Adiabatic pumping in a chain Thouless PRB 1983

Example: time-dependent Rice-Mele model

$$
H=\left(\begin{array}{cccccccc}
u & v & 0 & 0 & 0 & 0 & 0 & 0 \\
v & -u & w & 0 & 0 & 0 & 0 & 0 \\
0 & w & u & v & 0 & 0 & 0 & 0 \\
0 & 0 & v & -u & w & 0 & 0 & 0 \\
0 & 0 & 0 & w & u & v & 0 & 0 \\
0 & 0 & 0 & 0 & v & -u & v & 0 \\
0 & 0 & 0 & 0 & 0 & w & u & v \\
0 & 0 & 0 & 0 & 0 & 0 & v & -u
\end{array}\right)
$$

Real-space Hamiltonian:
$\hat{H}(t)=v(t) \sum_{m=1}^{N}(|m, B\rangle\langle m, A|+h . c)+.w(t) \sum_{m=1}^{N-1}(|m+1, A\rangle\langle m, B|+$ h.c. $)$

$$
+u(t) \sum_{m=1}^{N}(|m, A\rangle\langle m, A|-|m, B\rangle\langle m, B|)
$$

Momentum-space Hamiltonian:

$$
\begin{gathered}
\hat{H}(k, t)=\mathbf{d}(k, t) \hat{\sigma}= \\
=(v(t)+w(t) \cos k) \hat{\sigma}_{x} \\
+w(t) \sin k \hat{\sigma}_{y}+u(t) \hat{\sigma}_{z}
\end{gathered}
$$

Adiabatic pumping:

1. Gap doesn't close: $|\boldsymbol{d}|>0$.
2. Cyclic time depedence $($ period $T)$
3. $T \rightarrow \infty$

Adiabatic pumping in a chain

Pumped charge is the Chern number and hence and integer

Adiabatic pumping in a chain

Pumped charge (Q) per cycle:

$$
\begin{equation*}
\mathscr{Q}=\int_{0}^{T} d t \int_{\mathrm{BZ}} \frac{d k}{2 \pi} j_{m+1 / 2}^{(1)}(k, t) . \tag{5.45}
\end{equation*}
$$

Momentum- and time-resolved current of the filled band:

$$
\begin{equation*}
j_{m+1 / 2}^{(1)}(k, t)=\frac{1}{N}\left\langle\tilde{u}_{1}(k, t)\right| \partial_{k} \hat{H}(k, t)\left|\tilde{u}_{1}(k, t)\right\rangle, \tag{5.44}
\end{equation*}
$$

Quasi-adiabatic evolution of Bloch-states:
$\left|\tilde{u}_{1}(t)\right\rangle=e^{-i \int_{0}^{t} d t^{\prime} E_{1}\left(t^{\prime}\right)}\left[\left|u_{1}(t)\right\rangle+i \frac{\left\langle u_{2}(t)\right| \partial_{t}\left|u_{1}(t)\right\rangle}{E_{t}}\left|u_{2}(t)\right\rangle\right]$.

Adiabatic pumping in a chain

Example: smoothly modulated Rice-Mele model

$$
\hat{H}(k, t)=\mathbf{d}(k, t) \cdot \hat{\boldsymbol{\sigma}}, \quad \mathbf{d}(k, t)=\left(\begin{array}{c}
\bar{v}+\cos \Omega t+\cos k \\
\sin k \\
\sin \Omega t
\end{array}\right)
$$

Fig. 5.2 Time dependence of the current and the number of pumped particles in an adiabatic cycle.

Expectation value

The expectation value of an observable \hat{A} follows the equation $(\hbar=1)$:

$$
\frac{d}{d t}\langle\hat{A}\rangle=-i\langle[\hat{A}, \hat{H}(t)]\rangle
$$

where $\langle\hat{A}\rangle$ stands for
(a) the mean of the diagonal elements of \hat{A}.
(b) the mean of the eigenvalues of \hat{A}.
(c) the expectation value of \hat{A} in a solution $\psi(t)$ of
the time-dependent Schrödinger equation.
(d) the expectation value of \hat{A} in the instantaneous eigenstate of $H(t)$.

Particle number in a two-site model

Consider the two-site system described by the Hamiltonian $H=v \sigma_{x}$. The initial state at $t=0$ is localized on the left site, $\psi_{i}(t=0)=(1,0)$. How does the particle number $N_{R}(t)$ on the right site evolve in time?

