
For next week, please read Chapter 5

Contents

1 The Su-Schrieffer-Heeger (SSH) model . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 The SSH Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Bulk Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Edge states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Chiral symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Number of edge states as topological invariant . . . . . . . . . . . . . . . . . . 14
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Berry phase, Chern number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1 Discrete case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Continuum case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3 Berry phase and adiabatic dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4 Berry’s formulas for the Berry curvature . . . . . . . . . . . . . . . . . . . . . . . 34
2.5 Example: the two-level system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Polarization and Berry phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.1 Wannier states in the Rice-Mele model . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Inversion symmetry and polarization . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Adiabatic charge pumping, Rice-Mele model . . . . . . . . . . . . . . . . . . . . . . 51
4.1 Charge pumping in a control freak way . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Moving away from the control freak limit . . . . . . . . . . . . . . . . . . . . . . 55
4.3 Tracking the charges with Wannier states . . . . . . . . . . . . . . . . . . . . . . . 59
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Current operator and particle pumping . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.1 Particle current at a cross section of the lattice . . . . . . . . . . . . . . . . . . 66
5.2 Time evolution governed by a quasi-adiabatic Hamiltonian . . . . . . . . 72
5.3 The pumped current is the Berry curvature . . . . . . . . . . . . . . . . . . . . . 76

ix



Contents

1 The Su-Schrieffer-Heeger (SSH) model . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 The SSH Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Bulk Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Edge states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Chiral symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Number of edge states as topological invariant . . . . . . . . . . . . . . . . . . 14
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Berry phase, Chern number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1 Discrete case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Continuum case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3 Berry phase and adiabatic dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4 Berry’s formulas for the Berry curvature . . . . . . . . . . . . . . . . . . . . . . . 34
2.5 Example: the two-level system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Polarization and Berry phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.1 Wannier states in the Rice-Mele model . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Inversion symmetry and polarization . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Adiabatic charge pumping, Rice-Mele model . . . . . . . . . . . . . . . . . . . . . . 51
4.1 Charge pumping in a control freak way . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Moving away from the control freak limit . . . . . . . . . . . . . . . . . . . . . . 55
4.3 Tracking the charges with Wannier states . . . . . . . . . . . . . . . . . . . . . . . 59
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Current operator and particle pumping . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.1 Particle current at a cross section of the lattice . . . . . . . . . . . . . . . . . . 66
5.2 Time evolution governed by a quasi-adiabatic Hamiltonian . . . . . . . . 72
5.3 The pumped current is the Berry curvature . . . . . . . . . . . . . . . . . . . . . 76

ix

Today



Adiabatic pumping with two sites

• two sites 
• single electron 
• ground state

time
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Qs to Janos/Laci:

”TRS implies zero chern number.” But if we have TRS, then we have degeneracies, so the Chern number is undefined,

right? Should we say, as a remark, that the Berry curvature is an antisymmetric function of the momentum?

Have you tried playing around with the QHE on a square lattice? How does the bulk spectrum look, for various

”periodic” flux values? How do the edge state look, for various periodic flux values?

I. KEY STATEMENTS

A. 1D chiral-symmetric topological insulators

1. SSH models can be classified topologically, according to their integer winding number as the topological invariant.

2. All ⌫ = 1 long SSH chains have a zero-energy edge at each edge.

3. These edge states remain at zero energy in the presence of disorder, as long as that respects chiral symmetry.

4. SSH chains can be generalized to have higher winding number, and the bulk-boundary correspondence holds in

that case.

5. Generalization to higher-dimensional internal space.

6. Using an SSH chain as a quantum memory.

7. Using an SSH chain as a quantum processor.

B. Chern insulators

1. A nondegenerate band can be characterized by its Chern number.

2. An example for non-zero Chern number is the valence band of the QWZ model.

3. Time-reversal symmetry implies a vanishing Chern number for each band.

4. Bulk-boundary correspondence: the Chern number is the number of protected co-propagating edge states along

an edge.

