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to the state � |2i, that is, the zero mode moves two sites
to the right and acquires a minus sign. This is a direct
consequence of the simple fact that the Hamiltonian H

has a zero-energy eigenstate

| i =
v2 |0i � v1 |2ip

v
2
1 + v

2
2

. (2)

The prefactor �1 in front of |2i above is not supple-
mented by a dynamical phase factor: the dynamical
phase vanishes because the state | i is a zero-energy
eigenstate for all intermediate times. Note that this in-
stantaneous zero-energy state generally has some weight
on sites 0 and 2, but has no weight on site 1. For ex-
ample, in the intermediate time step when v1 = v2, this
zero-energy state is evenly distributed on the sites 0 and
2, as shown in Fig. 1b.

The actual time dependences of the hopping ampli-
tudes v1 and v2 can have various forms, the resulting
dynamics is independent of the details in the adiabatic
limit. The simplest option could be to use linear ramps
for each hopping amplitude. In what follows, we will use
a smooth, exponential time dependence instead, which is
expected to suppress leakage from the zero-energy sub-
space that arises due to the finite (non-infinite) time du-
ration TDW of the domain-wall movement.17,23 The hop-
ping amplitudes are changed in time as

v1(t) = v �(t/TDW), (3a)

v2(t) = v (1� �(t/TDW)) , (3b)

where the pulse shape function � is defined as

�(x) =
e
�1/x

e�1/(1�x) + e�1/x
. (4)

In Eq. (3), we introduced the domain-wall movement
time TDW, which is the time used to move the domain
wall by two sites (i.e., from (a) to (c) in Fig. 1). The
time-dependent hopping amplitudes in Eq. (3) are shown
in Fig. 1d.

Importantly, the result of this adiabatic deformation of
the Hamiltonian, i.e., that the state |0i develops to the
state � |2i, does not depend on the actual protocol used
to tune the hopping amplitudes in time. As seen directly
from Eq. (2), this final state is guaranteed provided that
at least one of v1 and v2 is nonzero for all times, and that
the final value of v1 is positive.

III. EXCHANGE OF ZERO-ENERGY MODES
IN A Y-JUNCTION PROVIDES A Y GATE

In this section, we propose the SSH Y-junction setup
and a braiding protocol, and numerically solve the time-
dependent Schrödinger equation to show that adiabatic
braiding leads to a perfect Y gate if the SSH chains of
the junction are fully dimerized. Topological protection
is not addressed here, that we will do in the subsequent
sections.

FIG. 2. Braiding in a Y-junction constructed from three fully
dimerized SSH chains. (a) shows the initial configuration and
the labels associated to the sites. In (b)-(e), the colored sites
(red, green) depict the zero-energy edge modes. These edge
modes are exchanged by adiabatically moving the domain
walls supporting them, following the scheme in Fig. 1. (b)
depicts the initial configuration, t = 0. (c) and (d) depicts the
two intermediate configurations when the zero-energy modes
are localized at the outer ends of the chains, t = 3TDW and
t = 6TDW, respectively. (e) denotes the final configuration at
t = 9TDW: the Hamiltonian is the same as the initial one (b),
but the edge modes have been exchanged.

The SSH Y-junction and the braiding protocol are
illustrated in Fig. 2. The single-particle tight-binding
Hamiltonian at the initial stage of the braiding protocol
is shown in Fig. 2a. This junction is formed by three SSH
chains, connected via a central site. We denote the three
chains by L, R and M, according to their location in the
figure. For simplicity, we consider cases where the three
chains have the same length Nc; the figure corresponds
to chain length Nc = 3. The tight-binding Hamiltonian
of this Y-junction reads

H =
X

c2C

Nc�1X

m=1

vc,m (|c,mi hc,m+ 1|+ h.c.)

+
X

c2C

vc,0 (|0i hc, 1|+ h.c.) (5)

where C = {L,R,M} is the set of chain indices, m is the
site index within a given chain. According to Fig. 2a, the
state localized on the central site is denoted by |0i, and
the state localized on the mth site on chain c is denoted
by |c,mi.
Figure 2a depicts a certain configuration of hopping

amplitudes: the hopping amplitudes shown as black lines
are set to v (e.g., vM,0 = v), all other hopping amplitudes
are set to zero (e.g., vM,1 = 0). The Hamiltonian corre-
sponding to Fig. 2a has a two-dimensional zero-energy
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ground state is separated from the excited part of
the spectrum by an energy gap. The elementary
particles of the system may form collective com-
posite particles, known as “non-Abelian anyons.”
When that occurs, the ground state becomes de-
generate. In the limit of a large number of anyons,
N, the ground-state degeneracy is lN, and the
anyon is said to have a “quantum dimension” of
l. This degeneracy is not a result of any obvious
symmetry of the system. As such, it is robust and
cannot be lifted with the application of any local
perturbation (11).

Transformations between the degenerate
ground states may be induced by exchanging
the anyons’ positions. The canonical example is
that of a two-dimensional (2D) system, where
anyons may be regarded as point particles.
Imagine a set of anyons that are initially positioned
on a plane at (R1…RN). They are made to move
along a set of trajectories [R1(t)…RN(t)] that ends
with their positions permuted. The motion is slow
enough not to excite the system out of the sub-
space of ground states.When viewed in a 3D plot,
the set of trajectories, known also asworld lines,Ri
(t) look like entangled strands of spaghetti. A
“braid” is defined as a set of spaghetti config-
urations that can be deformed to one another
without spaghetti strands being cut. Remarkably,
the unitary transformation implemented by the
motion of the anyons depends only on the braid
and is independent of the details of the trajec-
tories. These unitary transformations must satisfy
a set of conditions that result from their topo-
logical nature, such as the Yang-Baxter equation
(Fig. 1A).

Notably, for the braid in which two anyons of
types a and b are encircled by a third that is far
away (Fig. 1B), the corresponding transformation
will not be able to resolve the two anyons’ types;
from a distance they would look as if they “fused”
to one anyon, of type c. The fusion of a pair of
non-Abelian anyonsmay result in several different
outcomes that are degenerate in energy when the
anyons are far away from one another (leading to
the ground-state degeneracy). The degeneracy is
split when the fused anyons get close. The list of
cs to which any a-b pair may fuse constitutes the
“fusion rules.” For each anyon of type a, there is
an “anti-anyon” ā such that the twomay annihilate
one another, or be created as a pair.

Topological Quantum Computation
The properties of non-Abelian states that are im-
portant for our discussion are the quantum dimen-
sions of the anyons, the unitary transformations
that they generate by braiding, and their fusion
rules. Different non-Abelian systems differ in
these properties. To turn a non-Abelian system
into a quantum computer, we first create pairs
of anyons and anti-anyons from the “vacuum,” the
state of zero anyons. In the simplest computational
model, a qubit is composed of a group of several
anyons, and its two states, |0〉 and |1〉, are two

possible fusion outcomes of these anyons. (A
qudit is formed if there are more than two possible
fusion outcomes.) The creation from the vacuum
initializes qubits in a well-defined state. The uni-

tary gates are implemented by the braid transfor-
mations (Fig. 1C). At the end of the computation,
the state is read off by measuring the fusion out-
come of the anyons (2–6).

Fig. 1. (A) The Yang-Baxter equation states that two exchange paths that can be deformed into each
other without cutting the world lines of the particles (blue curves) define the same braid. (B) Two
anyons labeled a and b are encircled by a third anyon d. The resulting transformation depends only on
the fusion outcome of a and b. (C) A canonical construction for a qubit, in a system of Ising anyons,
consists of four anyons that together fuse to the vacuum. The two possible states can then be labeled by
the fusion charge, say, of the left pair. A single qubit p/4 gate can be used by exchanging anyons 1 and
2 (depicted), whereas a Hadamard gate can be used by exchanging anyons 2 and 3. Such a construction
can be realized using Majorana fermions. (D) Decoherence of information encoded in the ground-state
space. Thermal and quantum fluctuations nucleate a quasiparticle-antiquasiparticle pair (red, white).
The pair encircles two anyons encoding quantum information, and annihilates. The result of the process
depends on the fusion charge of the two anyons, leading to decoherence of the encoded quantum
information.
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Fig. 2. Braiding in a system hosting Majorana fermions (zero modes or their fractionalized
counterparts). For a manipulation of the subspace of ground states to lead to a topological result,
the number of ground states should remain fixed. (A) Two zero modes initially at locations 1 and 2
are to be interchanged. A pair of coupled zero modes, 3 and 4, is created from the vacuum and
may reside, for example, at the two ends of a short wire. As long as 3 and 4 are coupled (blue line),
they are not zero modes and do not change the degeneracy of the ground state. Next, location 1 is
coupled to 3 and 4 (red dashed line). The coupled system of 1, 3, and 4 must still harbor a zero
mode. Thus, this step does not vary the degeneracy of the ground state, but it does redistribute the
wave function of that zero mode among the three coupled sites. Location 4 is then decoupled from
1 and 3, and the localized zero mode is now at location 4. The outcome is then that 1 was copied to
location 4. (B) In a similar fashion, 2 is copied to location 1. (C) Finally, 1 is copied from location 4
to location 2. At the end of this series, 3 and 4 are again coupled to one another, but 1 and 2 have
been interchanged.
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ground state is separated from the excited part of
the spectrum by an energy gap. The elementary
particles of the system may form collective com-
posite particles, known as “non-Abelian anyons.”
When that occurs, the ground state becomes de-
generate. In the limit of a large number of anyons,
N, the ground-state degeneracy is lN, and the
anyon is said to have a “quantum dimension” of
l. This degeneracy is not a result of any obvious
symmetry of the system. As such, it is robust and
cannot be lifted with the application of any local
perturbation (11).

Transformations between the degenerate
ground states may be induced by exchanging
the anyons’ positions. The canonical example is
that of a two-dimensional (2D) system, where
anyons may be regarded as point particles.
Imagine a set of anyons that are initially positioned
on a plane at (R1…RN). They are made to move
along a set of trajectories [R1(t)…RN(t)] that ends
with their positions permuted. The motion is slow
enough not to excite the system out of the sub-
space of ground states.When viewed in a 3D plot,
the set of trajectories, known also asworld lines,Ri
(t) look like entangled strands of spaghetti. A
“braid” is defined as a set of spaghetti config-
urations that can be deformed to one another
without spaghetti strands being cut. Remarkably,
the unitary transformation implemented by the
motion of the anyons depends only on the braid
and is independent of the details of the trajec-
tories. These unitary transformations must satisfy
a set of conditions that result from their topo-
logical nature, such as the Yang-Baxter equation
(Fig. 1A).

Notably, for the braid in which two anyons of
types a and b are encircled by a third that is far
away (Fig. 1B), the corresponding transformation
will not be able to resolve the two anyons’ types;
from a distance they would look as if they “fused”
to one anyon, of type c. The fusion of a pair of
non-Abelian anyonsmay result in several different
outcomes that are degenerate in energy when the
anyons are far away from one another (leading to
the ground-state degeneracy). The degeneracy is
split when the fused anyons get close. The list of
cs to which any a-b pair may fuse constitutes the
“fusion rules.” For each anyon of type a, there is
an “anti-anyon” ā such that the twomay annihilate
one another, or be created as a pair.

