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Berry phase definition 1

Take a 3-parameter Hamiltonian H(R : R

2’R3)’
with a hondegenerate spectrum

The Berry phase of the n-th energy eigenstate is a mapping...

from the set of closed curves in the parameter space
to the interval [0,21]

from the set of points of the parameter space
to the set of real numbers

c) from the set of open curves in the parameter space
to the interval [0,21

d)ifrom the set of open curves in the parameter space
to the set of real numbers



Berry phase definition 2

Take a quantum system parametrized by the continuous R,
which obeys the Schrodinger equation H(R)In(R)>=en(R)In(R)>
What is characterized by an adiabatic phase?

he operator H(R) along a closed curve
In the parameter space

he energy eigenvalues en(R) at a given point RO

c) A state vector In(R)) along a continuous curve
In the parameter space

d)/the linear combination of state vectors In(R)),Im(R))

at two points R1 es R2 connected by a continuous curve



Which of these is gauge invariant?

adiabatic phase o (C) — ] /C (n(R)\ Vr n(R)) dR
@Berry connecton A" =i(n(R)|Vr n(R))

c) Berry curvature B" =Vgr x A"



Take the SSH model with hopping amplitudes v and w both real.
When will the Berry phase of the lower band of the system be 07

A\

Hssu(k) = v6, + wcos(k)é, + wsin(k)a,

O
V=W

C) v<w

not enough information
to decide



We adiabatically slowly compress a 1D potential well (continuous thick red)
until its width is reduced by a factor of 1/2 (thin blue dashed).

We then decompress it back.

V(t+T,x)=V(t,x)

V(T/2-t,x)=V(T/2+t,x)

What is the Berry phase accumulated by the lowest energy bound state ?

I'here is no Berry phase
defined to this process

o)

c)0

he answer depends on the
precise shape of the potential.




We adiabatically slowly lift a 1D potential well (continuous thick red)

until at every x it is positive (thin blue dashed). We then lower it back.
V(t+T,x)=V(t,x)

V(T/2-t,x)=V(T/2+t,X)

What is the Berry phase accumulated by the lowest energy bound state ?

Since raising the potential will increase
the energy of the bound state well above

its original confinement, the particle
will not remain a bound state.

2n

c) O
Can not be decided.




Let us denote states on the Bloch sphere by 16, ¢) ! Which sequence of states has a
finite Berry phase associated to it?
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Take the Hamiltonian H(R) defined in a three-dimensional
parameter space, and consider its ground-state manifold y,(R).

Assume that the ground-state manifold is non-degenerate,
E (R) < Ej(R) for any j>0.
TI%en the Chern number of the ground-state manifold is a
function that maps
closed loops In the parameter space to integer numbers
(b) closed loops in the parameter space to [0,2r]
c) closed surfaces in the parameter space to integer numbers

d) closed surfaces in the parameter space to real numbers



Take the Hamiltonian H(B) =-B_ o..

What is the Chern number associated to the ground-state
manifold on the sphere I1Bl = B,?

@)o
©)1

C) 2

d) undefined



Take the Hamiltonian H(R) defined in a three-dimensional
parameter space. Assume that the ground-state manifold

Is non-degenerate on the sphere R = R, and that the Chern
number associated to this ground-state manifold on this
sphere is 1.

Which is the most precise statement about the ground-state
degeneracies in the interior of this sphere?
(@) There is no ground-state degeneracy.

@ There Is exactly one degeneracy point, and there
the ground state is twofold degenerate.

c There is exactly one point where the ground
state Is degenerate.

d) There Is at least one point where the ground
state is degenerate.



Take the Hamiltonian H(R) defined in a three-dimensional
parameter space. Assume that the ground-state manifold

Is non-degenerate on the sphere IRl =R,
and that the Chern number associated to this ground-state

manifold on this sphere is 0.
Which is the most precise statement about the ground-state

degeneracies in the interior of this sphere?
(@) There is no ground-state degeneracy.

There Is exactly one point where the grounad
state is degenerate.

c) The number of degeneracy points is even.

d) None of the above is true in general.



