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Envelope-Function Approximation:Envelope-Function Approximation:

RecipieRecipie

1. Rely on "spatially slowly varying" wave functions

2. Find relevant energy/momentum range

3. Expand the Hamiltonian around relevant

momenta

4. Replace relevant momentum by derivatives 
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EFA for metallic SSHEFA for metallic SSH

H(k) = v + w cos(k) σ  +[ ] x w sin(k)σ  y

-1 -q

H(k  +0 q) ≈ −wqσ  y

"masless Dirac fermion"



EFA for gapped SSHEFA for gapped SSH

H(k) = v + w cos(k) σ  +[ ] x w sin(k)σ  y

-1 -q

H(k  +0 q) ≈  σ  − (v − w)

M

x wqσ  y

"massive Dirac Hamiltonian"



EFA for gapped SSHEFA for gapped SSH

φ(x) =  f(x)( 0
1

)
f(x) ∝ e

−   dx M(x )
w

1 ∫0
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This language gives a single, sublattice polarized zero energy state

localized on the interface also!
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(k  +Ĥ 0 q) ≈  σ  +

M

 (u + 2) z q  σ  +x x q  σ  y y



EFA for QWZEFA for QWZ

M  0

−M  0

φ(x, y) =  e f(y)( 1
−1 ) iq  xx

f(y) = e
−  dy M(y )∫0

y ′ ′



Envelope-function Hamiltonian in one dimension (1)

7.2 The SSH model and the one-dimensional Dirac equation 99

Fig. 7.2 Inhomogeneous intracell hopping and domain walls in the SSH model. The dashed el-
lipse denotes the unit cell. The dashed line connecting the edges of the chain denotes the periodic
boundary condition.

7.2.1 The metallic case

First, consider the metallic homogeneous SSH model, where v = w. The dispersion
relation is shown as the blue solid line in Fig. 1.2c. The filled and empty bands
touch at the end of the BZ, at k = k0 ⌘ p . Figure 1.2c shows that in the vicin-
ity of that touching point, commonly referred to as a Dirac point, the dispersion
relations are linear functions of the relative wave vector q = k � k0. The slope of
these linear functions, corresponding to the group velocity of the electrons, can
be determined, e.g. by Taylor-expanding the bulk momentum-space Hamiltonian
Ĥ(k) = (v+wcosk)ŝx +wsinkŝy, see Eq. (1.10), to first order in q:

Ĥ(k0 +q)⇡�wqŝy, (v = w). (7.28)

which indeed has a linear dispersion relation,

E±(q) =±wq. (7.29)

The eigenstates of the linearized Hamiltonian (7.28) are

y±(q) =
1p
2
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. (7.30)

Note that the dispersion relation of the Dirac equation of fermions with zero mass
is

E±(k) =±h̄kc, (7.31)

where h̄ is the reduced Planck’s constant and c is the speed of light. Comparing
Eqs. (7.29) and (7.31), we conclude that the dispersion of the metallic SSH model
is analogous to that of massless Dirac fermions, and the hopping amplitude of the
metallic SSH model plays the role of h̄c. Because of the similarity of the dispersions

2

Consider the SSH model. Let the intercell hopping w = 1 be homogeneous.
The intracell hopping v changes smoothly in space, described by the function v(x).
The system is in the nearly metallic case everywhere, that is, |v(x)� 1| ⌧ 1.
Which one is the low-energy e↵ective Hamiltonian of the system?

(a) Ĥ = v(x)�̂x + p̂ �̂y

(b) Ĥ = [v(x) + 1]�̂x + p̂ �̂y

(c) Ĥ = [v(x)� 1]�̂x � p̂ �̂y

(d) None of the above.

Typos in lecture notes cond-mat v1:

1. 7.1 section title: one ! One

2. after eq 7.9: expand BZ

3. sect 7.2, 2nd line: one-dimensional ! one dimension

4. sect 7.2.2, 3rd line: is are ! is

Problems:

1. SSH: fully dimerized limit

2. SSH: spatially varying intercell hopping

3. 1D Klein paradox

4. 2D Klein paradox (1).

5. 2D Klein paradox (2).

6. QWZ at u = 2

7. QWZ at u = 0

8. Corbino disk (1)

9. Corbino disk (2)

10. Sudden change of mass in 1D

11. Sudden change of mass in 2D



Envelope-function Hamiltonian in one dimension (2)
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Consider the SSH model. Let the intercell hopping w = 1 be homogeneous.
The intracell hopping v changes smoothly in space, described by the function v(x).
The system is in the nearly metallic case everywhere, that is, |v(x)� 1| ⌧ 1.
Which one is the low-energy e↵ective Hamiltonian of the system?