C. 2D topological insulators

1. 2D topological insulators are those

2. A nontrivial example can be constructed by doubling the QWZ model and introducing a time-reversal invariant
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This protocol pumps a single charge from one site to the other
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Adiabatic pumping in a lattice
Example: time-dependent Rice-Mele model

Chapter 4

Adiabatic charge pumping, Rice-Mele model

We now apply the Berry phase and the Chern number to show that the periodically
and slowly changing the parameters of a one-dimensional solid, it is possible to
pump particles in it. The number of particles (charge) pumped is an integer per cy-
cle, that is given by a Chern number. Along the way we will introduce important
concepts of edge state branches of the dispersion relation, and bulk–boundary cor-
respondence. Since we are working towards understanding time-independent topo-
logical insulators, this Chapter might seem like a detour. However, bulk–boundary
correspondence of 2-dimensional Chern insulators, at the heart of the theory of topo-
logical insulators, is best understood via a mapping to an adiabatic charge pump.
The concrete system we use in this Chapter is the simplest adiabatic charge pump,
the time-dependent version of the Rice-Mele (RM) model,

Ĥ(t) = v(t)
N

Â
m=1

�
|m,Bihm,A|+h.c.

�
+w(t)

N�1

Â
m=1

�
|m+1,Aihm,B|+h.c.

�

+u(t)
N

Â
m=1

�
|m,Aihm,A|� |m,Bihm,B|

�
, (4.1)

with the staggered onsite potential u, intracell hopping amplitude v, and intercell
hopping amplitude w all assumed to be real and periodic functions of time t. In this
Chapter, we are going to see how, by properly choosing the time sequences, we can
ensure that particles are pumped along the chain.

4.1 Charge pumping in a control freak way

The most straightforward way to operate a charge pump in the Rice-Mele model is
to make sure that the system falls apart at all times to disconnected dimers. This
will happen if at any time either the intercell hopping amplitude w, or the intracell
hopping amplitude v vanishes. We can then use the staggered onsite potential to

51

4.1 Charge pumping in a control freak way 53

This period, shown in Fig. 4.1 a), is assumed to then be repeated. Note that we
shifted the beginning time of the sequence: now at times t/T = n 2 Z, the Hamil-
tonian is the trivial SSH model, t/T = n+ 1/4, disconnected monomers, at times
t/T = n+1/2, it is the nontrivial SSH model.

The time-dependent bulk momentum-space Hamiltonian reads

Ĥ(k, t) = d(k, t)ŝ = (v(t)+w(t)cosk)ŝx +w(t)sinkŝy +u(t)ŝz, (4.6)

which can be represented graphically as the path of the vector d(k, t) as the quasi-
momentum goes through the Brillouin zone, k : 0 ! 2p , for various fixed values of
time t, as in Fig. 4.1 (b).

Fig. 4.1 The control freak pump sequence in the Rice-Mele model. The sequence is defined via
Eqs. (4.5) and (4.6). (a) Time dependence of the hopping amplitudes v, w and the sublattice po-
tential u. (b) The surface formed by the vector d(k, t) corresponding to the bulk momentum-space
Hamiltonian. The topology of the surface is a torus, but its parts corresponding to t 2 [0,0.25]T
and t 2 [0.75,1]T are infinitely thin and appear as a line due to the vanishing value of w in these
time intervals. (c) Instantaneous spectrum of the Hamiltonian Ĥ(t) of an open chain of N = 10
sites. Red (blue) points represent states that are localized in the rightmost (leftmost) unit cells and
have energies between -1 and 1.

Real-space Hamiltonian:

Momentum-space Hamiltonian:

How much charge is pumped through a cross section?

42 3 Polarization and Berry phase

The Rice-Mele model

The toy model we use in this chapter is the Rice-Mele model, which is the SSH
model of Chapt. 1 with an extra staggered onsite potential. The Hamiltonian for the
Rice-Mele model on a chain of N unit cells reads

Ĥ = v
N

Â
m=1

�
|m,Bihm,A|+h.c.

