For next week, please read Chapter 5

Lecture Notes in Physics 919

János K. Asbóth László Oroszlány András Pályi

A Short Course on Topological Insulators

Band Structure and Edge States in One and Two Dimensions

🖄 Springer

5

Current operato

- 5.1 Particle curre
- 5.2 Time evoluti
- 5.3 The pumped

r and particle pumping
rent at a cross section of the lattice
ion governed by a quasi-adiabatic Hamiltonian
l current is the Berry curvature

. 65 . 66 . 72 . 76 Lecture Notes in Physics 919

János K. Asbóth László Oroszlány András Pályi

A Short Course on Topological Insulators

Band Structure and Edge States in One and Two Dimensions

Polarization and3.1Wannier stat3.2Inversion synProblems....

3

- 4 Adiabatic charge
 - 4.1 Charge pump
 - 4.2 Moving away
 - 4.3 Tracking the
 - Problems

Today

Berry phase	•
tes in the Rice-Mele model	•
mmetry and polarization	•
	•
e pumping, Rice-Mele model	•
ping in a control freak way	•
y from the control freak limit	•
e charges with Wannier states	•
	•

. 41 . 42 . 47 . 49 . 51 . 51 . 55 . 59 . 63

Adiabatic pumping with two sites

- two sites
- single electron
- ground state

 $H(t) = \begin{pmatrix} u(t) \\ v(t) \end{pmatrix}$

This protocol pumps a single charge from one site to the other

Adiabatic pumping in a lattice

Example: time-dependent Rice-Me

+u(t)

Momentum-space Hamiltonian: $\hat{H}(k,t) = \mathbf{d}(k,t)\hat{\sigma} =$ $= (v(t) + w(t)\cos k)\hat{\sigma}_x$ $+w(t)\sin k\hat{\sigma}_{v}+u(t)\hat{\sigma}_{z},$

Rice & Mele, PRL 1982 Thouless PRB 1983

$$H = \begin{pmatrix} u & v & 0 & 0 & 0 & 0 & 0 & 0 \\ v - u & w & 0 & 0 & 0 & 0 & 0 \\ 0 & w & u & v & 0 & 0 & 0 & 0 \\ 0 & 0 & v & -u & w & 0 & 0 & 0 \\ 0 & 0 & 0 & w & u & v & 0 & 0 \\ 0 & 0 & 0 & 0 & v & -u & v & 0 \\ 0 & 0 & 0 & 0 & 0 & w & u & v \\ 0 & 0 & 0 & 0 & 0 & 0 & v & -u \end{pmatrix}$$

$$+w(t)\sum_{m=1}^{N-1} \left(\left| m+1,A \right\rangle \left\langle m,B \right| +h.c. \right)$$

$$\sum_{m=1}^{N} \left(\left| m, A \right\rangle \left\langle m, A \right| - \left| m, B \right\rangle \left\langle m, B \right| \right),$$

Adiabatic pumping:

- 1. Gap doesn't close: $|\boldsymbol{d}| > 0$.
- 2. Cyclic time depedence (period T)

3. $T \to \infty$

How much charge is pumped through a cross section?

A control-freak pumping protocol

A control-freak pumping protocol

This scheme pumps 1 electron per cycle

. . .

The d-vector draws a torus

Topological invariant of this torus is 1.

 $\hat{H}(k,t) = \mathbf{d}(k,t)\hat{\boldsymbol{\sigma}} = (v(t) + w(t)\cos k)\hat{\boldsymbol{\sigma}}_{x} + w(t)\sin k\hat{\boldsymbol{\sigma}}_{y} + u(t)\hat{\boldsymbol{\sigma}}_{z},$

Topological invariant (Chern number)

- 3. Count the number of intersections with the torus.

Control-freak pumping in a finite wire

1 electron is taken from VB to CB per cycle

Same pumping cycle as before, with N = 10 unit cells.

wavefunction

Moving away from the control-freak limit

Continuous deformation can't change the topological invariant

Moving away from the control-freak limit

Continuous deformation can't change the # of edge states

remark: terminology: Berry phase factor lives on the complex unit circle, Berry phase lives in]-pi,pi] or [0,2pi]

Polarization and Berry phase start with concepts from last week, think of 1D and 2-band tight binding models