(a) Ĥ = v(x)�̂x + p̂ �̂y

(b) Ĥ = [v(x) + 1]�̂x + p̂ �̂y

(c) Ĥ = [v(x)� 1]�̂x � p̂ �̂y

(d) None of the above.

Consider the SSH model. Let the intracell hopping v = 1 be homogeneous.
The intercell hopping w changes smoothly in space, described by the function w(x).
The system is in the nearly metallic case everywhere, that is, |1� w(x)| ⌧ 1.
Which one is the low-energy e↵ective Hamiltonian of the system?

(a) Ĥ = �̂x + w(x)p̂ �̂y

(b) Ĥ = [1 + w(x)]�̂x + w(x)p̂ �̂y

(c) Ĥ = [1� w(x)]�̂x � w(x)p̂ �̂y

(d) Ĥ = [1� w(x)]�̂x � 1
2 {w(x), p̂} �̂y
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Fig. 7.2 Inhomogeneous intracell hopping and domain walls in the SSH model. The dashed el-
lipse denotes the unit cell. The dashed line connecting the edges of the chain denotes the periodic
boundary condition.

7.2.1 The metallic case

First, consider the metallic homogeneous SSH model, where v = w. The dispersion
relation is shown as the blue solid line in Fig. 1.2c. The filled and empty bands
touch at the end of the BZ, at k = k0 ⌘ p . Figure 1.2c shows that in the vicin-
ity of that touching point, commonly referred to as a Dirac point, the dispersion
relations are linear functions of the relative wave vector q = k � k0. The slope of
these linear functions, corresponding to the group velocity of the electrons, can
be determined, e.g. by Taylor-expanding the bulk momentum-space Hamiltonian
Ĥ(k) = (v+wcosk)ŝx +wsinkŝy, see Eq. (1.10), to first order in q:

Ĥ(k0 +q)⇡�wqŝy, (v = w). (7.28)

which indeed has a linear dispersion relation,

E±(q) =±wq. (7.29)

The eigenstates of the linearized Hamiltonian (7.28) are

y±(q) =
1p
2
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Note that the dispersion relation of the Dirac equation of fermions with zero mass
is

E±(k) =±h̄kc, (7.31)

where h̄ is the reduced Planck’s constant and c is the speed of light. Comparing
Eqs. (7.29) and (7.31), we conclude that the dispersion of the metallic SSH model
is analogous to that of massless Dirac fermions, and the hopping amplitude of the
metallic SSH model plays the role of h̄c. Because of the similarity of the dispersions
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Consider the SSH model. Let the intercell hopping w = 1 be homogeneous.
The intracell hopping v changes smoothly in space, described by the function v(x).
The system is in the nearly metallic case everywhere, that is, |v(x)� 1| ⌧ 1.
Which one is the low-energy e↵ective Hamiltonian of the system?

(a) Ĥ = v(x)�̂x + p̂ �̂y

(b) Ĥ = [v(x) + 1]�̂x + p̂ �̂y

(c) Ĥ = [v(x)� 1]�̂x � p̂ �̂y

(d) None of the above.

Consider the SSH model. Let the intracell hopping v = 1 be homogeneous.
The intercell hopping w changes smoothly in space, described by the function w(x).
The system is in the nearly metallic case everywhere, that is, |1� w(x)| ⌧ 1.
Which one is the low-energy e↵ective Hamiltonian of the system?

(a) Ĥ = �̂x + w(x)p̂ �̂y

(b) Ĥ = [1 + w(x)]�̂x + w(x)p̂ �̂y

(c) Ĥ = [1� w(x)]�̂x � w(x)p̂ �̂y

(d) Ĥ = [1� w(x)]�̂x � 1
2 {w(x), p̂} �̂y
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Consider the SSH model. Let the intercell hopping w = 1 be homogeneous.
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Consider the SSH model. Let the intracell hopping v = 1 be homogeneous.
The intercell hopping w changes smoothly in space, described by the function w(x).
The system is in the nearly metallic case everywhere, that is, |1� w(x)| ⌧ 1.
Which one is the low-energy e↵ective Hamiltonian of the system?

(a) Ĥ = �̂x + w(x)p̂ �̂y

(b) Ĥ = [1 + w(x)]�̂x + w(x)p̂ �̂y

(c) Ĥ = [1� w(x)]�̂x � w(x)p̂ �̂y
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3

The bulk momentum-space Hamiltonian of the Qi-Wu-Zhang model reads

Ĥ = sin(kx)�̂x + sin(ky)�̂y + [u+ cos(kx) + cos(ky)] �̂z

For u = 2, which one is the low-energy envelope-function Hamiltonian?