�
+w

N�1

Â
m=1

�
|m+1,Aihm,B|+h.c.

�

+u
N

Â
m=1

�
|m,Aihm,A|� |m,Bihm,B|

�
, (3.1)

with the staggered onsite potential u, the intracell hopping amplitude v, and intercell
hopping amplitude w all assumed to be real. The matrix of the Hamiltonian for the
Rice-Mele model on a chain of N = 4 sites reads

H =

0

BBBBBBBBBB@

u v 0 0 0 0 0 0
v �u w 0 0 0 0 0
0 w u v 0 0 0 0
0 0 v �u w 0 0 0
0 0 0 w u v 0 0
0 0 0 0 v �u v 0
0 0 0 0 0 w u v
0 0 0 0 0 0 v �u

1

CCCCCCCCCCA

, (3.2)

3.1 Wannier states in the Rice-Mele model

The bulk energy eigenstates of a band insulator are delocalized over the whole sys-
tem. We use as an example the bulk Hamiltonian of the Rice-Mele model, i.e., the
model on a ring of N unit cells. As in the case of the SSH model, Sect. 1.2, the
energy eigenstates are the plane wave Bloch states,

|Y(k)i= |ki⌦ |u(k)i , (3.3)

with

|ki= 1p
N

N

Â
m=1

eimk |mi , for k 2 {dk,2dk, . . . ,Ndk} with dk =
2p
N

. (3.4)

We omit the index 1 from the eigenstate for simplicity. The |u(k)i are eigenstates of
the bulk momentum-space Hamiltonian,

H(k) =
✓

u v+we�ik

v+weik �u

◆
, (3.5)

Chapter 1

The Su-Schrieffer-Heeger (SSH) model

We take a hands-on approach and get to know the basic concepts of topological
insulators via a concrete system: the Su-Schrieffer-Heeger (SSH) model describes
spinless fermions hopping on a one-dimensional lattice with staggered hopping am-
plitudes. Using the SSH model, we introduce the concepts of single-particle Hamil-
tonian, the difference between bulk and boundary, chiral symmetry, adiabatic equiv-
alence, topological invariants, and bulk–boundary correspondence.

Fig. 1.1 Geometry of the SSH model. Filled (empty) circles are sites on sublattice A (B), each
hosting a single state. They are grouped into unit cells: the n = 6th cell is circled by a dotted
line. Hopping amplitudes are staggered: intracell hopping v (thin lines) is different from intercell
hopping w (thick lines). The left and right edge regions are indicated by blue and red shaded
background.

1.1 The SSH Hamiltonian

The Su-Schrieffer-Heeger (SSH) model describes electrons hopping on a chain
(one-dimensional lattice), with staggered hopping amplitudes, as shown in Fig. 1.1.
The chain consist of N unit cells, each unit cell hosting two sites, one on sublattice
A, and one on sublattice B. Interactions between the electrons are neglected, and so
the dynamics of each electron is described by a single-particle Hamiltonian, of the
form

Ĥ = v
N

Â
m=1

�
|m,Bihm,A|+h.c.

�
+w

N�1

Â
m=1

�
|m+1,Aihm,B|+h.c.

�
. (1.1)
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Topological invariant (Chern number)

1. Sit at d = 0.

2. Go to infinity along a straight line.

3. Count the number of intersections with the torus.

Qs to Janos/Laci:

”TRS implies zero chern number.” But if we have TRS, then we have degeneracies, so the Chern number is undefined,

right? Should we say, as a remark, that the Berry curvature is an antisymmetric function of the momentum?

Have you tried playing around with the QHE on a square lattice? How does the bulk spectrum look, for various

”periodic” flux values? How do the edge state look, for various periodic flux values?

