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SSH model: simplest 2-band insulator. 
External vs internal degrees of freedom

1 unit cell = two sites, intracell/intercell hopping v/w
External degree of freedom: which unit cell, m=
Internal degree of freedom: which site in cell, sublattice

Rewrite Hamiltonian:



  

Hamiltonian of a long piece: if w<v,
0-energy states at left/right ends, on A/B sublattice

left edge right edgebulk (~translation invariant)



  

Bulk Hamiltonian: describe in momentum space. 
Periodic boundaries, Fourier transform in external 

degrees of freedom only 

Bulk momentum-space Hamiltonian: 2x2

Eigenstates: u_n(k) is 2-component, Psi_n(k) is full Bloch state

Ensures H(k) periodic in momentum space → simple formulas
    (need to neglect different position of sites in unit cell)



  

Bulk Hamiltonian of SSH: 
Dispersion relation has gap if v\neq w



  

Edge states: states that have low overlap with bulk states, 
can have energy in bulk gap. 

1) Fully dimerized limit

Fully dimerized limits: w=0 → no edge states     
              v=0 → 1 edge state on left edge, on sublattice A, 1 on right edge, B 



  

Edge states: states that have low overlap with bulk states, 
can have energy in bulk gap. 

2) Adiabatic deformation away from fully dimerized limit



  

The essential symmetry here is sublattice (chiral) 
symmetry: Only terms in the Hamiltonian connect sites of 

different sublattices.

Unitary symmetries: Hamiltonian block diagonal → don’t care, eliminate by 
treating blocks separately.

Chiral symmetry: No matrix element connecting sites on the same sublattice

Chiral symmetry: Hamiltonian block off-diagonal in chiral basis



  

Essential consequence of chiral symmetry: symmetry of 
spectrum

→ Nonzero energy states have equal support on A and B

→ Zero energy states are either on A or on B

→ Any state at E has a partner at -E



  

Chiral symmetry and bulk gap 
→ Winding number of bulk topological invariant

If H(k) gapped, h(k) can have no 0 eigenvalue 
→ winding number makes sense 

For SSH model, h(k) is 1x1 matrix, “det” not needed. 
dx, dy are Pauli matrix coefficients. 

Chiral symmetry == dz(k)=d0(k)=0



  

Topological phases of SSH: Parameter regions that are 
adiabatically connected, can be labeled by the invariant



  

Net number of edge states is a topological invariant
Chiral symmetry local → pins edge states to 0 energy 

(exponential precision, E=e-L/ξ)

Z =    #(edge states at left edge on sublattice A) 
- #(edge states at left edge on sublattice B)

This is a topological invariant: invariant under adiabatic deformations:
- continuous changes
- during which bulk gap does not close
- during which symmetries are intact



  

Bulk-boundary correspondence:  ν=Z
Bulk winding number = net number of edge states

proof: here by adiabatic deformation



  

Consequence of Bulk-Boundary correspondence: 
Topologically protected states at an interface between 

two bulks,  Z = ν1 - ν2 
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