-
variant: (1) it is only well defined in the thermodynamic limit, (2) it depends on the

Figure 1.7: Phase diagram of the SSH model. The winding number of the bulk
momentum-space Hamiltonian Ĥ(k) can be n = 0, if v > w, or n = 1, if v < w. This
defines the trivial (gray) and the topological phase (white). The boundary separating
these phases (black solid line), corresponds to v = w, where the bulk gap closes at some
k. Two Hamiltonians in the same phase are adiabatically connected.
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symmetries that need to be respected. An example for a topological invariant is the
winding number n of the SSH model.

We know that two insulating Hamiltonians are not adiabatically equivalent if their
topological invariants differ. Consider as an example two Hamiltonians corresponding
to two points on different sides of the phase boundary in Fig. 1.7 of the SSH model.
They are not adiabatically connected in the phase diagram. Nevertheless, one might
think that continuously modifying the bulk Hamiltonian by the addition of extra terms,
while maintaining chiral symmetry, could lead to a connection between them. How-
ever, their winding numbers differ, and since winding numbers cannot change under
adiabatic deformation, we know that they are not adiabatically equivalent.

Net Number of Edge States as a Topological Invariant

We have seen in Sect. 1.3.2, that the number of edge states at one end of the SSH model
was an integer that did not change under a specific type of adiabatic deformation. We
now generalize this example.

Consider energy eigenstates at the left end of a gapped chiral symmetric one-
dimensional Hamiltonian in the thermodynamic limit, i.e., with length N ! •, in an
energy window from �e < E < e , with e in the bulk gap. There can be nonzero-
energy edge states in this energy window, and zero-energy edge states as well. Each
nonzero-energy state has to have a chiral symmetric partner, with the state and its part-
ner occupying the same unit cells (the chiral symmetry operator is a local unitary).
The number of zero-energy states is finite (because of the gap in the bulk), and they
can be restricted to a single sublattice each. There are NA zero-energy states at the left
end on sublattice A, and NB states on sublattice B. We can say that the net number of
zero-energy states on the left end is NA �NB.

Consider the effect of an adiabatic deformation of the Hamiltonian, indexed by
some continuous parameter f : 0 ! 1, on the net number of zero-energy edge states at
the left end, NA �NB. The Hamiltonian respects chiral symmetry, and its bulk energy
gap exceeds 2e , for all values of f .

The deformation can create zero-energy states by bringing a nonzero-energy edge
state |Y0( f = 0)i to zero energy, E0( f ) = 0 for f � f 0 but not for f < f 0. In that case,
the chiral symmetric partner of |Y0i, which (up to a phase factor) is Ĝ |Y0( f )i, has to
move simultaneously to zero energy. The newly created zero energy edge states are
P̂A |Y0( f 0)i and P̂B |Y0( f 0)i, which occupy sublattice A and B, respectively. Thus, the
net number NA �NB is unchanged.

The deformation can also bring a zero energy state |Y0i to energy E > 0 at some
f = f 0. However, it must also create a chiral symmetric partner with energy E < 0 at
the same f 0. This is the time reverse of the process of the previous paragraph: here,
both NA and NB must decrease by 1, and, again, NA �NB is unchanged.

The deformation can move nonzero-energy states in or out of the �e < E < e
energy window. This obviously has no effect on the number NA �NB.

Due to the deformation, the wavefunction of a zero-energy eigenstate can change so
that it extends deeper and deeper into the bulk. However, because of the gap condition,
zero-energy states have to have wavefunctions that decay exponentially towards the
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Figure 1.8: A long, fully dimerized SSH chain with 3 domains. The boundaries be-
tween the domains, the “domain walls”, host zero energy eigenstates (yellow shading).
These can be localized on a single site, as for the domain wall at m = 3, or on a super-
position of sites, as the odd superposition of the ends of the trimer shared between the
m = 6 and m = 7 unit cells. .

bulk, and so this process cannot move them away from the edge. Thus, NA and NB
cannot be changed this way.