I. KEY STATEMENTS

A. 1D chiral-symmetric topological insulators

1. SSH models can be classified topologically, according to their integer winding number as the topological invariant.

2. All ⌫ = 1 long SSH chains have a zero-energy edge at each edge.

3. These edge states remain at zero energy in the presence of disorder, as long as that respects chiral symmetry.

4. SSH chains can be generalized to have higher winding number, and the bulk-boundary correspondence holds in

that case.

5. Generalization to higher-dimensional internal space.

6. Using an SSH chain as a quantum memory.

7. Using an SSH chain as a quantum processor.

B. Chern insulators

1. A nondegenerate band can be characterized by its Chern number.

2. An example for non-zero Chern number is the valence band of the QWZ model.

3. Time-reversal symmetry implies a vanishing Chern number for each band.

4. Bulk-boundary correspondence: the Chern number is the number of protected co-propagating edge states along

an edge.
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Topological invariant (Chern number)

1. Sit at d = 0.

2. Go to infinity along a straight line.

3. Count the number of intersections with the torus.

Adiabatic pumping:

1. Gap doesn’t close: |d| > 0.

2. Cyclic time depedence (period T )

3. T ! 1

Qs to Janos/Laci:

”TRS implies zero chern number.” But if we have TRS, then we have degeneracies, so the Chern number is undefined,

right? Should we say, as a remark, that the Berry curvature is an antisymmetric function of the momentum?

Have you tried playing around with the QHE on a square lattice? How does the bulk spectrum look, for various

”periodic” flux values? How do the edge state look, for various periodic flux values?

I. KEY STATEMENTS

A. 1D chiral-symmetric topological insulators

1. SSH models can be classified topologically, according to their integer winding number as the topological invariant.

2. All ⌫ = 1 long SSH chains have a zero-energy edge at each edge.

3. These edge states remain at zero energy in the presence of disorder, as long as that respects chiral symmetry.

4. SSH chains can be generalized to have higher winding number, and the bulk-boundary correspondence holds in

that case.

5. Generalization to higher-dimensional internal space.

6. Using an SSH chain as a quantum memory.

7. Using an SSH chain as a quantum processor.

4.1 Charge pumping in a control freak way 53

This period, shown in Fig. 4.1 a), is assumed to then be repeated. Note that we
shifted the beginning time of the sequence: now at times t/T = n 2 Z, the Hamil-
tonian is the trivial SSH model, t/T = n+ 1/4, disconnected monomers, at times
t/T = n+1/2, it is the nontrivial SSH model.

The time-dependent bulk momentum-space Hamiltonian reads

Ĥ(k, t) = d(k, t)ŝ = (v(t)+w(t)cosk)ŝx +w(t)sinkŝy +u(t)ŝz, (4.6)

which can be represented graphically as the path of the vector d(k, t) as the quasi-
momentum goes through the Brillouin zone, k : 0 ! 2p , for various fixed values of
time t, as in Fig. 4.1 (b).

Fig. 4.1 The control freak pump sequence in the Rice-Mele model. The sequence is defined via
Eqs. (4.5) and (4.6). (a) Time dependence of the hopping amplitudes v, w and the sublattice po-
tential u. (b) The surface formed by the vector d(k, t) corresponding to the bulk momentum-space
Hamiltonian. The topology of the surface is a torus, but its parts corresponding to t 2 [0,0.25]T
and t 2 [0.75,1]T are infinitely thin and appear as a line due to the vanishing value of w in these
time intervals. (c) Instantaneous spectrum of the Hamiltonian Ĥ(t) of an open chain of N = 10
sites. Red (blue) points represent states that are localized in the rightmost (leftmost) unit cells and
have energies between -1 and 1.
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which can be represented graphically as the path of the vector d(k, t) as the quasi-
momentum goes through the Brillouin zone, k : 0 ! 2p , for various fixed values of
time t, as in Fig. 4.1 (b).