Topological Quantum Computation
The properties of non-Abelian states that are im-
portant for our discussion are the quantum dimen-
sions of the anyons, the unitary transformations
that they generate by braiding, and their fusion
rules. Different non-Abelian systems differ in
these properties. To turn a non-Abelian system
into a quantum computer, we first create pairs
of anyons and anti-anyons from the “vacuum,” the
state of zero anyons. In the simplest computational
model, a qubit is composed of a group of several
anyons, and its two states, |0〉 and |1〉, are two

possible fusion outcomes of these anyons. (A
qudit is formed if there are more than two possible
fusion outcomes.) The creation from the vacuum
initializes qubits in a well-defined state. The uni-

tary gates are implemented by the braid transfor-
mations (Fig. 1C). At the end of the computation,
the state is read off by measuring the fusion out-
come of the anyons (2–6).

Fig. 1. (A) The Yang-Baxter equation states that two exchange paths that can be deformed into each
other without cutting the world lines of the particles (blue curves) define the same braid. (B) Two
anyons labeled a and b are encircled by a third anyon d. The resulting transformation depends only on
the fusion outcome of a and b. (C) A canonical construction for a qubit, in a system of Ising anyons,
consists of four anyons that together fuse to the vacuum. The two possible states can then be labeled by
the fusion charge, say, of the left pair. A single qubit p/4 gate can be used by exchanging anyons 1 and
2 (depicted), whereas a Hadamard gate can be used by exchanging anyons 2 and 3. Such a construction
can be realized using Majorana fermions. (D) Decoherence of information encoded in the ground-state
space. Thermal and quantum fluctuations nucleate a quasiparticle-antiquasiparticle pair (red, white).
The pair encircles two anyons encoding quantum information, and annihilates. The result of the process
depends on the fusion charge of the two anyons, leading to decoherence of the encoded quantum
information.
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Fig. 2. Braiding in a system hosting Majorana fermions (zero modes or their fractionalized
counterparts). For a manipulation of the subspace of ground states to lead to a topological result,
the number of ground states should remain fixed. (A) Two zero modes initially at locations 1 and 2
are to be interchanged. A pair of coupled zero modes, 3 and 4, is created from the vacuum and
may reside, for example, at the two ends of a short wire. As long as 3 and 4 are coupled (blue line),
they are not zero modes and do not change the degeneracy of the ground state. Next, location 1 is
coupled to 3 and 4 (red dashed line). The coupled system of 1, 3, and 4 must still harbor a zero
mode. Thus, this step does not vary the degeneracy of the ground state, but it does redistribute the
wave function of that zero mode among the three coupled sites. Location 4 is then decoupled from
1 and 3, and the localized zero mode is now at location 4. The outcome is then that 1 was copied to
location 4. (B) In a similar fashion, 2 is copied to location 1. (C) Finally, 1 is copied from location 4
to location 2. At the end of this series, 3 and 4 are again coupled to one another, but 1 and 2 have
been interchanged.
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‘Topological` quantum gate: a simple example

H(t) =

0

BB@

0 0 0 v1(t)
0 0 0 v2(t)
0 0 0 v3(t)

v1(t) v2(t) v3(t) 0

1

CCA
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Cyclic adiabatic deformation of the Hamiltonian …

… might be useful for quantum computing

geometrical
Berry phase

Berry 1984

geometrical
non-Abelian Berry phase

Wilczek & Zee PRL 1984 
San-Jose et al. PRB 2008

topological
non-Abelian Berry phase

Nayak et al. RMP 2008

robust against timing errors robust against timing errors
robust against  

timing and path errors



Topologically protected quantum gates: a simpler example

Setup: Single particle in a Y-junction of 1D Su-Schrieffer-Heeger chains

Boross et al., PRB 2019
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1. defects (domain walls)

2. 2x degenerate zero-energy subspace

3. adiabatic ‘braiding’ or ‘exchange’ of defects:
Y-gate in the zero-energy subspace
L ) R, R ) �L

4. slower braiding ) better gate

5. longer chains ) better gate

6. does not require a perfect wire

7. does require chiral symmetry

v

�v

f( ) =
���h |U †

idU | i
���
2

(1)

F =

Z

Bloch-sphere surface
d f( ) (2)

II. SYMMETRIC TUNNELING

You’re saying that if you couple a dot to one end of the
wire, then tunneling will happen irrespective of the wire
parity, whereas you can have a parity-sensitive tunneling
process if you couple the dot to both ends. Why is that?

A basic argument is the one you’ve heard many times.
If the excitations are spatially separated zero-energy Ma-
jorana modes, then that means that the two ground
states cannot be distinguished by any local physical
quantity, including charge dynamics. By connecting the
Majorana modes, they are not separated any more, so
the di↵erence can be revealed.

Assume you have an asymmetric coupling, Hc /
c
†

Ncd + c
†

dcN . One can expand cN in terms of the Majo-
rana operators, cN = aN + ibN .

III. NOT REQUIRED

The ”minimal matrix distance” error:

" = min
U2U

��Oid � UOU
†
��
F
, (3)

where U is the set of 2⇥ 2 unitary matrices, and |A|F =p
A†A is the Frobenius norm of matrix A.

IV. INTRODUCTION

A generic task in quantum information processing
is to perform quantum gates. Topological quantum
computing? [further refs? Pachos?] is a theoretical
paradigm, where quantum information is encoded in a
quantum system with defects, the defects ensure the ex-
istence of an energy-denegerate subspace, quantum in-
formation is encoded in this degenerate subspace, and
gates are performed by exchanging (braiding) the spatial
positions of the defects in a slow, adiabatic fashion.? ?

Because of the topological properties of these models,
the quantum information is expected to be protected
from certain environmental perturbations, which is of-
ten phrased as quantum information and quantum gates
are topologically protected.
In most cases, topological quantum computing has

been studied via strongly correlated interacting quan-
tum systems. One example is the toric code;? in its
simplest form, it is a two-dimensional lattice of localized
interacting spin-1/2 particles with four-spin interactions.
One-dimensional topological superconductors are also ex-
pected to provide a platform for topological quantum
computing; in that case however, interactions are hidden
in the mean-field description and the system is described
by a ‘free’ Hamiltonian that is quadratic in fermion
operators, but includes anomalous, number-conserving
terms.? In this one-dimensional example, the defects are
also called domain walls, as they separate topological and
trivial sample segments from each other. In this system,
quantum gates based on braiding of defects should have
topological protection: even in the presence of local noise,
gate errors are expected to be suppressed as long as the
defects are well separated throughout the exchange pro-
cess, and the Hamiltonian has particle-hole symmetry.
Here, we introduce and study a model quantum sys-

tem whose dynamics shares features with those men-
tioned above, without the need of any interactions or
anomalous superconducting Hamiltonian terms. The
setup studied here is based on the Su-Schrie↵er-Heeger
(SSH) model,? ? ? in which a single electron is de-
scribed in a non-interacting non-superconducting tight-
binding lattice with a two-orbital unit cell. Note that the
non-interacting nature of our model is a major concep-
tual simplification with respect to other systems showing
topologically protected quantum dynamics, such as the
toric code, Majorana qubits, or fractional quantum Hall
systems.
In particular, we propose a setup and a braid-

ing protocol which resembles the Majorana Y-junction
scheme studied in the context of 1D topological
superconductors.? ? Similarly to the latter, in our setup
the exchange of defects provides a phase gate in a two-
dimensional degenerate subspace of the Hamiltonian.
The gate in our setup is a ⇡ phase gate, in contrast to the
⇡/2 phase gate in the Majorana Y-junction. We demon-
strate that a certain type of topological protection (to be
defined below) of the ⇡ phase gate in the SSH setup is
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parity, whereas you can have a parity-sensitive tunneling
process if you couple the dot to both ends. Why is that?

A basic argument is the one you’ve heard many times.
If the excitations are spatially separated zero-energy Ma-
jorana modes, then that means that the two ground
states cannot be distinguished by any local physical
quantity, including charge dynamics. By connecting the
Majorana modes, they are not separated any more, so
the di↵erence can be revealed.

Assume you have an asymmetric coupling, Hc /
c
†

Ncd + c
†

dcN . One can expand cN in terms of the Majo-
rana operators, cN = aN + ibN .

III. NOT REQUIRED
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��Oid � UOU
†
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, (3)

where U is the set of 2⇥ 2 unitary matrices, and |A|F =p
A†A is the Frobenius norm of matrix A.

IV. INTRODUCTION

A generic task in quantum information processing
is to perform quantum gates. Topological quantum
computing? [further refs? Pachos?] is a theoretical
paradigm, where quantum information is encoded in a
quantum system with defects, the defects ensure the ex-
istence of an energy-denegerate subspace, quantum in-
formation is encoded in this degenerate subspace, and
gates are performed by exchanging (braiding) the spatial
positions of the defects in a slow, adiabatic fashion.? ?

Because of the topological properties of these models,
the quantum information is expected to be protected
from certain environmental perturbations, which is of-
ten phrased as quantum information and quantum gates
are topologically protected.
In most cases, topological quantum computing has

been studied via strongly correlated interacting quan-
tum systems. One example is the toric code;? in its
simplest form, it is a two-dimensional lattice of localized
interacting spin-1/2 particles with four-spin interactions.
One-dimensional topological superconductors are also ex-
pected to provide a platform for topological quantum
computing; in that case however, interactions are hidden
in the mean-field description and the system is described
by a ‘free’ Hamiltonian that is quadratic in fermion
operators, but includes anomalous, number-conserving
terms.? In this one-dimensional example, the defects are
also called domain walls, as they separate topological and
trivial sample segments from each other. In this system,
quantum gates based on braiding of defects should have
topological protection: even in the presence of local noise,
gate errors are expected to be suppressed as long as the
defects are well separated throughout the exchange pro-
cess, and the Hamiltonian has particle-hole symmetry.
Here, we introduce and study a model quantum sys-

tem whose dynamics shares features with those men-
tioned above, without the need of any interactions or
anomalous superconducting Hamiltonian terms. The
setup studied here is based on the Su-Schrie↵er-Heeger
(SSH) model,? ? ? in which a single electron is de-
scribed in a non-interacting non-superconducting tight-
binding lattice with a two-orbital unit cell. Note that the
non-interacting nature of our model is a major concep-
tual simplification with respect to other systems showing
topologically protected quantum dynamics, such as the
toric code, Majorana qubits, or fractional quantum Hall
systems.
In particular, we propose a setup and a braid-

ing protocol which resembles the Majorana Y-junction
scheme studied in the context of 1D topological
superconductors.? ? Similarly to the latter, in our setup
the exchange of defects provides a phase gate in a two-
dimensional degenerate subspace of the Hamiltonian.
The gate in our setup is a ⇡ phase gate, in contrast to the
⇡/2 phase gate in the Majorana Y-junction. We demon-
strate that a certain type of topological protection (to be
defined below) of the ⇡ phase gate in the SSH setup is
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II. SYMMETRIC TUNNELING

You’re saying that if you couple a dot to one end of the
wire, then tunneling will happen irrespective of the wire
parity, whereas you can have a parity-sensitive tunneling
process if you couple the dot to both ends. Why is that?

A basic argument is the one you’ve heard many times.
If the excitations are spatially separated zero-energy Ma-
jorana modes, then that means that the two ground
states cannot be distinguished by any local physical
quantity, including charge dynamics. By connecting the
Majorana modes, they are not separated any more, so
the di↵erence can be revealed.

Assume you have an asymmetric coupling, Hc /
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rana operators, cN = aN + ibN .
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where U is the set of 2⇥ 2 unitary matrices, and |A|F =p
A†A is the Frobenius norm of matrix A.