Current in a two-site model

Consider the two-site system described by the Hamiltonian $H=v \sigma_{x}$. The initial state at $t=0$ is localized on the left site, $\psi_{i}(t=0)=(1,0)$. How does the current into the right site, $j_{\text {intoR }}$, evolve in time?

Current in a two-site model II.

Consider the time-dependent two-site Hamiltonian $H=u(t) \sigma_{z}+v(t) \sigma_{x}$. Which of the operators below represents the influx of particles into site R ?

$$
\begin{aligned}
& \text { (a) }-v(t) \sigma_{x} \\
& \text { (b) }-v(t) \sigma_{y} \\
& \text { (c) }-v v(t) \sigma_{y} \\
& \text { (d) }-u(t) \sigma_{y}
\end{aligned}
$$

Particle influx into a segment of a molecule

Consider the 5 -atom molecule shown on the right.
The spatial structure of the nonzero hopping amplitudes is indicated by the graph. Otherwise, hopping amplitudes and on-site energies are arbitrary.

Denote the current operator describing the influx of electrons into the orange segment as \hat{j}_{S}. The matrix representation of \hat{j}_{S} in the real-space basis (shown in the figure) is a 5×5 matrix.

How many nonzero elements does it have?

Adiabatic limit of a quasi-adiabatic pumping cycle

Consider the adiabatic limit of a quasi-adiabatic pumping cycle in a 1 D crystal. Which statement is true?

In the adiabatic limit,
a) the momentum- and time-resolved current through a cross section approaches zero.
(b) the time-resolved current through a cross section approaches zero.
c) the number of particles pumped through a cross section during the whole cycle approaches zero.
d) More than one of the above statements is true.

Current from a filled band?

Take the filled lower-energy band of a static, insulating one-dimensional, two-band lattice model.
Assume periodic boundary condition, allow for complex-valued hopping amplitudes, but consider the thermodynamic limit, $N \rightarrow \infty$.

Then,
a) the current carried by each occupied Bloch state is zero.
(b) the net current carried by the electrons of the filled band is zero.
$\bar{c})$ the net current carried by the electrons of the filled band is always nonzero.
d) the net current carried by the electrons of the filled band can be nonzero.

Parallel-transport time parametrization

Consider a spin aligned with a B-field along z.
Adiabatically rotate the B-field 360 degrees in the $\mathrm{x}-\mathrm{z}$ plane, such that it returns to its original alignment at the end of the cycle:
$H(t)=\boldsymbol{B}(t) \cdot \boldsymbol{\sigma}$, where $\boldsymbol{B}(t)=B(\sin (2 \pi t / T), 0, \cos (2 \pi t / T))$.
Let us describe the instantaneous ground state of this Hamiltonian with the parallel-transport time parametrization that starts with $\psi(t=0)=(0,1)$.

What is the value of this parametrization in the final point $t=T$?
(a) $\psi(T)=(0,1)$
(b) $\psi(T)=-(0,1)$
c) $\psi(T)=e^{i B T}(0,1)$
d) $\psi(T)=-e^{i B T}(0,1)$

Adiabatic pumping in finite chain

Fig: control freak cycle from the book, $N=10$

Initial state: ground state with 10 electrons.

How many cycles should we pump to arrive to the ground state again?
(a) 1
(b) 2
(C) 10
(d) 20

(b)

Adiabatic pumping in a finite chain I.

The figures represent the $\bar{v}=1$ case of the pump sequence defined by

$$
\begin{aligned}
u(t) & =\sin (2 \pi t / T) \\
v(t) & =\bar{v}+\cos (2 \pi t / T) \\
w(t) & =1
\end{aligned}
$$

(b)

in the finite-sized Rice-Mele model with $\mathrm{N}=4$ unit cells.
Assume that initially the electronic system is in its ground state: the four electrons occupy the negative-energy states. At least how many cycles should be completed to arrive to this ground state again?

Adiabatic pumping in a finite chain II.

The figure represent the $\bar{v}=1.5$ case of the pump sequence defined by

$$
\begin{aligned}
u(t) & =\sin (2 \pi t / T), \\
v(t) & =\bar{v}+\cos (2 \pi t / T), \\
w(t) & =1,
\end{aligned}
$$

in the finite-sized Rice-Mele model with $\mathrm{N}=4$ unit cells.
Assume that initially the electronic system is in its ground state: the four electrons occupy the negative-energy states. At least how many cycles should be completed to arrive to this ground state again?

