
THE QWZ modelTHE QWZ model
Required:Thouless pumping
New theory tool: Promoting time t → quasimomentum k
Main results: Edge states in two-dimensional systems 
Bulk Chern number predicts edge states 
Topological protection
Toy model: Qi-Wu-Zhang 
obtained from Thouless pump in Rice-Mele by promoting t → k



Reminder 1: Thouless pump sequence, Rice-MeleReminder 1: Thouless pump sequence, Rice-Mele

Pump charge along a dimerized chain using sublattice potential:

(k, t) =Ĥ d(k, t) ⋅ =σ̂ v(t) + w cos(t)  +( ) σ̂x w(t) sin(k)  +σ̂y u(t)  σ̂z

u(t) = sin(Ωt)
v(t) = +v̄ cos(Ωt)

w(t) = 1



Reminder 2: Protected Edge States in Thouless pumpReminder 2: Protected Edge States in Thouless pump

Topologically protected = robust:

Time - Periodic drive
No long range hopping

 

1. spectrum time-periodic
2. spectrum continuous
3. bulk gap separates two edges
4.        → no direct coupling,
5.        → crossing, not anticrossing



Reminder 3: Thouless pump in the bulk in d-space:Reminder 3: Thouless pump in the bulk in d-space:  
# times origin in torus = # charge pumped = Chern ## times origin in torus = # charge pumped = Chern #

smooth sequence:control freak sequence:



Reminder 4: Net number of charge pumped up in energyReminder 4: Net number of charge pumped up in energy
at an edge is protected against continuous deformationsat an edge is protected against continuous deformations



New material:New material:  
From Thouless pumpFrom Thouless pump

to Chern insulatorto Chern insulator



Promote time t → wavenumber kPromote time t → wavenumber k  
1D time-periodic Rice-Mele → 2D Qi-Wu-Zhang1D time-periodic Rice-Mele → 2D Qi-Wu-Zhang

 →σ̂y  σ̂x

 →σ̂z  σ̂y

 →σ̂x  σ̂z

Ωt → k  y

k → k  x

→v̄ u

 (k, t) =ĤRM sin(k)  +σ̂y sin(Ωt)  +σ̂z + cos(k) + cos(Ωt)  (v̄ ) σ̂z

 (k  , k  ) =ĤQWZ x y sin(k  )  +x σ̂x sin(k  )  +y σ̂y + cos(k  ) + cos(k  )  (v̄ x y ) σ̂z



Promote time t → wavenumber kPromote time t → wavenumber k  
1D time-periodic Rice-Mele → 2D Qi-Wu-Zhang1D time-periodic Rice-Mele → 2D Qi-Wu-Zhang



Edge states rising/falling in Thouless pumpEdge states rising/falling in Thouless pump  
→ unidirectional edge modes in Chern insulators→ unidirectional edge modes in Chern insulators

Topologically protected = robust: 
- No long range hopping 
→ spectrum periodic & smooth 
→ bulk gap separates two edges → no direct coupling → crossing,
not anticrossing



Presence, net # of edge state modes seen in bulk:Presence, net # of edge state modes seen in bulk:  
# times origin in torus = # edge state modes = Chern ## times origin in torus = # edge state modes = Chern #

C=0 C=-1 C=1 C=0

u<-2 -2<u<0 0<u<2 u>2



Net number of clockwise-propagating edge state modesNet number of clockwise-propagating edge state modes  
in the gap is protected against continuous deformationsin the gap is protected against continuous deformations



Net edge states at some section of edge → edge states allNet edge states at some section of edge → edge states all  
around (unitarity → particles cannot accumulate)around (unitarity → particles cannot accumulate)

Topologically protected = 
robust against: 
- Arbitrary disorder on edges 
- Some disorder in bulk 
(interesting variation on 
Anderson localization)



Net edge states at some section of edge → edge states allNet edge states at some section of edge → edge states all  
around (unitarity → particles cannot accumulate)around (unitarity → particles cannot accumulate)



Summary: Chern Insulators have robust edgeSummary: Chern Insulators have robust edge  
states predicted by bulk Chern #states predicted by bulk Chern #

Required:Thouless pumping (ensure edge states, Chern #)