IV. INTRODUCTION

A generic task in quantum information processing
is to perform quantum gates. Topological quantum
computing? [further refs? Pachos?] is a theoretical
paradigm, where quantum information is encoded in a
quantum system with defects, the defects ensure the ex-
istence of an energy-denegerate subspace, quantum in-
formation is encoded in this degenerate subspace, and
gates are performed by exchanging (braiding) the spatial
positions of the defects in a slow, adiabatic fashion.? ?

Because of the topological properties of these models,
the quantum information is expected to be protected
from certain environmental perturbations, which is of-
ten phrased as quantum information and quantum gates
are topologically protected.
In most cases, topological quantum computing has

been studied via strongly correlated interacting quan-
tum systems. One example is the toric code;? in its
simplest form, it is a two-dimensional lattice of localized
interacting spin-1/2 particles with four-spin interactions.
One-dimensional topological superconductors are also ex-
pected to provide a platform for topological quantum
computing; in that case however, interactions are hidden
in the mean-field description and the system is described
by a ‘free’ Hamiltonian that is quadratic in fermion
operators, but includes anomalous, number-conserving
terms.? In this one-dimensional example, the defects are
also called domain walls, as they separate topological and
trivial sample segments from each other. In this system,
quantum gates based on braiding of defects should have
topological protection: even in the presence of local noise,
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to the state � |2i, that is, the zero mode moves two sites
to the right and acquires a minus sign. This is a direct
consequence of the simple fact that the Hamiltonian H

has a zero-energy eigenstate

| i =
v2 |0i � v1 |2ip

v
2
1 + v

2
2

. (2)

The prefactor �1 in front of |2i above is not supple-
mented by a dynamical phase factor: the dynamical
phase vanishes because the state | i is a zero-energy
eigenstate for all intermediate times. Note that this in-
stantaneous zero-energy state generally has some weight
on sites 0 and 2, but has no weight on site 1. For ex-
ample, in the intermediate time step when v1 = v2, this
zero-energy state is evenly distributed on the sites 0 and
2, as shown in Fig. 1b.

The actual time dependences of the hopping ampli-
tudes v1 and v2 can have various forms, the resulting
dynamics is independent of the details in the adiabatic
limit. The simplest option could be to use linear ramps
for each hopping amplitude. In what follows, we will use
a smooth, exponential time dependence instead, which is
expected to suppress leakage from the zero-energy sub-
space that arises due to the finite (non-infinite) time du-
ration TDW of the domain-wall movement.17,23 The hop-
ping amplitudes are changed in time as

v1(t) = v �(t/TDW), (3a)

v2(t) = v (1� �(t/TDW)) , (3b)

where the pulse shape function � is defined as

�(x) =
e
�1/x

e�1/(1�x) + e�1/x
. (4)

In Eq. (3), we introduced the domain-wall movement
time TDW, which is the time used to move the domain
wall by two sites (i.e., from (a) to (c) in Fig. 1). The
time-dependent hopping amplitudes in Eq. (3) are shown
in Fig. 1d.

Importantly, the result of this adiabatic deformation of
the Hamiltonian, i.e., that the state |0i develops to the
state � |2i, does not depend on the actual protocol used
to tune the hopping amplitudes in time. As seen directly
from Eq. (2), this final state is guaranteed provided that
at least one of v1 and v2 is nonzero for all times, and that
the final value of v1 is positive.

III. EXCHANGE OF ZERO-ENERGY MODES
IN A Y-JUNCTION PROVIDES A Y GATE

In this section, we propose the SSH Y-junction setup
and a braiding protocol, and numerically solve the time-
dependent Schrödinger equation to show that adiabatic
braiding leads to a perfect Y gate if the SSH chains of
the junction are fully dimerized. Topological protection
is not addressed here, that we will do in the subsequent
sections.

FIG. 2. Braiding in a Y-junction constructed from three fully
dimerized SSH chains. (a) shows the initial configuration and
the labels associated to the sites. In (b)-(e), the colored sites
(red, green) depict the zero-energy edge modes. These edge
modes are exchanged by adiabatically moving the domain
walls supporting them, following the scheme in Fig. 1. (b)
depicts the initial configuration, t = 0. (c) and (d) depicts the
two intermediate configurations when the zero-energy modes
are localized at the outer ends of the chains, t = 3TDW and
t = 6TDW, respectively. (e) denotes the final configuration at
t = 9TDW: the Hamiltonian is the same as the initial one (b),
but the edge modes have been exchanged.

The SSH Y-junction and the braiding protocol are
illustrated in Fig. 2. The single-particle tight-binding
Hamiltonian at the initial stage of the braiding protocol
is shown in Fig. 2a. This junction is formed by three SSH
chains, connected via a central site. We denote the three
chains by L, R and M, according to their location in the
figure. For simplicity, we consider cases where the three
chains have the same length Nc; the figure corresponds
to chain length Nc = 3. The tight-binding Hamiltonian
of this Y-junction reads

H =
X

c2C

Nc�1X

m=1

vc,m (|c,mi hc,m+ 1|+ h.c.)

+
X

c2C

vc,0 (|0i hc, 1|+ h.c.) (5)

where C = {L,R,M} is the set of chain indices, m is the
site index within a given chain. According to Fig. 2a, the
state localized on the central site is denoted by |0i, and
the state localized on the mth site on chain c is denoted
by |c,mi.
Figure 2a depicts a certain configuration of hopping

amplitudes: the hopping amplitudes shown as black lines
are set to v (e.g., vM,0 = v), all other hopping amplitudes
are set to zero (e.g., vM,1 = 0). The Hamiltonian corre-
sponding to Fig. 2a has a two-dimensional zero-energy
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symmetry (particle-hole symmetry) of the Hamiltonian
governing the dynamics.

The non-interacting and non-superconducting nature
of our model makes it particularly feasible for experi-
mental realization. Simple tight-binding models can be
realized in various established platforms, such as optical
waveguide arrays [Szameit] and cold atomic systems.? ?

We discuss the feasibility of such experiments in sec-
tion IX. We also note that a few theory works? ? ?

have already mentioned the potential connection between
non-interacting non-superconducting tight-binding lat-
tice models and topologically protected quantum gates.

We also note that the noise-resilience of our proposed
quantum gate is rather limited and is associated to a spe-
cial non-unitary symmetry (chiral symmetry) of the SSH
model. Therefore we consider our model as an illustra-
tive, pedagogical example, with a fairly straightforward
experimental realization, but not as practical route to
quantum computing.

In what follows, we will assume that the reader is fa-
miliar with the SSH model, serving as an elementary ex-
ample of 1D chiral symmetric topological insulators, and
the related concepts such as chiral symmetry, localized
states at edges and domain walls, the trivial and topo-
logical phases of the SSH model and the topological in-
variant, and the fully dimerized limit. This background
is covered in Chapter 1 of Ref. ? .

V. MOVING A ZERO-ENERGY MODE
LOCALIZED AT A DOMAIN WALL IN A FULLY

DIMERIZED SSH CHAIN

TDW should be introduced in the text, for later use:
this is the timespan between the configuration in Fig. 1a
and the one in Fig. 1c.

A well-known braiding protocol in a Majorana Y-
junction? is based on the adiabatic motion of defects,
which are domain walls in this case. The braiding pro-
tocol in the SSH Y-junction we propose below in section
VI is also based on moving domain walls.

The elementary step of this motion is depicted in
Fig. ??. Figure ??a shows a fully dimerized SSH chain
with a domain wall that is the isolated site. We consider
the three-site black subset of the chain, and disregard the
remaining gray part for our discussion. The Hamiltonian
describing this three-site block reads

H = v1 |1i h0|+ v2 |2i h1|+ h.c., (4)

with v1 = 0 and v2 = v > 0. Should we label the figure
with site and hopping labels? For simplicity, we consider
real-valued hopping amplitudes throughout this work.
Should we relax this condition? The domain wall, i.e.,
site 0 in Fig. ??a, which is disconnected from the rest
of the chain, supports a perfectly localized zero-energy
mode |0i, depicted as the red circle.

The domain wall together with this localized state can
be moved adiabatically by switching on the hopping v1,

e.g., tuning it continuously in time to the value v, reach-
ing the configuration of Fig. ??b, and then switching o↵
the hopping v2 continuously so that it reaches the value
0, reaching the configuration in Fig. ??c. As a result, the
domain wall have moved from site 0 (Fig. ??a) to site
2 (Fig. ??c). Furthermore, if these hopping-amplitude
changes are done adiabatically, then the state |0i devel-
ops to the state � |2i. There is no dynamical phase factor
in front of |2i, because the Hamiltonian has an instanta-
neous zero-energy eigenstate for all intermediate times.
Note that this instantaneous zero-energy state generally
has some weight on sites 0 and 2, but has no weight in
site 1. Reference to textbook dark state physics? Proof,
including the role of chiral symmetry, could be included
in an appendix. For example, in the intermediate time
step when v1 = v2 = v, this zero-energy state is evenly
distributed on the sites 0 and 2, as shown in Fig. ??b.

The actual time dependences of the hopping ampli-
tudes v1 and v2 can have various forms, the simplest op-
tion being a linear ramp in both cases. In what follows,
we will use a smooth, exponential time dependence in-
stead, i.e., the appropriately scaled version of the func-
tion:

f(t) =
e
�1/t

e�1/(1�t) + e�1/t
. (5)

Importantly, the result of this adiabatic deformation
of the Hamiltonian, i.e., that the state |0i develops to
the state � |2i, does not depend on the actual protocol
used to tune the hopping amplitudes in time. As long
as chiral symmetry is maintained, the existence of the
instantaneous zero-energy eigenstate is guaranteed, and
the final state is always � |2i. In this case, the chiral sym-
metry operator is C = |0i h0|+ |2i h2|� |1i h1|, and chiral
symmetry is maintained as long as the on-site energies
and the next-nearest-neighbor hopping are zero.

VI. EXCHANGE OF ZERO-ENERGY MODES
IN A Y-JUNCTION

In this section, we propose the SSH Y-junction setup
and a braiding protocol, and show that adiabatic braiding
leads to a perfect ⇡ phase gate if the SSH chains of the
junction are fully dimerized.

The proposed Y-junction setup, i.e., the tight-binding
Hamiltonian at the initial stage of the braiding protocol,
is shown in Fig. ??a. This junction is formed by three
SSH chains, connected via a central site. We denote the
three chains by L, R and M, according to their location
in the figure. For simplicity, we consider cases where the
three chains have the same length N ; the figure corre-
sponds to chain length N = 3. All figures have Nc as
the length; should we use N or Nc? The tight-binding
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II. SYMMETRIC TUNNELING

You’re saying that if you couple a dot to one end of the
wire, then tunneling will happen irrespective of the wire
parity, whereas you can have a parity-sensitive tunneling
process if you couple the dot to both ends. Why is that?

A basic argument is the one you’ve heard many times.
If the excitations are spatially separated zero-energy Ma-
jorana modes, then that means that the two ground
states cannot be distinguished by any local physical
quantity, including charge dynamics. By connecting the
Majorana modes, they are not separated any more, so
the di↵erence can be revealed.

Assume you have an asymmetric coupling, Hc /
c
†

Ncd + c
†

dcN . One can expand cN in terms of the Majo-
rana operators, cN = aN + ibN .

III. NOT REQUIRED

The ”minimal matrix distance” error:

" = min
U2U

��Oid � UOU
†
��
F
, (4)

where U is the set of 2⇥ 2 unitary matrices, and |A|F =p
A†A is the Frobenius norm of matrix A.

