
Envelope-function Hamiltonian in one dimension (1)

Consider the SSH model. Let the intercell hopping w = 1 be homogeneous.
The intracell hopping v changes smoothly in space, described by the function v(x).
The system is in the nearly metallic case everywhere, that is, |v(x)− 1| ⌧ 1.
Which one is the low-energy e↵ective Hamiltonian of the system?

(a) Ĥ = v(x)σ̂x + p̂ σ̂y

(b) Ĥ = [v(x) + 1]σ̂x + p̂ σ̂y

(c) Ĥ = [v(x)− 1]σ̂x − p̂ σ̂y

(d) None of the above.



Envelope-function Hamiltonian in one dimension (2)

Consider the SSH model. Let the intracell hopping v = 1 be homogeneous.
The intercell hopping w changes smoothly in space, described by the function w(x).
The system is in the nearly metallic case everywhere, that is, |1− w(x)| ⌧ 1.
Which one is the low-energy e↵ective Hamiltonian of the system?

(a) Ĥ = σ̂x + w(x)p̂ σ̂y

(b) Ĥ = [1 + w(x)]σ̂x + w(x)p̂ σ̂y

(c) Ĥ = [1− w(x)]σ̂x − w(x)p̂ σ̂y

(d) Ĥ = [1− w(x)]σ̂x −
1

2
{w(x), p̂} σ̂y

v

w(x)



The bulk momentum-space Hamiltonian of the Qi-Wu-Zhang model reads

Ĥ = sin(kx)σ̂x + sin(ky)σ̂y + [u+ cos(kx) + cos(ky)] σ̂z

For u = 2, which one is the low-energy envelope-function Hamiltonian?

(a) ĤEFA = p̂xσ̂x + p̂yσ̂y

(b) ĤEFA = −p̂xσ̂x − p̂yσ̂y

(c) ĤEFA = p̂xσ̂x − p̂yσ̂y

(d) None of them.

Envelope-function Hamiltonian in two dimensions (1)





The bulk momentum-space Hamiltonian of the Qi-Wu-Zhang model reads

Ĥ = sin(kx)σ̂x + sin(ky)σ̂y + [u+ cos(kx) + cos(ky)] σ̂z

For u = 0, which one is the low-energy envelope-function Hamiltonian?

(a) ĤEFA = p̂xσ̂x + p̂yσ̂y

(b) ĤEFA = −p̂xσ̂x − p̂yσ̂y

(c) None of them.

(d) Both (a) and (b).

Envelope-function Hamiltonian in two dimensions (2)





(a) 0

(b) 1

(c) between 0 and 1

(d) surprisingly, it is greater than 1, known as the ‘Klein paradox’

An electron is moving in a nearly metallic SSH chain.
It is described by the 1D massive Dirac Hamiltonian Ĥ = M σ̂x − w p̂ σ̂y.

It is scattered by a high, smooth potential barrier, Û = V (x)σ̂0.
What is the probability of reflection from the barrier?

Scattering in one dimension (1)



Scattering in one dimension (2)

An electron is moving in a metallic SSH chain.
It is described by the 1D massless Dirac Hamiltonian Ĥ = −w p̂ σ̂y.

It is scattered by a high, smooth potential barrier, Û = V (x)σ̂0.
What is the probability of reflection from the barrier?

(a) 0

(b) 1

(c) between 0 and 1

(d) surprisingly, it is greater than 1, known as the ‘Klein paradox’



(a) 0

(b) 1

(c) between 0 and 1

(d) surprisingly, it is greater than 1, known as the ‘Klein paradox’

Scattering in one dimension (3)

An electron is moving in a nearly metallic, inhomogeneous SSH chain.
It is described by the 1D massive Dirac Hamiltonian Ĥ = M(x)σ̂x − w p̂ σ̂y.
The spatial dependence of the mass is shown in the figure.
What is the probability of reflection from the barrier?

M(x)



Scattering in two dimensions (1)

An electron is moving in a metallic QWZ lattice along x.
It is described by a 2D massless Dirac Hamiltonian Ĥ = p̂xσ̂x + p̂yσ̂y.

It is scattered by a high, smooth potential barrier, Û = V (x)σ̂0.
What is the probability of reflection from the barrier?

(a) 0

(b) 1

(c) between 0 and 1, and the value depends on the details of V (x)

(d) between 0 and 1, but the value does not depend on the details of V (x)



Scattering in two dimensions (2)

An electron is moving in a metallic QWZ lattice along an arbitrary direction.
It is described by a 2D massless Dirac Hamiltonian Ĥ = p̂xσ̂x + p̂yσ̂y.

It is scattered by a high, smooth potential barrier, Û = V (x)σ̂0.
What is the probability of reflection from the barrier?

(a) 0

(b) 1

(c) between 0 and 1, and the value depends on the details of V (x)

(d) between 0 and 1, but the value does not depend on the details of V (x)



Domain wall and the structure of the energy spectrum (1)

Consider the massive 1D Dirac Hamiltonian, with a step-like mass domain wall as depicted.