Fig. 4.1 The control freak pump sequence in the Rice-Mele model. The sequence is defined via
Eqs. (4.5) and (4.6). (a) Time dependence of the hopping amplitudes v, w and the sublattice po-
tential u. (b) The surface formed by the vector d(k, t) corresponding to the bulk momentum-space
Hamiltonian. The topology of the surface is a torus, but its parts corresponding to t 2 [0,0.25]T
and t 2 [0.75,1]T are infinitely thin and appear as a line due to the vanishing value of w in these
time intervals. (c) Instantaneous spectrum of the Hamiltonian Ĥ(t) of an open chain of N = 10
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A control-freak pumping protocol

This scheme pumps 1 electron per cycle
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tonian is the trivial SSH model, t/T = n+ 1/4, disconnected monomers, at times
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The d-vector draws a torus

Topological invariant of this torus is 1.
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sites. Red (blue) points represent states that are localized in the rightmost (leftmost) unit cells and
have energies between -1 and 1.

Introduction to topological insulators

András Pályi
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Topological invariant (Chern number)

1. Sit at d = 0.

2. Go to infinity along a straight line.

3. Count the number of intersections with the torus.

Qs to Janos/Laci:

”TRS implies zero chern number.” But if we have TRS, then we have degeneracies, so the Chern number is undefined,

right? Should we say, as a remark, that the Berry curvature is an antisymmetric function of the momentum?

Have you tried playing around with the QHE on a square lattice? How does the bulk spectrum look, for various

”periodic” flux values? How do the edge state look, for various periodic flux values?

I. KEY STATEMENTS

A. 1D chiral-symmetric topological insulators

1. SSH models can be classified topologically, according to their integer winding number as the topological invariant.

2. All ⌫ = 1 long SSH chains have a zero-energy edge at each edge.

3. These edge states remain at zero energy in the presence of disorder, as long as that respects chiral symmetry.

4. SSH chains can be generalized to have higher winding number, and the bulk-boundary correspondence holds in

that case.

5. Generalization to higher-dimensional internal space.

6. Using an SSH chain as a quantum memory.

7. Using an SSH chain as a quantum processor.

B. Chern insulators

1. A nondegenerate band can be characterized by its Chern number.

2. An example for non-zero Chern number is the valence band of the QWZ model.

3. Time-reversal symmetry implies a vanishing Chern number for each band.

4. Bulk-boundary correspondence: the Chern number is the number of protected co-propagating edge states along

an edge.
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Control-freak pumping in a finite wire

1 electron is taken from VB to CB per cycle

4.1 Charge pumping in a control freak way 53

This period, shown in Fig. 4.1 a), is assumed to then be repeated. Note that we
shifted the beginning time of the sequence: now at times t/T = n 2 Z, the Hamil-
tonian is the trivial SSH model, t/T = n+ 1/4, disconnected monomers, at times
t/T = n+1/2, it is the nontrivial SSH model.

The time-dependent bulk momentum-space Hamiltonian reads

Ĥ(k, t) = d(k, t)ŝ = (v(t)+w(t)cosk)ŝx +w(t)sinkŝy +u(t)ŝz, (4.6)

which can be represented graphically as the path of the vector d(k, t) as the quasi-
momentum goes through the Brillouin zone, k : 0 ! 2p , for various fixed values of
time t, as in Fig. 4.1 (b).

Fig. 4.1 The control freak pump sequence in the Rice-Mele model. The sequence is defined via
Eqs. (4.5) and (4.6). (a) Time dependence of the hopping amplitudes v, w and the sublattice po-
tential u. (b) The surface formed by the vector d(k, t) corresponding to the bulk momentum-space
Hamiltonian. The topology of the surface is a torus, but its parts corresponding to t 2 [0,0.25]T
and t 2 [0.75,1]T are infinitely thin and appear as a line due to the vanishing value of w in these
time intervals. (c) Instantaneous spectrum of the Hamiltonian Ĥ(t) of an open chain of N = 10
sites. Red (blue) points represent states that are localized in the rightmost (leftmost) unit cells and
have energies between -1 and 1.