IV. INTRODUCTION

A generic task in quantum information processing
is to perform quantum gates. Topological quantum
computing? [further refs? Pachos?] is a theoretical
paradigm, where quantum information is encoded in a
quantum system with defects, the defects ensure the ex-
istence of an energy-denegerate subspace, quantum in-
formation is encoded in this degenerate subspace, and
gates are performed by exchanging (braiding) the spatial
positions of the defects in a slow, adiabatic fashion.? ?

Because of the topological properties of these models,
the quantum information is expected to be protected
from certain environmental perturbations, which is of-
ten phrased as quantum information and quantum gates
are topologically protected.
In most cases, topological quantum computing has

been studied via strongly correlated interacting quan-
tum systems. One example is the toric code;? in its
simplest form, it is a two-dimensional lattice of localized
interacting spin-1/2 particles with four-spin interactions.
One-dimensional topological superconductors are also ex-
pected to provide a platform for topological quantum
computing; in that case however, interactions are hidden
in the mean-field description and the system is described
by a ‘free’ Hamiltonian that is quadratic in fermion
operators, but includes anomalous, number-conserving
terms.? In this one-dimensional example, the defects are
also called domain walls, as they separate topological and
trivial sample segments from each other. In this system,
quantum gates based on braiding of defects should have
topological protection: even in the presence of local noise,
gate errors are expected to be suppressed as long as the
defects are well separated throughout the exchange pro-
cess, and the Hamiltonian has particle-hole symmetry.
Here, we introduce and study a model quantum sys-

tem whose dynamics shares features with those men-
tioned above, without the need of any interactions or
anomalous superconducting Hamiltonian terms. The
setup studied here is based on the Su-Schrie↵er-Heeger
(SSH) model,? ? ? in which a single electron is de-
scribed in a non-interacting non-superconducting tight-
binding lattice with a two-orbital unit cell. Note that the
non-interacting nature of our model is a major concep-
tual simplification with respect to other systems showing
topologically protected quantum dynamics, such as the
toric code, Majorana qubits, or fractional quantum Hall
systems.
In particular, we propose a setup and a braid-

ing protocol which resembles the Majorana Y-junction
scheme studied in the context of 1D topological
superconductors.? ? Similarly to the latter, in our setup
the exchange of defects provides a phase gate in a two-
dimensional degenerate subspace of the Hamiltonian.
The gate in our setup is a ⇡ phase gate, in contrast to the
⇡/2 phase gate in the Majorana Y-junction. We demon-
strate that a certain type of topological protection (to be
defined below) of the ⇡ phase gate in the SSH setup is

2

arrays.13 In this work, we introduce and study an
even simpler model system, requiring only a few sites
without interactions or superconductivity, which can
realize quantum gates that enjoy a level of topological
protection. The setup studied here is based on the
Su-Schrie↵er-Heeger (SSH) model,14–16 in which a single
particle lives in a simple tight-binding lattice with a
two-orbital unit cell.

In particular, we propose a setup and a braiding proto-
col which resembles the Majorana Y-junction scheme.4,17

Similarly to the latter, in our SSH Y-junction, the ex-
change of defects provides a single-qubit rotation in a
two-dimensional degenerate subspace of the Hamiltonian.
The gate in our SSH Y-junction is a Y gate, correspond-
ing to a rotation by angle ⇡, in contrast to the gate
in the Majorana Y-junction which provides a rotation
of angle ⇡/2. We demonstrate that the Y gate in the
SSH Y-junction is topologically protected, if, throughout
the duration of the braiding protocol, the spatial sepa-
ration of the defects is large, and the chiral symmetry
and the time-reversal symmetry of the Hamiltonian are
maintained.

Note that we do not claim that the model proposed
here provides a new practical route to topological quan-
tum computing, mostly because we are not aware of po-
tential realizations with a built-in chiral symmetry, and
because the set of available quantum gates is very limited
and hence not universal. Nevertheless, our proposal does
have two very appealing features. First, its single-particle
nature is a major conceptual simplification with respect
to other systems showing topologically protected quan-
tum dynamics, such as the toric code, Majorana qubits,
or fractional quantum Hall systems. Second, this simplic-
ity makes our model particularly feasible for experimen-
tal realization: single-particle tight-binding models can
be realized in various established platforms, such as opti-
cal waveguide arrays13,18,19 and cold atomic systems,20,21

promising an alternative shortcut towards the experi-
mental demonstration of topologically protected quan-
tum gates.

In what follows, we will assume that the reader is fa-
miliar with the SSH model, serving as an elementary ex-
ample of 1D chiral symmetric topological insulators, and
the related concepts such as the fully dimerized limit of
the model, chiral symmetry, time-reversal symmetry, lo-
calized states at edges and domain walls, the trivial and
topological phases of the SSH model, and its topological
invariant. This background is covered in Chapters 1 and
8.1 of Ref. 16.

II. MOVING A ZERO-ENERGY MODE
LOCALIZED AT A DOMAIN WALL IN A FULLY

DIMERIZED SSH CHAIN

A well-known braiding protocol in a Majorana Y-
junction4 is based on the adiabatic motion of defects,
which are domain walls in that case. The braiding pro-

FIG. 1. Adiabatically moving a domain wall and the localized
zero-energy state it supports, in a fully dimerized SSH chain.
Red circles depict the particle density of the localized state.
The sequence (a)-(b)-(c) shows how to move the domain wall
and the localized state by two sites. The domain-wall move-
ment time TDW is the time window between (a) and (c). (d)
Time dependence of the hopping amplitudes, see Eq. (3).

tocol in the SSH Y-junction, which we propose below in
section III, is also based on moving domain walls. In this
section, we introduce a simple scheme to move a domain
wall in an SSH chain. A similar method is presented for
topologically protected quantum state transfer in super-
conducting qubit chains.22

The elementary step of this domain-wall motion is il-
lustrated in Fig. 1. Figure 1a shows a fully dimerized
SSH chain with a domain wall that is the isolated site.
We consider the three-site black subset of the chain, la-
belled with 0, 1, and 2, and disregard the remaining gray
part for our discussion. The Hamiltonian describing this
three-site block reads

H(t) = v1(t) |1i h0|+ v2(t) |2i h1|+ h.c., (1)

with v1(t = 0) = 0 and v2(t = 0) = v > 0 as shown
in Fig. 1a. Here, each ket denotes the state localized at
the corresponding site. We consider real-valued hopping
amplitudes in most of this work, unless noted otherwise.
It is a simple fact that the domain wall, i.e., site 0 in
Fig. 1a, which is disconnected from the rest of the chain,
supports a perfectly localized zero-energy mode |0i. This
state is depicted as the red circle.
The domain wall together with this localized state can

be moved adiabatically by, e.g., increasing the hopping
v1 to the value v, and decreasing the hopping v2 to zero
simultaneously. Figures 1a,b,c show the initial configu-
ration, an intermediate configuration, and the final con-
figuration, respectively. As a result of these changes,
the domain wall has moved from site 0 (Fig. 1a) to site
2 (Fig. 1c). Furthermore, if these hopping-amplitude
changes are done adiabatically, then the state |0i evolves
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II. SYMMETRIC TUNNELING

You’re saying that if you couple a dot to one end of the
wire, then tunneling will happen irrespective of the wire
parity, whereas you can have a parity-sensitive tunneling
process if you couple the dot to both ends. Why is that?

A basic argument is the one you’ve heard many times.
If the excitations are spatially separated zero-energy Ma-
jorana modes, then that means that the two ground
states cannot be distinguished by any local physical
quantity, including charge dynamics. By connecting the
Majorana modes, they are not separated any more, so
the di↵erence can be revealed.

Assume you have an asymmetric coupling, Hc /
c
†

Ncd + c
†

dcN . One can expand cN in terms of the Majo-
rana operators, cN = aN + ibN .

III. NOT REQUIRED

The ”minimal matrix distance” error:

" = min
U2U

��Oid � UOU
†
��
F
, (4)

where U is the set of 2⇥ 2 unitary matrices, and |A|F =p
A†A is the Frobenius norm of matrix A.

IV. INTRODUCTION

A generic task in quantum information processing
is to perform quantum gates. Topological quantum
computing? [further refs? Pachos?] is a theoretical
paradigm, where quantum information is encoded in a
quantum system with defects, the defects ensure the ex-
istence of an energy-denegerate subspace, quantum in-
formation is encoded in this degenerate subspace, and
gates are performed by exchanging (braiding) the spatial
positions of the defects in a slow, adiabatic fashion.? ?

Because of the topological properties of these models,
the quantum information is expected to be protected
from certain environmental perturbations, which is of-
ten phrased as quantum information and quantum gates
are topologically protected.
In most cases, topological quantum computing has

been studied via strongly correlated interacting quan-
tum systems. One example is the toric code;? in its
simplest form, it is a two-dimensional lattice of localized
interacting spin-1/2 particles with four-spin interactions.
One-dimensional topological superconductors are also ex-
pected to provide a platform for topological quantum
computing; in that case however, interactions are hidden
in the mean-field description and the system is described
by a ‘free’ Hamiltonian that is quadratic in fermion
operators, but includes anomalous, number-conserving
terms.? In this one-dimensional example, the defects are
also called domain walls, as they separate topological and
trivial sample segments from each other. In this system,
quantum gates based on braiding of defects should have
topological protection: even in the presence of local noise,
gate errors are expected to be suppressed as long as the
defects are well separated throughout the exchange pro-
cess, and the Hamiltonian has particle-hole symmetry.
Here, we introduce and study a model quantum sys-

tem whose dynamics shares features with those men-
tioned above, without the need of any interactions or
anomalous superconducting Hamiltonian terms. The
setup studied here is based on the Su-Schrie↵er-Heeger
(SSH) model,? ? ? in which a single electron is de-
scribed in a non-interacting non-superconducting tight-
binding lattice with a two-orbital unit cell. Note that the
non-interacting nature of our model is a major concep-
tual simplification with respect to other systems showing
topologically protected quantum dynamics, such as the
toric code, Majorana qubits, or fractional quantum Hall
systems.
In particular, we propose a setup and a braid-

ing protocol which resembles the Majorana Y-junction
scheme studied in the context of 1D topological
superconductors.? ? Similarly to the latter, in our setup
the exchange of defects provides a phase gate in a two-
dimensional degenerate subspace of the Hamiltonian.
The gate in our setup is a ⇡ phase gate, in contrast to the
⇡/2 phase gate in the Majorana Y-junction. We demon-
strate that a certain type of topological protection (to be
defined below) of the ⇡ phase gate in the SSH setup is

t = 0

3

to the state � |2i, that is, the zero mode moves two sites
to the right and acquires a minus sign. This is a direct
consequence of the simple fact that the Hamiltonian H

has a zero-energy eigenstate

| i =
v2 |0i � v1 |2ip

v
2
1 + v

2
2

. (2)

The prefactor �1 in front of |2i above is not supple-
mented by a dynamical phase factor: the dynamical
phase vanishes because the state | i is a zero-energy
eigenstate for all intermediate times. Note that this in-
stantaneous zero-energy state generally has some weight
on sites 0 and 2, but has no weight on site 1. For ex-
ample, in the intermediate time step when v1 = v2, this
zero-energy state is evenly distributed on the sites 0 and
2, as shown in Fig. 1b.