(a) ĤEFA = p̂x�̂x + p̂y�̂y

(b) ĤEFA = �p̂x�̂x � p̂y�̂y

(c) ĤEFA = p̂x�̂x � p̂y�̂y

(d) None of them.

Envelope-function Hamiltonian in two dimensions (1)



82 6 Two-dimensional Chern insulators – the Qi-Wu-Zhang model

Fig. 6.1 The bulk dispersion relation of the QWZ model, for various values of u, as indicated
in the plots. In (a)-(c), the gapless cases are shown, where the bulk gap closes at so-called Dirac
points. In (d), a generic value u =�1.8, the system is insulating.

u <�2 : Q = 0; (6.5a)
�2 < u < 0 : Q =�1; (6.5b)

0 < u < 2 : Q =+1; (6.5c)
2 < u : Q = 0. (6.5d)

6.1.3 The real-space Hamiltonian

We obtain the full Hamiltonian of the Qi-Wu-Zhang model by inverse Fourier trans-
form of the bulk momentum-space Hamiltonian, Eq. (6.1), as
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The bulk momentum-space Hamiltonian of the Qi-Wu-Zhang model reads

Ĥ = sin(kx)�̂x + sin(ky)�̂y + [u+ cos(kx) + cos(ky)] �̂z

For u = 0, which one is the low-energy envelope-function Hamiltonian?

(a) ĤEFA = p̂x�̂x + p̂y�̂y

(b) ĤEFA = �p̂x�̂x � p̂y�̂y

(c) None of them.

(d) Both (a) and (b).
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3. 1D Klein paradox

4. 2D Klein paradox (1).
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6. QWZ at u = 2

7. QWZ at u = 0

8. Corbino disk (1)

9. Corbino disk (2)

10. Sudden change of mass in 1D

11. Sudden change of mass in 2D

Envelope-function Hamiltonian in two dimensions (2)



82 6 Two-dimensional Chern insulators – the Qi-Wu-Zhang model

Fig. 6.1 The bulk dispersion relation of the QWZ model, for various values of u, as indicated
in the plots. In (a)-(c), the gapless cases are shown, where the bulk gap closes at so-called Dirac
points. In (d), a generic value u =�1.8, the system is insulating.

u <�2 : Q = 0; (6.5a)
�2 < u < 0 : Q =�1; (6.5b)

0 < u < 2 : Q =+1; (6.5c)
2 < u : Q = 0. (6.5d)

6.1.3 The real-space Hamiltonian

We obtain the full Hamiltonian of the Qi-Wu-Zhang model by inverse Fourier trans-
form of the bulk momentum-space Hamiltonian, Eq. (6.1), as



Notes for lecture 7, continuum theory/Dirac equation
(Dated: November 9, 2017)

An electron is moving in a metallic SSH chain.
It is described by the 1D massless Dirac Hamiltonian Ĥ = �w p̂ �̂y.

It is scattered by a high, smooth potential barrier, Û = V (x)�̂0.
What is the probability of reflection from the barrier?

(a) 0

(b) 1

(c) between 0 and 1

(d) surprisingly, it is greater than 1, known as the ‘Klein paradox’
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Problems:
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2. SSH: spatially varying intercell hopping

3. 1D Klein paradox

4. 2D Klein paradox (1).

5. 2D Klein paradox (2).

6. QWZ at u = 2

7. QWZ at u = 0

8. Corbino disk (1)

9. Corbino disk (2)

10. Sudden change of mass in 1D

11. Sudden change of mass in 2D

Notes for lecture 7, continuum theory/Dirac equation
(Dated: November 9, 2017)

An electron is moving in a metallic SSH chain.
It is described by the 1D massless Dirac Hamiltonian Ĥ = �w p̂ �̂y.

It is scattered by a high, smooth potential barrier, Û = V (x)�̂0.
What is the probability of reflection from the barrier?

(a) 0

(b) 1

(c) between 0 and 1

(d) surprisingly, it is greater than 1, known as the ‘Klein paradox’
===
An electron is moving in a nearly metallic SSH chain.

It is described by the 1D massive Dirac Hamiltonian Ĥ = M �̂x � w p̂ �̂y.

It is scattered by a high, smooth potential barrier, Û = V (x)�̂0.
What is the probability of reflection from the barrier?