Same pumping cycle as before, with N = 10 unit cells.
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Moving away from the control-freak limit

Continuous deformation can’t change the topological invariant

56 4 Adiabatic charge pumping, Rice-Mele model

Fig. 4.3 The smooth pump sequence of the Rice-Mele model for v̄ = 1. The hopping amplitudes
and the sublattice potential (a) are varied smoothly as a function of time. The vector d(k, t) cor-
responding to the bulk momentum-space Hamiltonian (b) traces out a torus in the 3-dimensional
space. Instantaneous spectrum of the Hamiltonian Ĥ(t) on an open chain of N = 10 sites (c) re-
veals that during a cycle, one state crosses over to the upper band on the right edge, and one to the
lower band on the left edge (dark red/light blue highlights energies of edge states, whose wave-
functions have than 60% weight on the rightmost/leftmost 2 unit cells). The wavefunctions of the
edge states (d,e) are exponentially localized to one edge and have support overwhelmingly on one
sublattice each. In contrast a typical bulk state (f) has a delocalized wavefunction with support on
both sublattices. .

Edge states in the instantaneous spectrum

Consider the spectrum of the instantaneous energies on an open chain, with an ex-
ample for N = 20 unit cells shown in Fig. 4.3. Since this charge sequence was ob-
tained by adiabatic deformation of the control freak sequence above, each branch in
the dispersion relation is deformed continuously from a branch in Fig. 4.1.

The edge states are no longer confined to a single unit cell, as in the control
freak case. However, as long as their energy lies deep in the bulk band gap, they
have wavefunctions that decay exponentially towards the bulk, and so they can be
unambiguously assigned to the left or the right end. (In case of a degeneracy between
edge states at the right and left end, we might find a wavefunction with components

4.1 Charge pumping in a control freak way 53

This period, shown in Fig. 4.1 a), is assumed to then be repeated. Note that we
shifted the beginning time of the sequence: now at times t/T = n 2 Z, the Hamil-
tonian is the trivial SSH model, t/T = n+ 1/4, disconnected monomers, at times
t/T = n+1/2, it is the nontrivial SSH model.

The time-dependent bulk momentum-space Hamiltonian reads

Ĥ(k, t) = d(k, t)ŝ = (v(t)+w(t)cosk)ŝx +w(t)sinkŝy +u(t)ŝz, (4.6)

which can be represented graphically as the path of the vector d(k, t) as the quasi-
momentum goes through the Brillouin zone, k : 0 ! 2p , for various fixed values of
time t, as in Fig. 4.1 (b).

Fig. 4.1 The control freak pump sequence in the Rice-Mele model. The sequence is defined via
Eqs. (4.5) and (4.6). (a) Time dependence of the hopping amplitudes v, w and the sublattice po-
tential u. (b) The surface formed by the vector d(k, t) corresponding to the bulk momentum-space
Hamiltonian. The topology of the surface is a torus, but its parts corresponding to t 2 [0,0.25]T
and t 2 [0.75,1]T are infinitely thin and appear as a line due to the vanishing value of w in these
time intervals. (c) Instantaneous spectrum of the Hamiltonian Ĥ(t) of an open chain of N = 10
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Qs to Janos/Laci:

”TRS implies zero chern number.” But if we have TRS, then we have degeneracies, so the Chern number is undefined,

right? Should we say, as a remark, that the Berry curvature is an antisymmetric function of the momentum?

Have you tried playing around with the QHE on a square lattice? How does the bulk spectrum look, for various

”periodic” flux values? How do the edge state look, for various periodic flux values?

I. KEY STATEMENTS

A. 1D chiral-symmetric topological insulators

1. SSH models can be classified topologically, according to their integer winding number as the topological invariant.

2. All ⌫ = 1 long SSH chains have a zero-energy edge at each edge.

3. These edge states remain at zero energy in the presence of disorder, as long as that respects chiral symmetry.

4. SSH chains can be generalized to have higher winding number, and the bulk-boundary correspondence holds in

that case.