The actual time dependences of the hopping ampli-
tudes v1 and v2 can have various forms, the resulting
dynamics is independent of the details in the adiabatic
limit. The simplest option could be to use linear ramps
for each hopping amplitude. In what follows, we will use
a smooth, exponential time dependence instead, which is
expected to suppress leakage from the zero-energy sub-
space that arises due to the finite (non-infinite) time du-
ration TDW of the domain-wall movement.17,23 The hop-
ping amplitudes are changed in time as

v1(t) = v �(t/TDW), (3a)

v2(t) = v (1� �(t/TDW)) , (3b)

where the pulse shape function � is defined as

�(x) =
e
�1/x

e�1/(1�x) + e�1/x
. (4)

In Eq. (3), we introduced the domain-wall movement
time TDW, which is the time used to move the domain
wall by two sites (i.e., from (a) to (c) in Fig. 1). The
time-dependent hopping amplitudes in Eq. (3) are shown
in Fig. 1d.

Importantly, the result of this adiabatic deformation of
the Hamiltonian, i.e., that the state |0i develops to the
state � |2i, does not depend on the actual protocol used
to tune the hopping amplitudes in time. As seen directly
from Eq. (2), this final state is guaranteed provided that
at least one of v1 and v2 is nonzero for all times, and that
the final value of v1 is positive.

III. EXCHANGE OF ZERO-ENERGY MODES
IN A Y-JUNCTION PROVIDES A Y GATE

In this section, we propose the SSH Y-junction setup
and a braiding protocol, and numerically solve the time-
dependent Schrödinger equation to show that adiabatic
braiding leads to a perfect Y gate if the SSH chains of
the junction are fully dimerized. Topological protection
is not addressed here, that we will do in the subsequent
sections.

FIG. 2. Braiding in a Y-junction constructed from three fully
dimerized SSH chains. (a) shows the initial configuration and
the labels associated to the sites. In (b)-(e), the colored sites
(red, green) depict the zero-energy edge modes. These edge
modes are exchanged by adiabatically moving the domain
walls supporting them, following the scheme in Fig. 1. (b)
depicts the initial configuration, t = 0. (c) and (d) depicts the
two intermediate configurations when the zero-energy modes
are localized at the outer ends of the chains, t = 3TDW and
t = 6TDW, respectively. (e) denotes the final configuration at
t = 9TDW: the Hamiltonian is the same as the initial one (b),
but the edge modes have been exchanged.

The SSH Y-junction and the braiding protocol are
illustrated in Fig. 2. The single-particle tight-binding
Hamiltonian at the initial stage of the braiding protocol
is shown in Fig. 2a. This junction is formed by three SSH
chains, connected via a central site. We denote the three
chains by L, R and M, according to their location in the
figure. For simplicity, we consider cases where the three
chains have the same length Nc; the figure corresponds
to chain length Nc = 3. The tight-binding Hamiltonian
of this Y-junction reads

H =
X

c2C

Nc�1X

m=1

vc,m (|c,mi hc,m+ 1|+ h.c.)

+
X

c2C

vc,0 (|0i hc, 1|+ h.c.) (5)

where C = {L,R,M} is the set of chain indices, m is the
site index within a given chain. According to Fig. 2a, the
state localized on the central site is denoted by |0i, and
the state localized on the mth site on chain c is denoted
by |c,mi.
Figure 2a depicts a certain configuration of hopping

amplitudes: the hopping amplitudes shown as black lines
are set to v (e.g., vM,0 = v), all other hopping amplitudes
are set to zero (e.g., vM,1 = 0). The Hamiltonian corre-
sponding to Fig. 2a has a two-dimensional zero-energy

t = T/3 t = 2T/3 t = T

A Y gate can be performed by  
exchange of 2 defects
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state |R, 3⟩, with no sign change. As a result, the braiding
induces a gate

Y =
(

0 −1
1 0

)
= −iσy (6)

in the basis (|φ1⟩ , |φ2⟩) ≡ (|L, 3⟩ , |R, 3⟩). It is clear that a
similar braiding operation in a Y junction with an arbitrary
odd chain length Nc = 1, 3, 5, . . . yields the same gate. Note
that the elementary version of this scheme, corresponding to
Nc = 1, was studied in Refs. [10,24].

The braiding should provide an exact Y gate in the adia-
batic limit, i.e., for infinitely long braiding time T . In the rest
of this section, we study whether that is true, and how the finite
braiding time affects the accuracy of the gate. We characterize
the accuracy using the concept of average fidelity. The time
evolution during the full braiding sequence is described by
the propagator of the time-dependent Schrödinger equa-
tion, that is expressed by the well-known time-ordered (T )
exponential

U (T ) = T exp
[
− i

h̄

∫ T

0
dtH (t )

]
. (7)

The effect of the braiding on the two-dimensional zero-energy
subspace is described by the propagator projected onto that
subspace, which we will refer to as the overlap matrix:

O(T ) =
(⟨φ1|U (T )|φ1⟩ ⟨φ1|U (T )|φ2⟩

⟨φ2|U (T )|φ1⟩ ⟨φ2|U (T )|φ2⟩

)
. (8)

As stated above, we expect that braiding is perfect in the
adiabatic limit, that is, limT →∞ O(T ) = Y .

For a given initial state |φ⟩ in the two-dimensional zero-
energy subspace, the fidelity of the braiding operation can
be described by the probability of finding the state after the
braiding operation in the final state of the idealized operation:
f (φ, T ) = |⟨φ|Y † O(T )|φ⟩|2. Therefore, the overall quality of
the gate can be described by the average of the above fidelity
f (φ, T ) for all initial states φ in the two-dimensional zero-
energy subspace, yielding [25]

F = 1
6 [Tr(O† O) + |Tr(Y † O)|2], (9)

where the argument T of F (T ) and O(T ) was omitted for
brevity. The average fidelity is F = 1 if the overlap matrix
O is equivalent to the ideal gate Y , and 0 ! F < 1 otherwise.
Hence, we characterize the error of the braiding protocol using
the infidelity

ε(T ) = 1 − F (T ). (10)

The error ε, obtained from a numerical solution of the
time-dependent Schrödinger equation, is shown in Fig. 3(a),
as a function of braiding time T , for three different lengths
Nc = 1, 3, 5 of the chains forming the Y junction. For short
braiding times, errors are caused by the nonadiabatic character
of the driving. Even though there are oscillations on each
curves, the error seems to converge to zero as the braiding time
is increased, confirming expectations. Furthermore, the results
suggest that it is possible to reach any targeted error level, but
the longer the chain, the longer the braiding time required for
that. Finally, an interesting scaling property is demonstrated in
Fig. 3(b), where the data set is the same as in Fig. 3(a), but the

FIG. 3. Error of the Y gate in the fully dimerized SSH Y junction
due to the finite braiding time. (a) Gate error [infidelity; see Eq. (10)]
is shown as the function of braiding time. (b) Gate error of panel
(a) is shown, rescaled, as the function of the time TDW required for
a single step of domain-wall motion. Errors are induced due to the
nonadiabatic character of the braiding; hence they get suppressed as
the braiding time is increased.

horizontal axis is rescaled to show the domain-wall movement
time TDW instead of the braiding time. With this scaling, the
three data sets show a very similar behavior, indicating that the
velocity of the domain-wall motion is the factor determining
the gate error.

Up to now, we have studied a simple protocol that performs
a quantum gate in a degenerate subspace of a Hamiltonian. Is
this gate robust in any sense? Is it robust if we relax the fully
dimerized character of the Y junction that was assumed in this
section? Is it robust if we introduce disorder? We address these
questions in what follows.

IV. NUMERICAL DEMONSTRATION
OF TOPOLOGICAL PROTECTION

In the previous section, we assumed that the SSH Y
junction is in a fully dimerized configuration, apart from the
region of the domain wall that is being moved. Here, we
consider a case when the system is not in the fully dimerized
configuration, and in addition, random hopping disorder with
real-valued hopping amplitudes is also introduced. In this
case, chiral symmetry and the time-reversal symmetry of
the setup are still preserved. We show that the Y gate is
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Setup: Single particle in a Y-junction of 1D Su-Schrieffer-Heeger chains
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subspace, spanned by the states |L, 3i (depicted as the
red circle in Fig. 2b), and |R, 3i (depicted as the green
circle in Fig. 2b). These two edge sites can be considered
as defects giving rise to a two-dimensional zero-energy
subspace.

We propose to perform the Y gate in this two-
dimensional subspace by exchanging the two defects adi-
abatically. The first stage of the exchange consists of
moving the red defect by repeating the elementary step
introduced in Fig. 1 (i.e., moving the domain wall by two
sites) three times, to achieve the configuration in Fig. 2c;
the second and third stages are analogous, yielding the
configurations in Fig. 2d and e, respectively. After the
third stage, the Hamiltonian returns to its initial form,
but the two defects and the two localized zero-energy
modes have been exchanged. Actually, since it took an
odd number of steps (three) to move the green defect, the
state |R, 3i evolves into the state � |L, 3i, picking up a
minus sign. In contrast, it took an even number of steps
(six) to move the red defect, hence the state |L, 3i evolves
into the state |R, 3i, with no sign change. As a result,
the braiding induces a gate

Y =

✓
0 �1
1 0

◆
= �i�y (6)

in the basis (|�1i , |�2i) ⌘ (|L, 3i , |R, 3i). It is clear that
a similar braiding operation in a Y-junction with an ar-
bitrary odd chain length Nc = 1, 3, 5, . . . yields the same
gate. Note that the elementary version of this scheme,
corresponding to Nc = 1, was studied in Refs. 10 and 24.

The braiding should provide an exact Y gate in the
adiabatic limit, i.e., for infinitely long braiding time T .
In the rest of this section, we study if that is true, and
how the finite braiding time a↵ects the accuracy of the
gate. We characterize the accuracy using the concept
of average fidelity. The time evolution during the full
braiding sequence is described by the propagator of the
time-dependent Schrödinger equation, that is expressed
by the well-known time-ordered (T ) exponential

U(T ) = T exp

 
�
i

~

Z
T

0
dtH(t)

!
. (7)

The e↵ect of the braiding on the two-dimensional zero-
energy subspace is described by the propagator projected
onto that subspace, which we will refer to as the overlap
matrix :

O(T ) =

✓
h�1|U(T )|�1i h�1|U(T )|�2i

h�2|U(T )|�1i h�2|U(T )|�2i

◆
. (8)

As stated above, we expect that braiding is perfect in the
adiabatic limit, that is, limT!1 O(T ) = Y .

For a given initial state |�i in the two-dimensional zero-
energy subspace, the fidelity of the braiding operation
can be described by the probability of finding the state
after the braiding operation in the final state of the ide-

alized operation: f(�, T ) =
��h�|Y †

O(T )|�i
��2. Therefore,

FIG. 3. Error of the Y gate in the fully dimerized SSH Y-
junction due to the finite braiding time. (a) Gate error (infi-
delity, see Eq. (10)) is shown as the function of braiding time.
(b) Gate error of panel (a) is shown, rescaled, as the function
of the time TDW required for a single step of domain-wall mo-
tion. Errors are induced due to the non-adiabatic character of
the braiding, hence they get suppressed as the braiding time
is increased.

the overall quality of the gate can be described by the av-
erage of the above fidelity f(�, T ) for all initial states �

in the two-dimensional zero-energy subspace, yielding25

F =
1

6

h
Tr
�
O

†
O
�
+
��Tr
�
Y

†
O
���2
i
. (9)

where the argument T of F (T ) and O(T ) was omitted for
brevity. The average fidelity is F = 1 if the overlap ma-
trix O is equivalent to the ideal gate Y , and 0  F < 1
otherwise. Hence, we characterize the error of the braid-
ing protocol using the infidelity

"(T ) = 1� F (T ). (10)

The error ", obtained from a numerical solution of
the time-dependent Schrödinger equation, is shown in
Fig. 3a, as a function of braiding time T , for three dif-
ferent lengths Nc = 1, 3, 5 of the chains forming the Y-
junction. For short braiding times, errors are caused by
the non-adiabatic character of the driving. Even though
there are oscillations on each curves, the error seems
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II. SYMMETRIC TUNNELING

You’re saying that if you couple a dot to one end of the
wire, then tunneling will happen irrespective of the wire
parity, whereas you can have a parity-sensitive tunneling
process if you couple the dot to both ends. Why is that?