(a) 0

(b) 1

(c) between 0 and 1

(d) surprisingly, it is greater than 1, known as the ‘Klein paradox’
===
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2. SSH: spatially varying intercell hopping

3. 1D Klein paradox

4. 2D Klein paradox (1).

5. 2D Klein paradox (2).

6. QWZ at u = 2

7. QWZ at u = 0

Scattering in one dimension (1)



Scattering in one dimension (2)
Notes for lecture 7, continuum theory/Dirac equation

(Dated: November 9, 2017)

An electron is moving in a metallic SSH chain.
It is described by the 1D massless Dirac Hamiltonian Ĥ = �w p̂ �̂y.

It is scattered by a high, smooth potential barrier, Û = V (x)�̂0.
What is the probability of reflection from the barrier?

(a) 0

(b) 1

(c) between 0 and 1

(d) surprisingly, it is greater than 1, known as the ‘Klein paradox’
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10. Sudden change of mass in 1D

11. Sudden change of mass in 2D

Notes for lecture 7, continuum theory/Dirac equation
(Dated: November 9, 2017)

An electron is moving in a metallic SSH chain.
It is described by the 1D massless Dirac Hamiltonian Ĥ = �w p̂ �̂y.

It is scattered by a high, smooth potential barrier, Û = V (x)�̂0.
What is the probability of reflection from the barrier?

(a) 0

(b) 1

(c) between 0 and 1

(d) surprisingly, it is greater than 1, known as the ‘Klein paradox’
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Notes for lecture 7, continuum theory/Dirac equation
(Dated: November 9, 2017)

An electron is moving in a metallic SSH chain.
It is described by the 1D massless Dirac Hamiltonian Ĥ = �w p̂ �̂y.

It is scattered by a high, smooth potential barrier, Û = V (x)�̂0.
What is the probability of reflection from the barrier?

(a) 0

(b) 1

(c) between 0 and 1

(d) surprisingly, it is greater than 1, known as the ‘Klein paradox’
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2. SSH: spatially varying intercell hopping
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Scattering in one dimension (3)

Notes for lecture 7, continuum theory/Dirac equation
(Dated: November 9, 2017)

An electron is moving in a metallic SSH chain.
It is described by the 1D massless Dirac Hamiltonian Ĥ = �w p̂ �̂y.

It is scattered by a high, smooth potential barrier, Û = V (x)�̂0.
What is the probability of reflection from the barrier?

(a) 0

(b) 1

(c) between 0 and 1

(d) surprisingly, it is greater than 1, known as the ‘Klein paradox’
===
An electron is moving in a nearly metallic SSH chain.

It is described by the 1D massive Dirac Hamiltonian Ĥ = M �̂x � w p̂ �̂y.

It is scattered by a high, smooth potential barrier, Û = V (x)�̂0.
What is the probability of reflection from the barrier?

===
An electron is moving in a nearly metallic, inhomogeneous SSH chain.

It is described by the 1D massive Dirac Hamiltonian Ĥ = M(x)�̂x � w p̂ �̂y.
The spatial dependence of the mass is shown in the figure.
What is the probability of reflection from the barrier?
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Notes for lecture 7, continuum theory/Dirac equation
(Dated: November 9, 2017)

An electron is moving in a metallic SSH chain.
It is described by the 1D massless Dirac Hamiltonian Ĥ = �w p̂ �̂y.

It is scattered by a high, smooth potential barrier, Û = V (x)�̂0.
What is the probability of reflection from the barrier?

(a) 0

(b) 1

(c) between 0 and 1

(d) surprisingly, it is greater than 1, known as the ‘Klein paradox’
===
An electron is moving in a nearly metallic SSH chain.

It is described by the 1D massive Dirac Hamiltonian Ĥ = M �̂x � w p̂ �̂y.

It is scattered by a high, smooth potential barrier, Û = V (x)�̂0.
What is the probability of reflection from the barrier?

===
An electron is moving in a nearly metallic, inhomogeneous SSH chain.

It is described by the 1D massive Dirac Hamiltonian Ĥ = M(x)�̂x � w p̂ �̂y.
The spatial dependence of the mass is shown in the figure.
What is the probability of reflection from the barrier?

M(x)
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Scattering in two dimensions (1)

Notes for lecture 7, continuum theory/Dirac equation
(Dated: November 9, 2017)

An electron is moving in a metallic SSH chain.
It is described by the 1D massless Dirac Hamiltonian Ĥ = �w p̂ �̂y.

It is scattered by a high, smooth potential barrier, Û = V (x)�̂0.
What is the probability of reflection from the barrier?