The arguments above show that NA�NB, the net number of edge states on sublattice
A at the left edge, is a topological invariant.

Bulk–Boundary Correspondence in the SSH Model

We have introduced two topological invariants for the SSH model: the winding number
n , of Eq. (1.41), and the net number of edge states at the left edge, NA �NB, in this
section. The first one was obtained from the bulk Hamiltonian only, the second by
looking at the low energy sector of the left edge. In the trivial case of the SSH model,
v > w, both are 0; in the topological case, v < w, both are 1. This shows that we can use
the bulk topological invariant (the winding number) to make simple robust predictions
about the low-energy physics at the edge. This is a simple example for the bulk–
boundary correspondence, a recurrent theme in the theory of topological insulators,
which will reappear in various models in the forthcoming chapters.

1.5.1 Bound States at Domain Walls
Edge states do not only occur at the ends of an open chain, but also at domain walls
between different insulating domains of the same chain. This can be understood via the
fully dimerized limit. The example in Fig. 1.8 hosts two types of domain walls: one
containing a single isolated site, which hosts a zero-energy state (no onsite potentials
are allowed), and one containing a trimer. On a trimer, the odd superposition of the two
end sites form a zero-energy eigenstate. In the example of Fig. 1.8, this is

Ĥ(|6,Bi� |7,Bi) = 0. (1.44)

Note that, just as the edge states at the ends of the chain, these zero-energy states at the
domain walls have wavefunctions that take nonzero values on one sublattice only.

From a perfect dimerized phase without domains, it is only possible to germinate
an even number of domain walls. This means that if one encounters a domain wall with
a localized state on one sublattice then there will be another domain wall somewhere
in the system—possibly at the system’s edge—with a localized state on the opposite
sublattice.
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Consider a domain wall in an SSH system that is not in the fully dimerized limit.
The wavefunctions of the edge states at the domain walls will penetrate to some small
depth into the bulk, with exponentially decaying evanescent tails. For two domain
walls at a distance of M unit cells, the two edge states on the walls will hybridize, form
“bonding” and “anti-bonding” states. At half filling, of these only the negative energy
eigenstate will be occupied. This state hosts a single electron, however, its wavefunc-
tion is localized with equal weight on the two domain walls. Hence each domain wall,
when well separated from other domain walls and the ends of the chain, will carry half
an electronic charge. This effect is sometimes referred to as “fractionalization” of the
charge.

1.5.2 Exact Calculation of Edge States
The zero energy edge states of the SSH model can also be calculated exactly, even
in the absence of translational invariance. Take an SSH model on N unit cells, with
complex intracell and intercell hopping amplitudes,

Ĥ =
N

Â
m=1

�
vm |m,Bihm,A|+h.c.

�
+

N�1

Â
m=1

�
wm |m+1,Aihm,B|+h.c.

�
. (1.45)

We are looking for a zero energy eigenstate of this Hamiltonian,

Ĥ
N

Â
m=1

�
am |m,Ai+bm |m,Bi

�
= 0. (1.46)

This gives us 2N linear homogeneous equations for the 2N amplitudes am and bm,
which read

m = 1, . . . ,N �1 : vmam +w⇤
mam+1 = 0; wmbm + v⇤m+1bm+1 = 0; (1.47a)

boundaries : vNaN = 0; v⇤1b1 = 0. (1.47b)

The first set of equations is solved by

m = 2, . . . ,N : am =
m�1

’
j=1

�v j

w j⇤
a1; (1.48)

m = 1, . . . ,N �1 : bm =
�vN

wm

N�1

’
j=m+1

�v j
⇤

w j
bN . (1.49)

However, we also have to fulfil Eq. (1.47b), which give

b1 = aN = 0. (1.50)

These equations together say that, in the generic case, there is no zero energy eigen-
state, am = bm = 0.