A basic argument is the one you’ve heard many times.
If the excitations are spatially separated zero-energy Ma-
jorana modes, then that means that the two ground
states cannot be distinguished by any local physical
quantity, including charge dynamics. By connecting the
Majorana modes, they are not separated any more, so
the di↵erence can be revealed.

Assume you have an asymmetric coupling, Hc /
c
†

Ncd + c
†

dcN . One can expand cN in terms of the Majo-
rana operators, cN = aN + ibN .

III. NOT REQUIRED

The ”minimal matrix distance” error:

" = min
U2U
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†
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F
, (4)

where U is the set of 2⇥ 2 unitary matrices, and |A|F =p
A†A is the Frobenius norm of matrix A.

IV. INTRODUCTION

A generic task in quantum information processing
is to perform quantum gates. Topological quantum
computing? [further refs? Pachos?] is a theoretical
paradigm, where quantum information is encoded in a
quantum system with defects, the defects ensure the ex-
istence of an energy-denegerate subspace, quantum in-
formation is encoded in this degenerate subspace, and
gates are performed by exchanging (braiding) the spatial
positions of the defects in a slow, adiabatic fashion.? ?

Because of the topological properties of these models,
the quantum information is expected to be protected
from certain environmental perturbations, which is of-
ten phrased as quantum information and quantum gates
are topologically protected.
In most cases, topological quantum computing has

been studied via strongly correlated interacting quan-
tum systems. One example is the toric code;? in its
simplest form, it is a two-dimensional lattice of localized
interacting spin-1/2 particles with four-spin interactions.
One-dimensional topological superconductors are also ex-
pected to provide a platform for topological quantum
computing; in that case however, interactions are hidden
in the mean-field description and the system is described
by a ‘free’ Hamiltonian that is quadratic in fermion
operators, but includes anomalous, number-conserving
terms.? In this one-dimensional example, the defects are
also called domain walls, as they separate topological and
trivial sample segments from each other. In this system,
quantum gates based on braiding of defects should have
topological protection: even in the presence of local noise,
gate errors are expected to be suppressed as long as the
defects are well separated throughout the exchange pro-
cess, and the Hamiltonian has particle-hole symmetry.
Here, we introduce and study a model quantum sys-

tem whose dynamics shares features with those men-
tioned above, without the need of any interactions or
anomalous superconducting Hamiltonian terms. The
setup studied here is based on the Su-Schrie↵er-Heeger
(SSH) model,? ? ? in which a single electron is de-
scribed in a non-interacting non-superconducting tight-
binding lattice with a two-orbital unit cell. Note that the
non-interacting nature of our model is a major concep-
tual simplification with respect to other systems showing
topologically protected quantum dynamics, such as the
toric code, Majorana qubits, or fractional quantum Hall
systems.
In particular, we propose a setup and a braid-

ing protocol which resembles the Majorana Y-junction
scheme studied in the context of 1D topological
superconductors.? ? Similarly to the latter, in our setup
the exchange of defects provides a phase gate in a two-
dimensional degenerate subspace of the Hamiltonian.
The gate in our setup is a ⇡ phase gate, in contrast to the
⇡/2 phase gate in the Majorana Y-junction. We demon-
strate that a certain type of topological protection (to be
defined below) of the ⇡ phase gate in the SSH setup is
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state |R, 3⟩, with no sign change. As a result, the braiding
induces a gate

Y =
(

0 −1
1 0

)
= −iσy (6)

in the basis (|φ1⟩ , |φ2⟩) ≡ (|L, 3⟩ , |R, 3⟩). It is clear that a
similar braiding operation in a Y junction with an arbitrary
odd chain length Nc = 1, 3, 5, . . . yields the same gate. Note
that the elementary version of this scheme, corresponding to
Nc = 1, was studied in Refs. [10,24].

The braiding should provide an exact Y gate in the adia-
batic limit, i.e., for infinitely long braiding time T . In the rest
of this section, we study whether that is true, and how the finite
braiding time affects the accuracy of the gate. We characterize
the accuracy using the concept of average fidelity. The time
evolution during the full braiding sequence is described by
the propagator of the time-dependent Schrödinger equa-
tion, that is expressed by the well-known time-ordered (T )
exponential

U (T ) = T exp
[
− i

h̄

∫ T

0
dtH (t )

]
. (7)

The effect of the braiding on the two-dimensional zero-energy
subspace is described by the propagator projected onto that
subspace, which we will refer to as the overlap matrix:

O(T ) =
(⟨φ1|U (T )|φ1⟩ ⟨φ1|U (T )|φ2⟩

⟨φ2|U (T )|φ1⟩ ⟨φ2|U (T )|φ2⟩

)
. (8)

As stated above, we expect that braiding is perfect in the
adiabatic limit, that is, limT →∞ O(T ) = Y .

For a given initial state |φ⟩ in the two-dimensional zero-
energy subspace, the fidelity of the braiding operation can
be described by the probability of finding the state after the
braiding operation in the final state of the idealized operation:
f (φ, T ) = |⟨φ|Y † O(T )|φ⟩|2. Therefore, the overall quality of
the gate can be described by the average of the above fidelity
f (φ, T ) for all initial states φ in the two-dimensional zero-
energy subspace, yielding [25]

F = 1
6 [Tr(O† O) + |Tr(Y † O)|2], (9)

where the argument T of F (T ) and O(T ) was omitted for
brevity. The average fidelity is F = 1 if the overlap matrix
O is equivalent to the ideal gate Y , and 0 ! F < 1 otherwise.
Hence, we characterize the error of the braiding protocol using
the infidelity

ε(T ) = 1 − F (T ). (10)

The error ε, obtained from a numerical solution of the
time-dependent Schrödinger equation, is shown in Fig. 3(a),
as a function of braiding time T , for three different lengths
Nc = 1, 3, 5 of the chains forming the Y junction. For short
braiding times, errors are caused by the nonadiabatic character
of the driving. Even though there are oscillations on each
curves, the error seems to converge to zero as the braiding time
is increased, confirming expectations. Furthermore, the results
suggest that it is possible to reach any targeted error level, but
the longer the chain, the longer the braiding time required for
that. Finally, an interesting scaling property is demonstrated in
Fig. 3(b), where the data set is the same as in Fig. 3(a), but the

FIG. 3. Error of the Y gate in the fully dimerized SSH Y junction
due to the finite braiding time. (a) Gate error [infidelity; see Eq. (10)]
is shown as the function of braiding time. (b) Gate error of panel
(a) is shown, rescaled, as the function of the time TDW required for
a single step of domain-wall motion. Errors are induced due to the
nonadiabatic character of the braiding; hence they get suppressed as
the braiding time is increased.

horizontal axis is rescaled to show the domain-wall movement
time TDW instead of the braiding time. With this scaling, the
three data sets show a very similar behavior, indicating that the
velocity of the domain-wall motion is the factor determining
the gate error.

Up to now, we have studied a simple protocol that performs
a quantum gate in a degenerate subspace of a Hamiltonian. Is
this gate robust in any sense? Is it robust if we relax the fully
dimerized character of the Y junction that was assumed in this
section? Is it robust if we introduce disorder? We address these
questions in what follows.

IV. NUMERICAL DEMONSTRATION
OF TOPOLOGICAL PROTECTION

In the previous section, we assumed that the SSH Y
junction is in a fully dimerized configuration, apart from the
region of the domain wall that is being moved. Here, we
consider a case when the system is not in the fully dimerized
configuration, and in addition, random hopping disorder with
real-valued hopping amplitudes is also introduced. In this
case, chiral symmetry and the time-reversal symmetry of
the setup are still preserved. We show that the Y gate is
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You’re saying that if you couple a dot to one end of the
wire, then tunneling will happen irrespective of the wire
parity, whereas you can have a parity-sensitive tunneling
process if you couple the dot to both ends. Why is that?

A basic argument is the one you’ve heard many times.
If the excitations are spatially separated zero-energy Ma-
jorana modes, then that means that the two ground
states cannot be distinguished by any local physical
quantity, including charge dynamics. By connecting the
Majorana modes, they are not separated any more, so
the di↵erence can be revealed.

Assume you have an asymmetric coupling, Hc /
c
†

Ncd + c
†

dcN . One can expand cN in terms of the Majo-
rana operators, cN = aN + ibN .
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where U is the set of 2⇥ 2 unitary matrices, and |A|F =p
A†A is the Frobenius norm of matrix A.

IV. INTRODUCTION

A generic task in quantum information processing
is to perform quantum gates. Topological quantum
computing? [further refs? Pachos?] is a theoretical
paradigm, where quantum information is encoded in a

quantum system with defects, the defects ensure the ex-
istence of an energy-denegerate subspace, quantum in-
formation is encoded in this degenerate subspace, and
gates are performed by exchanging (braiding) the spatial
positions of the defects in a slow, adiabatic fashion.? ?

Because of the topological properties of these models,
the quantum information is expected to be protected
from certain environmental perturbations, which is of-
ten phrased as quantum information and quantum gates
are topologically protected.

In most cases, topological quantum computing has
been studied via strongly correlated interacting quan-
tum systems. One example is the toric code;? in its
simplest form, it is a two-dimensional lattice of localized
interacting spin-1/2 particles with four-spin interactions.
One-dimensional topological superconductors are also ex-
pected to provide a platform for topological quantum
computing; in that case however, interactions are hidden
in the mean-field description and the system is described
by a ‘free’ Hamiltonian that is quadratic in fermion
operators, but includes anomalous, number-conserving
terms.? In this one-dimensional example, the defects are
also called domain walls, as they separate topological and
trivial sample segments from each other. In this system,
quantum gates based on braiding of defects should have
topological protection: even in the presence of local noise,
gate errors are expected to be suppressed as long as the
defects are well separated throughout the exchange pro-
cess, and the Hamiltonian has particle-hole symmetry.

Here, we introduce and study a model quantum sys-
tem whose dynamics shares features with those men-
tioned above, without the need of any interactions or
anomalous superconducting Hamiltonian terms. The
setup studied here is based on the Su-Schrie↵er-Heeger
(SSH) model,? ? ? in which a single electron is de-
scribed in a non-interacting non-superconducting tight-
binding lattice with a two-orbital unit cell. Note that the
non-interacting nature of our model is a major concep-
tual simplification with respect to other systems showing
topologically protected quantum dynamics, such as the
toric code, Majorana qubits, or fractional quantum Hall
systems.

In particular, we propose a setup and a braid-
ing protocol which resembles the Majorana Y-junction
scheme studied in the context of 1D topological
superconductors.? ? Similarly to the latter, in our setup
the exchange of defects provides a phase gate in a two-
dimensional degenerate subspace of the Hamiltonian.
The gate in our setup is a ⇡ phase gate, in contrast to the
⇡/2 phase gate in the Majorana Y-junction. We demon-
strate that a certain type of topological protection (to be
defined below) of the ⇡ phase gate in the SSH setup is
provided if the spatial separation of the defects is large
during the braiding protocol, and if the chiral symme-
try of the Hamiltonian is maintained. In this sense, our
setup is analogous to the Majorana Y-junction, where the
topological protection of the braiding-based gate also re-
lies on the spatial separation of the defects and a certain
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computing? [further refs? Pachos?] is a theoretical
paradigm, where quantum information is encoded in a

quantum system with defects, the defects ensure the ex-
istence of an energy-denegerate subspace, quantum in-
formation is encoded in this degenerate subspace, and
gates are performed by exchanging (braiding) the spatial
positions of the defects in a slow, adiabatic fashion.? ?