New theory tool: Promoting time t → quasimomentum k

Main results: Edge states in two-dimensional systems 

Bulk Chern number predicts edge states 

Topological protection due to no backscattering 

Robust against disorder (large edge, small bulk)

Toy model: Qi-Wu-Zhang 

Tune Chern number by onsite magnetic field u (-2, 0, 2)

 (k  , k  ) =ĤQWZ x y sin(k  )  +x σ̂x sin(k  )  +y σ̂y + cos(k  ) + cos(k  )  (v̄ x y ) σ̂z



E
n
e
rg

y

a) 0
 
b) 2
 
c) neither
 
d) could be either

x

y

Consider the spectrum of an infinite translationally invariant ribbon.
Based on the depicted spectrum what is the Chern number of the bulk?



Consider a lattice model (e. g. QWZ) glue two copies of it with different Chern numbers
together C1=0, C2=1. On the edge of the two regions ...

a) there is a localized state, but it is not topologically protected.
 
b) there is a topologically protected state.
 
c) an infinitezimally small coupling destroys the edge state.
 
d) there might be topologically protected edge states but their 
    number is undetermined.

C1=0

C2=1



Consider a lattice model (e. g. QWZ) glue two copies of it with different Chern numbers
together C1=2, C2=1. On the edge of the two regions ...

a) there is a localized state, but it is not topologically protected.
 
b) there is a topologically protected state.
 
c) an infinitezimally small coupling destroys the edge state.
 
d) there might be topologically protected edge states but their 
   number is undetermined.

C1=2

C2=1



Q=1

We marked topologically protected
edgestates at three edges.
There could be more on the edges
that are not marked.
 
What is the Chern number 
Q' of the blue region?

Q'

a)
 
b)
 
c)
 
d)
 

Q'=0
 
Q'=1
 
There can not be such a configuration
 
Q' is indetermined (not enough information)

Q''



We marked topologically protected
edge states at three edges.
There could be more on the edges
that are not marked.
 
What is the Chern number 
Q' of the blue region?

a)
 
b)
 
c)
 
d)
 

Q'=0
 
Q'=1
 
There can not be such a configuration
 
Q' is indetermined (not enough information)

Q=1
Q'



Under what condition do you expect that an electron arriving in an edge state
will be perfectly transmitted through this constriction?
λ is the penetration depth of edge states towards the bulk.
 

W≫L and W≫λ
 
Chern number is nonzero ⟹ edge states are protected
independent of the shape of the system.
 
W≫L and L≫λ
 
W≫λ
 

Q=1

a)
 
b)
 
 
c)
 
d)
 

WL

λ 



a) ... along x does not change but their velocity does.
      ⟹ Ny is also unchanged.
 
b) ... along y doubles  
      ⟹ Nx also doubles.
 
c) ... increases along x, but Ny is unchanged.
 
d) ... doubles along y, but Nx is unchanged.

Modify the QWZ model: change 
hopping along x to next nearest 
neighbor hopping.
How does this change the number of 
edge states along x=Nx 
and along y=Ny?
The number of edge states...
 

x

y



a)
 
b)
 
c)
 
d)
 

v 
 
u
 
This model cannot be an insulator
 
The Chern number must always be 0

The QWZ model has spin dependent hopping amplitudes: 

Which parameter tunes the Chern number of the simplified system?
Assume the system to be an insulator.

Consider a simplified model: 



What is the Chern number of the valence band depicted in the picture?

a) 0

b) 1

c) The Chern number is defined 
    for the model
    not for the valence band!

d) Can not be decided. 



a) ... along x does not change but their velocity does.
      ⟹ Ny is also unchanged.
 
b) ... along y doubles  
      ⟹ Nx also doubles.
 
c) ... increases along x, but Ny is unchanged.
 
d) ... doubles along y, but Nx is unchanged.

Modify the QWZ model: change 
hopping along x to next nearest 
neighbor hopping.
How does this change the number of 
edge states along x=Nx 
and along y=Ny?
The number of edge states...
 

x

y



We fold a lattice model with a Chern number of +1 to the shape 
of a Moebius strip. The edge states on two opposite edges...
 

 

A) Propagate in the opposite direction
 
B) Propagate in the same direction
 
C) Direction of propagation depends on position 
          along the edge
 
D) Do not exist any more (are gapped out)
 
 