Although there is no exactly zero energy state, Eqs. (1.48), (1.49) and (1.50) admit
two approximate solutions in the thermodynamic limit, N ! •, if the average intercell
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hopping is stronger than the intracell hopping. More precisely, we define the “bulk
average values”,

log |v|= 1
N �1

N�1

Â
m=1

log |vm| ; log |w|= 1
N �2

N�1

Â
m=2

log |wm| . (1.51)

Equations (1.48) and (1.49) translate to

|aN |= |a1|e�(N�1)/x ; |b1|= |bN |e�(N�2)/x |vN |
|v1|

, (1.52)

with the localization length

x =
1

log |w|� log |v|
. (1.53)

If in the thermodynamic limit, the bulk average values, Eq. (1.51) make sense, and
x > 0, we have two approximate zero energy solutions,

|Li=
N

Â
m=1

am |m,Ai ; |Ri=
N

Â
m=1

bm |m,Bi , (1.54)

with the coefficients am and bm chosen according to Eqs. (1.48) and (1.49), and a1,
respectively, bN , used to fix the norm of |Li, respectively, |Ri.

Hybridization of Edge States

The two states |Li and |Ri hybridize under Ĥ to an exponentially small amount, and
this induces a small energy splitting. We can obtain an estimate for the splitting, and
the energy eigenstates, to a good approximation using adiabatic elimination of the other
eigenstates. In this approximation, the central quantity is the overlap

hR| Ĥ |Li=
���a1e�(N�1)/x vNbN

���eif , (1.55)

with some f 2 [0,2p). The energy eigenstates are approximated as

|0+i= e�if/2 |Li+ eif/2 |Rip
2

; E+ =
���a1e�(N�1)/x vNbN

��� ; (1.56)

|0�i= e�if/2 |Li� eif/2 |Rip
2

; E� =�
���a1e�(N�1)/x vNbN

��� . (1.57)

The energy of the hybridized states thus is exponentially small in the system size.

1.6 Summary
A one-dimensional chiral symmetric lattice insulator can have topologically protected
zero-energy edge states at its ends, predicted by the winding number of the bulk.
Chiral symmetric lattice insulator:
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• Each unit cell has an even number 2M sites.

• Each site belongs to sublattice A or B.

• Hamiltonian induces no transitions between sites on same sublattice, P̂AĤP̂A =
P̂BĤP̂B = 0.

Edge states:

• wavefunction is localized at the edge, decaying exponentially towards the bulk;

• wavefunction has support on one sublattice only (opposite on opposite edges);

• energy is exponentially small in system size, E µ e�N/x .

Winding number:

• Defined for translation invariant bulk (alternative definitions for non-translation
invariant case exist)

H(k) =
✓

0 h(k)
h†(k) 0

◆
; n =

1
2pi

I p

�p
dk

d
dk

logdeth(k). (1.58)

Simplest example is the SSH model, with M = 1.

Ĥ = v
N

Â
m=1

�
|m,Bihm,A|+h.c.

�
+w

N�1

Â
m=1

�
|m+1,Aihm,B|+h.c.

�
; (1.59)

Ĥ(k) = (v+wcosk)| {z }
dx

ŝx +wsink| {z }
dy

ŝy; h(k) = v+we�ik. (1.60)

• trivial if v > w,

• topological if v < w.

• If topological: one topologically protected edge state on sublattice A at the left
edge, on sublattice B at the right edge.

• winding number in this case: the winding of the endpoint of (dx(k),dy(k)).

Problems
Higher winding numbers
The SSH model is one-dimensional in space, and has a two-dimensional internal Hilbert
space. Construct a lattice model that has these properties of the SSH model, but which
has a bulk winding number of 2. Generalize the construction for an arbitrary integer
bulk winding number.

Complex-valued hopping amplitudes
Generalize the SSH model in the following way. Assume that the hopping amplitudes
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v = |v|eifv and w = |w|eifw are complex, and include a third complex-valued hopping
amplitude z = |z|eifz between the states |m,Ai and |m+1,Bi for every m. Provide
a specific example where the tuning of one of the phases changes the bulk winding
number.

A possible generalization to two dimensions
Consider a two dimensional generalization of the SSH model. Take parallel copies of
the SSH chain and couple them without breaking chiral symmetry. What will happen
with the edge states?