Because of the topological properties of these models,
the quantum information is expected to be protected
from certain environmental perturbations, which is of-
ten phrased as quantum information and quantum gates
are topologically protected.

In most cases, topological quantum computing has
been studied via strongly correlated interacting quan-
tum systems. One example is the toric code;? in its
simplest form, it is a two-dimensional lattice of localized
interacting spin-1/2 particles with four-spin interactions.
One-dimensional topological superconductors are also ex-
pected to provide a platform for topological quantum
computing; in that case however, interactions are hidden
in the mean-field description and the system is described
by a ‘free’ Hamiltonian that is quadratic in fermion
operators, but includes anomalous, number-conserving
terms.? In this one-dimensional example, the defects are
also called domain walls, as they separate topological and
trivial sample segments from each other. In this system,
quantum gates based on braiding of defects should have
topological protection: even in the presence of local noise,
gate errors are expected to be suppressed as long as the
defects are well separated throughout the exchange pro-
cess, and the Hamiltonian has particle-hole symmetry.

Here, we introduce and study a model quantum sys-
tem whose dynamics shares features with those men-
tioned above, without the need of any interactions or
anomalous superconducting Hamiltonian terms. The
setup studied here is based on the Su-Schrie↵er-Heeger
(SSH) model,? ? ? in which a single electron is de-
scribed in a non-interacting non-superconducting tight-
binding lattice with a two-orbital unit cell. Note that the
non-interacting nature of our model is a major concep-
tual simplification with respect to other systems showing
topologically protected quantum dynamics, such as the
toric code, Majorana qubits, or fractional quantum Hall
systems.

In particular, we propose a setup and a braid-
ing protocol which resembles the Majorana Y-junction
scheme studied in the context of 1D topological
superconductors.? ? Similarly to the latter, in our setup
the exchange of defects provides a phase gate in a two-
dimensional degenerate subspace of the Hamiltonian.
The gate in our setup is a ⇡ phase gate, in contrast to the
⇡/2 phase gate in the Majorana Y-junction. We demon-
strate that a certain type of topological protection (to be
defined below) of the ⇡ phase gate in the SSH setup is
provided if the spatial separation of the defects is large
during the braiding protocol, and if the chiral symme-
try of the Hamiltonian is maintained. In this sense, our
setup is analogous to the Majorana Y-junction, where the
topological protection of the braiding-based gate also re-
lies on the spatial separation of the defects and a certain
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FIG. 5. Error of the Y gate in a non-dimerized SSH
Y-junction with real-valued hopping disorder. Disorder-
averaged gate error (infidelity, see Eq. (10)) is shown as a
function of braiding time T for three di↵erent chain lengths
Nc. The error saturates for long braiding times in each case,
and the error minimum decreases exponentially as the chain
length is increased, despite the presence of disorder; this in-
dicates topological protection. Each curve is an average for
1000 random realizations.

finite sv leads separately to the saturation of the error.
These results clearly demonstrate the robustness of the
Y gate against hopping disorder even away from the fully
dimerized limit. As we show in section V, this resilience
can be understood as topological protection, arising as a
joint consequence of chiral symmetry, time-reversal sym-
metry (both of which are preserved in the presence of
real-valued hopping disorder), and the spatial separation
of the zero modes during their exchange.

B. The Y gate is not robust against on-site disorder

The braiding-based Y gate is not resilient to on-site
energy disorder. This is illustrated by Fig. 6. For sim-
plicity, in this subsection we switch o↵ hopping disorder
(sv = 0) and take w = 0. To study the e↵ect of on-site
disorder, we supplement the Y-junction Hamiltonian (5)
with the on-site term. That is, we consider dynamics
governed by the Hamiltonian H

0 = H + Honsite, where
the second term is defined as

Honsite =
X

j

uj |ji hj| . (13)

Here, the parameters uj are random on-site energies with
zero mean, and, in what follows, with a standard devia-
tion su = 0.01v. The sum in Eq. (13) goes for all sites
except the two sites supporting the two defects at t = 0,
that is, except (L, 3) and (R, 3).

The numerically obtained gate error as a function of
braiding time is shown in Fig. 6 for three di↵erent chain
lengths. To obtain this data, we have numerically solved

FIG. 6. Error of the Y gate in the presence of on-site dis-
order. Disorder-averaged gate error (infidelity, see Eq. (10))
is shown as a function of braiding time T for three di↵erent
chain lengths Nc. The Y gate is not robust against on-site
disorder: the gate error saturates at a high value for long
braiding times, at a value independent of the chain length.
Each curve is an average for 1000 random realizations.

the time-dependent Schrödinger equation of the Hamil-
tonian H

0 defined above. Each curve in Fig. 6 is an av-
erage for 1000 random disorder realizations. The key
di↵erences in comparison to the case with real-valued
hopping disorder in Fig. 5 are as follows. (i) The gate
error is always much larger in the presence of on-site dis-
order than in the presence of real-valued hopping disor-
der. (ii) For real-valued hopping disorder, the minimal
error gets smaller for longer chain length; for on-site dis-
order the trend is the opposite. (iii) For on-site disor-
der, the error does not have a minimum in the adiabatic,
long-braiding-time limit, but at an intermediate braiding
time. In short, a key reason behind these di↵erences is
that the on-site disorder opens a minigap in the spectrum
between the two zero-energy eigenstates, the correspond-
ing dynamical phase picked up by the states during the
time evolution depends explicitly on the random disorder
configuration and the braiding time, and hence it leads
to dephasing in the adiabatic limit.

C. The Y gate is not robust against
complex-valued hopping disorder

The braiding-based Y gate is not resilient to hop-
ping disorder, if the hopping amplitudes can take com-
plex values (Fig. 7). To show this, we use the same
parametrization of the hopping amplitudes as introduced
in Eqs. (11) and (12), with the only di↵erence that the
random components �vc,m of the hopping amplitudes are
complex. In particular, we consider the case when the
real and imaginary parts of �vc,m are identically dis-
tributed normal random variables, with standard devi-
ations sv,Re = sv,Im = 0.01v. Furthermore, we set w = 0
for simplicity.

real-valued hopping disorder
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You’re saying that if you couple a dot to one end of the
wire, then tunneling will happen irrespective of the wire
parity, whereas you can have a parity-sensitive tunneling
process if you couple the dot to both ends. Why is that?

A basic argument is the one you’ve heard many times.
If the excitations are spatially separated zero-energy Ma-
jorana modes, then that means that the two ground
states cannot be distinguished by any local physical
quantity, including charge dynamics. By connecting the
Majorana modes, they are not separated any more, so
the di↵erence can be revealed.

Assume you have an asymmetric coupling, Hc /
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†
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†

dcN . One can expand cN in terms of the Majo-
rana operators, cN = aN + ibN .
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where U is the set of 2⇥ 2 unitary matrices, and |A|F =p
A†A is the Frobenius norm of matrix A.

IV. INTRODUCTION

A generic task in quantum information processing
is to perform quantum gates. Topological quantum
computing? [further refs? Pachos?] is a theoretical
paradigm, where quantum information is encoded in a
quantum system with defects, the defects ensure the ex-
istence of an energy-denegerate subspace, quantum in-
formation is encoded in this degenerate subspace, and
gates are performed by exchanging (braiding) the spatial
positions of the defects in a slow, adiabatic fashion.? ?

Because of the topological properties of these models,
the quantum information is expected to be protected
from certain environmental perturbations, which is of-
ten phrased as quantum information and quantum gates
are topologically protected.
In most cases, topological quantum computing has

been studied via strongly correlated interacting quan-
tum systems. One example is the toric code;? in its
simplest form, it is a two-dimensional lattice of localized
interacting spin-1/2 particles with four-spin interactions.
One-dimensional topological superconductors are also ex-
pected to provide a platform for topological quantum
computing; in that case however, interactions are hidden
in the mean-field description and the system is described
by a ‘free’ Hamiltonian that is quadratic in fermion
operators, but includes anomalous, number-conserving
terms.? In this one-dimensional example, the defects are
also called domain walls, as they separate topological and
trivial sample segments from each other. In this system,
quantum gates based on braiding of defects should have
topological protection: even in the presence of local noise,
gate errors are expected to be suppressed as long as the
defects are well separated throughout the exchange pro-
cess, and the Hamiltonian has particle-hole symmetry.
Here, we introduce and study a model quantum sys-

tem whose dynamics shares features with those men-
tioned above, without the need of any interactions or
anomalous superconducting Hamiltonian terms. The
setup studied here is based on the Su-Schrie↵er-Heeger
(SSH) model,? ? ? in which a single electron is de-
scribed in a non-interacting non-superconducting tight-
binding lattice with a two-orbital unit cell. Note that the
non-interacting nature of our model is a major concep-
tual simplification with respect to other systems showing
topologically protected quantum dynamics, such as the
toric code, Majorana qubits, or fractional quantum Hall
systems.
In particular, we propose a setup and a braid-

ing protocol which resembles the Majorana Y-junction
scheme studied in the context of 1D topological
superconductors.? ? Similarly to the latter, in our setup
the exchange of defects provides a phase gate in a two-
dimensional degenerate subspace of the Hamiltonian.
The gate in our setup is a ⇡ phase gate, in contrast to the
⇡/2 phase gate in the Majorana Y-junction. We demon-
strate that a certain type of topological protection (to be
defined below) of the ⇡ phase gate in the SSH setup is
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FIG. 5. Error of the Y gate in a non-dimerized SSH
Y-junction with real-valued hopping disorder. Disorder-
averaged gate error (infidelity, see Eq. (10)) is shown as a
function of braiding time T for three di↵erent chain lengths
Nc. The error saturates for long braiding times in each case,
and the error minimum decreases exponentially as the chain
length is increased, despite the presence of disorder; this in-
dicates topological protection. Each curve is an average for
1000 random realizations.

finite sv leads separately to the saturation of the error.
These results clearly demonstrate the robustness of the
Y gate against hopping disorder even away from the fully
dimerized limit. As we show in section V, this resilience
can be understood as topological protection, arising as a
joint consequence of chiral symmetry, time-reversal sym-
metry (both of which are preserved in the presence of
real-valued hopping disorder), and the spatial separation
of the zero modes during their exchange.

B. The Y gate is not robust against on-site disorder

The braiding-based Y gate is not resilient to on-site
energy disorder. This is illustrated by Fig. 6. For sim-
plicity, in this subsection we switch o↵ hopping disorder
(sv = 0) and take w = 0. To study the e↵ect of on-site
disorder, we supplement the Y-junction Hamiltonian (5)
with the on-site term. That is, we consider dynamics
governed by the Hamiltonian H

0 = H + Honsite, where
the second term is defined as

Honsite =
X

j

uj |ji hj| . (13)

Here, the parameters uj are random on-site energies with
zero mean, and, in what follows, with a standard devia-
tion su = 0.01v. The sum in Eq. (13) goes for all sites
except the two sites supporting the two defects at t = 0,
that is, except (L, 3) and (R, 3).

