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‘Topological quantum gate: a simple example
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Cyclic adiabatic deformation of the Hamiltonian ...

geometrical

Berry phase
Berry 1984
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robust against timing errors

geometrical

non-Abelian Berry phase
Wilczek & Zee PRL 1984
San-Jose et al. PRB 2008
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robust against timing errors

topological
non-Abelian Berry phase
Nayak et al. RMP 2008
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robust against
timing and path errors

... might be useful for guantum computing



Topologically protected quantum gates: a simpler example

Boross et al., PRB 2019 Klinovaja & Loss PRL 2013
ladecola et al. PRL 2017

Setup: Single particle in a Y-junction of 1D Su-Schrieffer-Heeger chains
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Dimension of Hilbert space: 10
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1. defects (domain walls)

tenergy
3. adiabatic ‘braiding’ or ‘exchange’ of defects: v L
Y-gate in the zero-energy subspace
L=R,R= —-L
4. slower braiding =- better gate O + — —

5. longer chains = better gate

6. does not require a perfect wire —U

7. does require chiral & time-reversal symmetry



Moving a defect in the Su-Schrieffer-Heeger chain
Boross et al., PRB 2019 O 1 2
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2. 2x degenerate zero-energy subspace
o abatic rasding or exchamge’ of defoets
¥ Y-gate in the zero-energy subspace 1
i L=R, R=-L

H =v1 (1) (0| +v2 |2) (1| + h.c.

4. slower braiding =- better gate
5. longer chains = better gate

S. Barisi¢, Phys. Rev. B 5, 932 (1972).

0. does not require a perfect wire W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev.
Lett. 42, 1698 (1979).
J. K. Asbéth, L. Oroszlany, and A. Palyi, A Short Course

7. does require chiral & time-reversal symmetry on Topological Insulators (Spinger, 2016,



Topologically protected quantum gates: a simpler example
Boross et al., PRB 2019

Setup: Single particle in a Y-junction of 1D Su-Schrieffer-Heeger chains
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. 2x degenerate zero-energy subspace

. adiabatic ‘braiding’ or ‘exchange’ of defects:
f Y-gate in the zero-energy subspace
fj L=R,R=-L ]

4. slower braiding =- better gate

5. longer chains = better gate

A Y gate can be performed by

6. does not require a perfect wire exchange of 2 defects

7. does require chiral & time-reversal symmetry



Topologically protected quantum gates: a simpler example
Boross et al., PRB 2019
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1 Sower braiding = better gaic |
5. longer chains = better gate
6. does not require a perfect wire

7. does require chiral & time-reversal symmetry



How to characterize the error?

fidelity for a given
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Topologically protected quantum gates: a simpler example

Boross et al., PRB 2019 ] _
real-valued hopping disorder
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4. slower braldmg = better gate

_',' 5 longer Chams = better gate . :
: Y gate is robust against
1 0. does not require a perfect wire §

real-valued hopping disorder

7. does require chiral & time-reversal symmetry



Topologically protected quantum gates: a simpler example
Boross et al., PRB 2019

on-site disorder complex-valued hopping disorder
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4. slower braiding =- better gate

Y gate is NOT robust against

5. longer chains = better gate (1) on-site disorder
(2) complex-valued hopping disorder

6. does not require a perfect wire

symmetry §

} 7. does require chiral & time-reversal



Does the SSH Y-junction provide a practical route
toward topological quantum computing?

Don’t think so.

(1) Hard to imagine a physical system where
hopping disorder Is strong and on-site disorder Is weak.
(e.g., quantum-dot array is certainly not like that)

(2) Set of gates is very limited.
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Control questions

~or chain length Ne = 7, what is the dimension of the Hamiltonian?
s the time-reversal symmetry of our model fermionic or bosonic?
How would you quantity the “precision” or “accuracy” of a
guantum-logical operation (gate)?

Does our qguantum gate work it the lengths of the 3 chains forming
the Y junction are different?

Do you think our quantum gate ofters a route toward universal
topological guantum computing? Why?

List 3 characteristics of a topological quantum gate.

Explain similarities and differences between the three types of
adiabatic guantum dynamics, characterized by the Berry phase,
the non-Abelian Berry phase, and the topological Berry phase.