5. Generalization to higher-dimensional internal space.

6. Using an SSH chain as a quantum memory.

7. Using an SSH chain as a quantum processor.

B. Chern insulators

1. A nondegenerate band can be characterized by its Chern number.

2. An example for non-zero Chern number is the valence band of the QWZ model.

3. Time-reversal symmetry implies a vanishing Chern number for each band.

4. Bulk-boundary correspondence: the Chern number is the number of protected co-propagating edge states along

an edge.



4.1 Charge pumping in a control freak way 53

This period, shown in Fig. 4.1 a), is assumed to then be repeated. Note that we
shifted the beginning time of the sequence: now at times t/T = n 2 Z, the Hamil-
tonian is the trivial SSH model, t/T = n+ 1/4, disconnected monomers, at times
t/T = n+1/2, it is the nontrivial SSH model.

The time-dependent bulk momentum-space Hamiltonian reads
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responding to the bulk momentum-space Hamiltonian (b) traces out a torus in the 3-dimensional
space. Instantaneous spectrum of the Hamiltonian Ĥ(t) on an open chain of N = 10 sites (c) re-
veals that during a cycle, one state crosses over to the upper band on the right edge, and one to the
lower band on the left edge (dark red/light blue highlights energies of edge states, whose wave-
functions have than 60% weight on the rightmost/leftmost 2 unit cells). The wavefunctions of the
edge states (d,e) are exponentially localized to one edge and have support overwhelmingly on one
sublattice each. In contrast a typical bulk state (f) has a delocalized wavefunction with support on
both sublattices. .

Edge states in the instantaneous spectrum

Consider the spectrum of the instantaneous energies on an open chain, with an ex-
ample for N = 20 unit cells shown in Fig. 4.3. Since this charge sequence was ob-
tained by adiabatic deformation of the control freak sequence above, each branch in
the dispersion relation is deformed continuously from a branch in Fig. 4.1.

The edge states are no longer confined to a single unit cell, as in the control
freak case. However, as long as their energy lies deep in the bulk band gap, they
have wavefunctions that decay exponentially towards the bulk, and so they can be
unambiguously assigned to the left or the right end. (In case of a degeneracy between
edge states at the right and left end, we might find a wavefunction with components

Continuous deformation can’t change the # of edge states



Berry phase, Chern number
main concepts, examples, relations

discrete 
Berry phase 

(discrete loop of states)

discrete 
Chern number 

(closed discrete surface of states)

remark: terminology: Berry phase factor lives on the complex unit circle, Berry phase lives in ]-pi,pi] or [0,2pi[

Berry phase 
(loop of states)

Chern number 
(closed surface of states)

parameter-dependent 
Hamiltonian

spin-1/2 
(magnetic field)

band Hamiltonian 
(crystal momentum)

loop in  
parameter space

eigenvalue ordinal number 
(degeneracy excluded)

closed surface in 
parameter space

adiabatic dynamics



Polarization and Berry phase
start with concepts from last week, think of 1D and 2-band tight binding models

Berry phase 
(loop of states)

parameter-dependent 
Hamiltonian

spin-1/2 
(magnetic field)

band Hamiltonian 
(crystal momentum)

loop in  
parameter space

eigenvalue ordinal number 
(degeneracy excluded)

Berry phase 
(loop of states)

parameter-dependent 
Hamiltonian

spin-1/2 
(magnetic field)

band Hamiltonian 
(crystal momentum)

loop in  
parameter space

eigenvalue ordinal number 
(degeneracy excluded)

Wannier states 
(gauge freedom)

Wannier center 
(gauge-invariant)

Wannier center of a band 
coincides with 

Berry phase over 2pi 
of that band

inversion symmetry (and chiral symmetry) 
quantizes the Wannier center 

(either 0 or 1/2)

Bloch states 
(gauge freedom)

adiabatic pumping: shift of Wannier center 
over a single cycle is the Chern number