The numerically obtained gate error as a function of
braiding time is shown in Fig. 6 for three di↵erent chain
lengths. To obtain this data, we have numerically solved

FIG. 6. Error of the Y gate in the presence of on-site dis-
order. Disorder-averaged gate error (infidelity, see Eq. (10))
is shown as a function of braiding time T for three di↵erent
chain lengths Nc. The Y gate is not robust against on-site
disorder: the gate error saturates at a high value for long
braiding times, at a value independent of the chain length.
Each curve is an average for 1000 random realizations.

the time-dependent Schrödinger equation of the Hamil-
tonian H

0 defined above. Each curve in Fig. 6 is an av-
erage for 1000 random disorder realizations. The key
di↵erences in comparison to the case with real-valued
hopping disorder in Fig. 5 are as follows. (i) The gate
error is always much larger in the presence of on-site dis-
order than in the presence of real-valued hopping disor-
der. (ii) For real-valued hopping disorder, the minimal
error gets smaller for longer chain length; for on-site dis-
order the trend is the opposite. (iii) For on-site disor-
der, the error does not have a minimum in the adiabatic,
long-braiding-time limit, but at an intermediate braiding
time. In short, a key reason behind these di↵erences is
that the on-site disorder opens a minigap in the spectrum
between the two zero-energy eigenstates, the correspond-
ing dynamical phase picked up by the states during the
time evolution depends explicitly on the random disorder
configuration and the braiding time, and hence it leads
to dephasing in the adiabatic limit.

C. The Y gate is not robust against
complex-valued hopping disorder

The braiding-based Y gate is not resilient to hop-
ping disorder, if the hopping amplitudes can take com-
plex values (Fig. 7). To show this, we use the same
parametrization of the hopping amplitudes as introduced
in Eqs. (11) and (12), with the only di↵erence that the
random components �vc,m of the hopping amplitudes are
complex. In particular, we consider the case when the
real and imaginary parts of �vc,m are identically dis-
tributed normal random variables, with standard devi-
ations sv,Re = sv,Im = 0.01v. Furthermore, we set w = 0
for simplicity.
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FIG. 7. Error of the Y gate in the presence of complex-valued
hopping disorder. Disorder-averaged gate error (infidelity, see
Eq. (10)) is shown as a function of braiding time T for three
di↵erent chain lengths Nc. The error saturates at a value
for long braiding times, but that value increases as the chain
length is increased. This indicates that the Y gate is not
robust against complex-valued hopping disorder. Each curve
is an average of 1000 random realizations.

The numerically obtained gate error as a function of
braiding time is shown in Fig. 7 for three di↵erent chain
lengths. The key feature of the results is that the error
saturates at a plateau for each chain length, similarly to
the case of real-valued hopping disorder, but the height
of the plateau actually grows as the chain length is in-
creased. This is in contrast to the case of real-valued hop-
ping disorder, where we have seen that the error plateau
height decreases exponentially as the chain length is in-
creased. Hence, the results in Fig. 7 indicate that the Y

gate is not protected against complex-valued disorder.

V. TOPOLOGICAL PROTECTION IS
ENSURED BY CHIRAL SYMMETRY,

TIME-REVERSAL SYMMETRY, AND SPATIAL
SEPARATION OF THE ZERO MODES

In the previous section, we have demonstrated that the
braiding-based Y gate is robust against real-valued hop-
ping disorder, but not robust against on-site disorder,
neither against complex-valued hopping disorder. Here,
we prove that this robustness is due to topological protec-
tion, and arises as a joint consequence of chiral symmetry,
time-reversal symmetry, and the spatial separation of the
defects supporting the zero-energy modes.

As the first step of the proof, we introduce two sublat-
tices: sublattice A contains the sites with an odd ordinal
number, e.g., (L, 3), (C, 1), etc, whereas sublattice B con-
tains the rest of the sites. Then, the matrix

C =
X

j2A

|ji hj|�

X

j2B

|ji hj| (14)

is a chiral symmetry16 of the Hamiltonian, that is,

CHC
�1 = �H. This is due to the fact that all matrix

elements of the Hamiltonian are connecting sites of dif-
ferent sublattices. Note that there are more A sites than
B sites: we have NA = NB + 2, where NA (NB) is the
number of A (B) sites; in the example of Fig. 2a, NA = 6
and NB = 4. As a consequence of this mismatch and
the chiral symmetry, the Hamiltonian has two degenerate
zero-energy eigenstates, as we prove in Appendix A. This
zero-energy subspace is di↵erent from the one formed by
the edge states of a single SSH chain in the topological
phase:16 in the latter case, the edge states can hybridize
and a nonzero minigap can open between the bonding
and antibonding hybrid states, whereas the defect-bound
states in our Y junction are at exactly zero energy, as a
consequence of their dark-state character (see Appendix
A).

Our second step is to show that the overlap matrix
O defined in Eq. (8) is real-valued if the Hamiltonian,
during the whole duration of the braiding, maintains its
chiral symmetry and real-valuedness. To see this, we fac-
torize the propagator U in n+1 discrete short time steps
of duration ⌧ = T/(n+1), that is, U = UnUn�1 . . . U1U0,
where Uj = exp (�iH(j⌧)⌧/~). With this discrete repre-
sentation of the propagator, we find

Oij = h�i|U |�ji (15a)

= h�i|C (CUnC) . . . (CU0C) C|�ji (15b)

= h�i|CU
⇤
n
. . . U

⇤
0 C|�ji (15c)

= h�
⇤
i
|U

⇤
n
. . . U

⇤
0 |�

⇤
j
i = O

⇤
ij
. (15d)

To obtain (15b) from (15a), we inserted unity in the form
of C

2 = 1 before and after each time step. To obtain
(15c) from (15b), we used the chiral symmetry of the
Hamiltonian as well as its real-valued character, which
imply

CUjC = C exp (�iH(j⌧)⌧/~) C (16a)

= exp (iH(j⌧)⌧/~) (16b)

= exp (iH⇤(j⌧)⌧/~) = U
⇤
j
. (16c)

To obtain (15d) from (15c), we used the fact that the
basis vectors |�ii are their own chiral partners, C |�ii =
|�ii and that they are real-valued.

As the third step, we argue that in the limit of adi-
abatic braiding, the overlap matrix O is not only real-
valued but also unitary. To see that, we have to assume
that during the braiding procedure, the zero-energy sub-
space of the Hamiltonian H(t) is exactly twofold degen-
erate for all times, that is, that no lower-lying or higher-
lying energy level ever collides with the two zero-energy
levels we focus on. Then, the notion of adiabaticity is in-
deed well-defined, and there is no leakage from the zero-
energy subspace if the braiding is adiabatic, guaranteeing
the unitary nature of the overlap matrix. All real-valued
2⇥2 unitary matrices (i.e., the 2⇥2 orthogonal matrices)
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1. defects (domain walls)

2. 2x degenerate zero-energy subspace

3. adiabatic ‘braiding’ or ‘exchange’ of defects:
Y-gate in the zero-energy subspace
L ) R, R ) �L

4. slower braiding ) better gate

5. longer chains ) better gate

6. does not require a perfect wire

7. does require chiral & time-reversal symmetry
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II. SYMMETRIC TUNNELING

You’re saying that if you couple a dot to one end of the
wire, then tunneling will happen irrespective of the wire
parity, whereas you can have a parity-sensitive tunneling
process if you couple the dot to both ends. Why is that?

A basic argument is the one you’ve heard many times.
If the excitations are spatially separated zero-energy Ma-
jorana modes, then that means that the two ground
states cannot be distinguished by any local physical
quantity, including charge dynamics. By connecting the
Majorana modes, they are not separated any more, so
the di↵erence can be revealed.

Assume you have an asymmetric coupling, Hc /
c
†

Ncd + c
†

dcN . One can expand cN in terms of the Majo-
rana operators, cN = aN + ibN .

III. NOT REQUIRED

The ”minimal matrix distance” error:

" = min
U2U

��Oid � UOU
†
��
F
, (4)

where U is the set of 2⇥ 2 unitary matrices, and |A|F =p
A†A is the Frobenius norm of matrix A.

IV. INTRODUCTION

A generic task in quantum information processing
is to perform quantum gates. Topological quantum
computing? [further refs? Pachos?] is a theoretical
paradigm, where quantum information is encoded in a
quantum system with defects, the defects ensure the ex-
istence of an energy-denegerate subspace, quantum in-
formation is encoded in this degenerate subspace, and
gates are performed by exchanging (braiding) the spatial
positions of the defects in a slow, adiabatic fashion.? ?

Because of the topological properties of these models,
the quantum information is expected to be protected
from certain environmental perturbations, which is of-
ten phrased as quantum information and quantum gates
are topologically protected.
In most cases, topological quantum computing has

been studied via strongly correlated interacting quan-
tum systems. One example is the toric code;? in its
simplest form, it is a two-dimensional lattice of localized
interacting spin-1/2 particles with four-spin interactions.
One-dimensional topological superconductors are also ex-
pected to provide a platform for topological quantum
computing; in that case however, interactions are hidden
in the mean-field description and the system is described
by a ‘free’ Hamiltonian that is quadratic in fermion
operators, but includes anomalous, number-conserving
terms.? In this one-dimensional example, the defects are
also called domain walls, as they separate topological and
trivial sample segments from each other. In this system,
quantum gates based on braiding of defects should have
topological protection: even in the presence of local noise,
gate errors are expected to be suppressed as long as the
defects are well separated throughout the exchange pro-
cess, and the Hamiltonian has particle-hole symmetry.
Here, we introduce and study a model quantum sys-

tem whose dynamics shares features with those men-
tioned above, without the need of any interactions or
anomalous superconducting Hamiltonian terms. The
setup studied here is based on the Su-Schrie↵er-Heeger
(SSH) model,? ? ? in which a single electron is de-
scribed in a non-interacting non-superconducting tight-
binding lattice with a two-orbital unit cell. Note that the
non-interacting nature of our model is a major concep-
tual simplification with respect to other systems showing
topologically protected quantum dynamics, such as the
toric code, Majorana qubits, or fractional quantum Hall
systems.
In particular, we propose a setup and a braid-

ing protocol which resembles the Majorana Y-junction
scheme studied in the context of 1D topological
superconductors.? ? Similarly to the latter, in our setup
the exchange of defects provides a phase gate in a two-
dimensional degenerate subspace of the Hamiltonian.
The gate in our setup is a ⇡ phase gate, in contrast to the
⇡/2 phase gate in the Majorana Y-junction. We demon-
strate that a certain type of topological protection (to be
defined below) of the ⇡ phase gate in the SSH setup is
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Does the SSH Y-junction provide a practical route
toward topological quantum computing?

(1) Hard to imagine a physical system where  
hopping disorder is strong and on-site disorder is weak. 

(e.g., quantum-dot array is certainly not like that)

Don’t think so.

(2) Set of gates is very limited.



Control questions

1. For chain length Nc = 7, what is the dimension of the Hamiltonian? 
2. Is the time-reversal symmetry of our model fermionic or bosonic? 
3. How would you quantify the “precision” or “accuracy” of a 

quantum-logical operation (gate)? 
4. Does our quantum gate work if the lengths of the 3 chains forming 

the Y junction are different? 
5. Do you think our quantum gate offers a route toward universal 

topological quantum computing? Why? 
6. List 3 characteristics of a topological quantum gate. 
7. Explain similarities and differences between the three types of 

adiabatic quantum dynamics, characterized by the Berry phase, 
the non-Abelian Berry phase, and the topological Berry phase.