Ĥ = M(x)σ̂x + p̂σ̂y

What is the structure of the energy spectrum of this system?
(black line: discrete level; blue region: continuum)
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Domain wall and the structure of the energy spectrum (2)
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Consider the massive 1D Dirac Hamiltonian, with a gradual mass domain wall as depicted, M(x) = ↵x.

Ĥ = M(x)σ̂x + p̂σ̂y

What is the structure of the energy spectrum of this system?
(black line: discrete level; blue region: continuum)
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Domain wall and the structure of the energy spectrum (3)
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Consider the massive 1D Dirac Hamiltonian, with the mass domain wall as depicted.

Ĥ = M(x)σ̂x + p̂σ̂y

Which figure can represent the structure of the
energy spectrum of the system?
(black line: discrete level; blue region: continuum)



Fate of a bound state after a sudden change (1)

x

V(x)

Consider an electron in one dimension.
It is described by the Hamiltonian Ĥ = p̂

2

2m
+ V (x).

Initially, we have the blue confinement potential, and the electron
occupies the ground state of the Hamiltonian, which is a bound state.
Suddenly, the potential changes to the red one.
What happens to the electron?

(a) Nothing, it remains in the same state.

(b) It escapes from the bound state and spreads away from its original position.

(c) It remains confined in the vicinity of its original position, but starts to oscillate.

(d) None of the above.

initial

final



Fate of a bound state after a sudden change (2)

initial
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Consider an electron in one dimension.
It is described by the Hamiltonian Ĥ = p̂

2

2m
+ V (x).

Initially, we have the blue confinement potential, and the electron
occupies the ground state of the Hamiltonian, which is a bound state.
Suddenly, the potential changes to the red one.
What happens to the electron?

(a) Nothing, it remains in the same state.

(b) It escapes from the bound state and spreads away from its original position.

(c) It remains confined in the vicinity of its original position, but starts to oscillate.

(d) Part of it escapes, part of it remains localized and starts to oscillate.

x
V(x)



Fate of a bound state after a sudden change (3)
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Consider an electron in one dimension.
It is described by the one-dimensional massive Dirac equation:
Ĥ = M(x)σ̂z − wp̂σ̂y

Initially, we have the blue mass domain wall, and the electron
occupies the zero-energy bound state.
Suddenly, the mass profile changes to the red one.
What happens to the electron?

(a) Nothing, it remains in the same state.

(b) It escapes from the bound state and spreads away from its original position.

(c) It remains confined in the vicinity of its original position, but starts to oscillate.

(d) Part of it escapes, part of it remains localized and starts to oscillate.



Fate of a bound state after a sudden change (4)

initial

final

Consider an electron in one dimension.
It is described by the one-dimensional massive Dirac equation:
Ĥ = M(x)σ̂z − wp̂σ̂y

Initially, we have the blue mass domain wall, and the electron
occupies the zero-energy bound state.
Suddenly, the mass profile changes to the red one.
What happens to the electron?

(a) Nothing, it remains in the same state.

(b) It escapes from the bound state and spreads away from its original position.

(c) It remains confined in the vicinity of its original position, but starts to oscillate.

(d) Part of it escapes, part of it remains localized and starts to oscillate.
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Fate of a bound state after a sudden change (5)

Consider an electron in one dimension. It is described by the one-dimensional SSH model.
Initially, we have a domain wall between a trivial and a topological half-chain,
both in the fully dimerized limit, and an electron occupies the zero-energy bound state.
Suddenly, the hoppings are rearranged such that the trivial part becomes topological
and the topological part becomes trivial, again both fully dimerized.
What happens to the electron?

(a) Nothing, it remains in the same state.

(b) It escapes from the bound state and spreads away from its original position.

(c) It remains confined in the vicinity of its original position, but starts to oscillate.

(d) Part of it escapes, part of it remains localized and starts to oscillate.

initial



M=1

M=1

M=0
Consider the 2D Dirac equation, where the mass is
M=1 everywhere, except along a Corbino ring (white),
where M=0.
Where are the chiral domain-wall states?

 
Along the inner red and outer dashed circles, 
circulating in the same direction.
 
Along the inner red and outer dashed circles, 
circulating in opposite directions.
 
Nowhere, because states can circulate to both directions
in the M=0 region.
 
They are extended to the whole Corbino ring.

a)
 
 
b)
 
 
c)
 
 
d)



M=1

M=-1

M=0
Consider the 2D Dirac equation, where the spatial
dependence of the mass is shown in the right figure.
 
Where are the chiral domain-wall states? 

a)
 
 
b)
 
 
c)
 
 
d)

 
Along the inner red and outer dashed circles, 
circulating in the same direction.
 
Along the inner red and outer dashed circles, 
circulating in opposite directions.
 
Nowhere, because states can circulate to both directions
in the M=0 region.
 
They are extended to the whole Corbino ring.


