János K. Asbóth László Oroszlány András Pályi
 A Short Course on Topological Insulators

Band Structure and Edge States in One and Two Dimensions

2 Berry phase, Chern number . 21
2.1 Discrete case 21
2.2 Continuum case 25
2.3 Berry phase and adiabatic dynamics 31
2.4 Berry's formulas for the Berry curvature 34
2.5 Example: the two-level system 35

For next week, please read Chapters 3 and 4

Lecture Notes in Physics 919

János K. Asbóth
László Oroszlány András Pályi

A Short Course on Topological Insulators

Band Structure and Edge States in One and Two Dimensions
3 Polarization and Berry phase 41
3.1 Wannier states in the Rice-Mele model 42
3.2 Inversion symmetry and polarization 47
Problems 49
4 Adiabatic charge pumping, Rice-Mele model 51
4.1 Charge pumping in a control freak way 51
4.2 Moving away from the control freak limit 55
4.3 Tracking the charges with Wannier states 59
Problems 63

Berry phase, Chern number

 main concepts, examples, relations

Berry phase, Chern number

main concepts, examples, relations

(b)

Berry phase, Chern number

main concepts, examples, relations

Berry phase, Chern number

 main concepts, examples, relations

Berry phase, Chern number

Berry phase, Chern number main concepts, examples, relations

Berry phase, Chern number main concepts, examples, relations

Berry phase, Chern number

 main concepts, examples, relations

Berry phase, Chern number main concepts, examples, relations

band Hamiltonian
(crystal momentum)

Berry phase, Chern number

main concepts, examples, relations

Berry phase, Chern number

 main concepts, examples, relations

Take a 3-parameter Hamiltonian $H\left(R_{1}, R_{2}, R_{3}\right)$, with a nondegenerate spectrum

The Berry phase of the n-th energy eigenstate is a mapping...
a) from the set of closed curves in the parameter space to the interval $[0,2 \pi[$
(b) from the set of points of the parameter space to the set of real numbers
c) from the set of open curves in the parameter space to the interval [0,2m[
d) from the set of open curves in the parameter space to the set of real numbers

Berry phase definition 2

Take a quantum system parametrized by the continuous \mathbf{R}, which obeys the Schrodinger equation $\left.H(R) \ln (R)\rangle=e_{n}(R) \ln (R)\right\rangle$ What is characterized by an adiabatic phase?
a) The operator $\mathrm{H}(\mathbf{R})$ along a closed curve in the parameter space
(b) The energy eigenvalues $\mathrm{e}_{\mathrm{n}}(\mathbf{R})$ at a given point \mathbf{R}_{0}
c) A state vector $\ln (\mathbf{R})\rangle$ along a continuous curve in the parameter space
d) the linear combination of state vectors $\ln (\mathbf{R})\rangle, \operatorname{Im}(\mathbf{R})\rangle$
at two points \mathbf{R}_{1} és \mathbf{R}_{2} connected by a continuous curve

Which of these is gauge invariant?
(a) adiabatic phase

$$
\gamma_{n}(\mathcal{C})=\mathrm{i} \int_{\mathcal{C}}\left\langle n(\mathbf{R}) \mid \nabla_{\mathbf{R}} n(\mathbf{R})\right\rangle \mathrm{d} \mathbf{R}
$$

(D) Berry connection $\quad \mathbf{A}^{n}=\mathrm{i}\left\langle n(\mathbf{R}) \mid \nabla_{\mathbf{R}} n(\mathbf{R})\right\rangle$
c) Berry curvature
$\mathbf{B}^{n}=\nabla_{\mathbf{R}} \times \mathbf{A}^{n}$

Berry phase in SSH

Take the SSH model with hopping amplitudes v and w both real. When will the Berry phase of the lower band of the system be 0 ?

$$
\hat{H}_{\mathrm{SSH}}(k)=v \hat{\sigma}_{x}+w \cos (k) \hat{\sigma}_{x}+w \sin (k) \hat{\sigma}_{y}
$$

(a) $v>w$
(b) $v=w$
c) $v<w$
d) not enough information to decide

Berry cyclic 1.

We adiabatically slowly compress a 1D potential well (continuous thick red) until its width is reduced by a factor of $1 / 2$ (thin blue dashed).
We then decompress it back.
$\mathrm{V}(\mathrm{t}+\mathrm{T}, \mathrm{x})=\mathrm{V}(\mathrm{t}, \mathrm{x})$
$\mathrm{V}(\mathrm{T} / 2-\mathrm{t}, \mathrm{x})=\mathrm{V}(\mathrm{T} / 2+\mathrm{t}, \mathrm{x})$
What is the Berry phase accumulated by the lowest energy bound state ?

a) There is no Berry phase defined to this process
(b) 2π
c) 0
d) The answer depends on the precise shape of the potential.

Berry cyclic 2.

We adiabatically slowly lift a 1D potential well (continuous thick red) until at every x it is positive (thin blue dashed). We then lower it back.
$\mathrm{V}(\mathrm{t}+\mathrm{T}, \mathrm{x})=\mathrm{V}(\mathrm{t}, \mathrm{x})$
$\mathrm{V}(\mathrm{T} / 2-\mathrm{t}, \mathrm{x})=\mathrm{V}(\mathrm{T} / 2+\mathrm{t}, \mathrm{x})$
What is the Berry phase accumulated by the lowest energy bound state ?

Bloch sphere 1.

Let us denote states on the Bloch sphere by $|\theta, \phi\rangle$! Which sequence of states has a finite Berry phase associated to it?

Take the Hamiltonian $\mathbf{H}(\mathbf{R})$ defined in a three-dimensional parameter space, and consider its ground-state manifold $\Psi_{0}(\mathbf{R})$. Assume that the ground-state manifold is non-degenerate, $\mathrm{E}_{0}(\mathbf{R})<\mathrm{E}_{\mathrm{i}}(\mathbf{R})$ for any $\mathrm{j}>0$.
Then the Chern number of the ground-state manifold is a function that maps
a) closed loops in the parameter space to integer numbers
(b) closed loops in the parameter space to $[0,2 \pi[$
C) closed surfaces in the parameter space to integer numbers
d closed surfaces in the parameter space to real numbers

Take the Hamiltonian $H(B)=-B_{z} \sigma_{z}$.
What is the Chern number associated to the ground-state manifold on the sphere $|B|=B_{0}$?
(a) 0
(b) 1
C) 2
(d) undefined

Take the Hamiltonian $\mathbf{H}(\mathbf{R})$ defined in a three-dimensional parameter space. Assume that the ground-state manifold is non-degenerate on the sphere $\mathbf{R}=\mathbf{R}_{0}$, and that the Chern number associated to this ground-state manifold on this sphere is 1 .
Which is the most precise statement about the ground-state degeneracies in the interior of this sphere?
(a) There is no ground-state degeneracy.
(b) There is exactly one degeneracy point, and there the ground state is twofold degenerate.
c There is exactly one point where the ground state is degenerate.
(d) There is at least one point where the ground state is degenerate.

Take the Hamiltonian $\mathbf{H}(\mathbf{R})$ defined in a three-dimensional parameter space. Assume that the ground-state manifold is non-degenerate on the sphere $\mid \mathbf{R I}=\mathrm{R}_{0}$, and that the Chern number associated to this ground-state manifold on this sphere is 0 .
Which is the most precise statement about the ground-state degeneracies in the interior of this sphere?
(a) There is no ground-state degeneracy.
(b) There is exactly one point where the ground state is degenerate.
c) The number of degeneracy points is even.
(d) None of the above is true in general.