(a) 0

(b) 1

(c) between 0 and 1

(d) surprisingly, it is greater than 1, known as the ‘Klein paradox’
===
An electron is moving in a nearly metallic SSH chain.

It is described by the 1D massive Dirac Hamiltonian Ĥ = M �̂x � w p̂ �̂y.

It is scattered by a high, smooth potential barrier, Û = V (x)�̂0.
What is the probability of reflection from the barrier?

===
An electron is moving in a nearly metallic, inhomogeneous SSH chain.

It is described by the 1D massive Dirac Hamiltonian Ĥ = M(x)�̂x � w p̂ �̂y.
The spatial dependence of the mass is shown in the figure.
What is the probability of reflection from the barrier?

M(x)

An electron is moving in a metallic QWZ lattice along x.
It is described by a 2D massless Dirac Hamiltonian Ĥ = p̂x�̂x + p̂y�̂y.

It is scattered by a high, smooth potential barrier, Û = V (x)�̂0.
What is the probability of reflection from the barrier?

(a) 0

(b) 1

(c) between 0 and 1, and the value depends on the details of V (x)

(d) between 0 and 1, but the value does not depend on the details of V (x)
Typos in lecture notes cond-mat v1:
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Notes for lecture 7, continuum theory/Dirac equation
(Dated: November 9, 2017)

An electron is moving in a metallic SSH chain.
It is described by the 1D massless Dirac Hamiltonian Ĥ = �w p̂ �̂y.

It is scattered by a high, smooth potential barrier, Û = V (x)�̂0.
What is the probability of reflection from the barrier?

(a) 0

(b) 1

(c) between 0 and 1

(d) surprisingly, it is greater than 1, known as the ‘Klein paradox’
===
An electron is moving in a nearly metallic SSH chain.

It is described by the 1D massive Dirac Hamiltonian Ĥ = M �̂x � w p̂ �̂y.

It is scattered by a high, smooth potential barrier, Û = V (x)�̂0.
What is the probability of reflection from the barrier?

===
An electron is moving in a nearly metallic, inhomogeneous SSH chain.

It is described by the 1D massive Dirac Hamiltonian Ĥ = M(x)�̂x � w p̂ �̂y.
The spatial dependence of the mass is shown in the figure.
What is the probability of reflection from the barrier?

M(x)

An electron is moving in a metallic QWZ lattice along x.
It is described by a 2D massless Dirac Hamiltonian Ĥ = p̂x�̂x + p̂y�̂y.

It is scattered by a high, smooth potential barrier, Û = V (x)�̂0.
What is the probability of reflection from the barrier?

(a) 0

(b) 1

(c) between 0 and 1, and the value depends on the details of V (x)

(d) between 0 and 1, but the value does not depend on the details of V (x)
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Scattering in two dimensions (2)

Notes for lecture 7, continuum theory/Dirac equation
(Dated: November 9, 2017)
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What is the probability of reflection from the barrier?

(a) 0

(b) 1

(c) between 0 and 1

(d) surprisingly, it is greater than 1, known as the ‘Klein paradox’
===
An electron is moving in a nearly metallic SSH chain.

It is described by the 1D massive Dirac Hamiltonian Ĥ = M �̂x � w p̂ �̂y.
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An electron is moving in a metallic QWZ lattice along an arbitrary direction.
It is described by a 2D massless Dirac Hamiltonian Ĥ = p̂x�̂x + p̂y�̂y.

It is scattered by a high, smooth potential barrier, Û = V (x)�̂0.
What is the probability of reflection from the barrier?
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What is the probability of reflection from the barrier?

(a) 0

(b) 1

(c) between 0 and 1

(d) surprisingly, it is greater than 1, known as the ‘Klein paradox’
===
An electron is moving in a nearly metallic SSH chain.

It is described by the 1D massive Dirac Hamiltonian Ĥ = M �̂x � w p̂ �̂y.
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Domain wall and the structure of the energy spectrum (1)

102 7 Continuum model of localized states at a domain wall

7.2.4 Localized states at a domain wall

Having the envelope-function Schrödinger equation

[M(x)ŝx �wp̂ŝy]j(x) = Ej(x) (7.40)

at hand, we can study the domain wall between the two topologically distinct re-
gions. First, we consider a step-type domain wall, defined via

M(x) =
⇢

M0 if x > 0,
�M0 if x < 0 , (7.41)

and M0 > 0, as shown in Fig. 7.3a.

Fig. 7.3 (a) Step-like and (b) irregular spatial dependence of the mass parameter M(x) of the
one-dimensional Dirac equation.

We wish to use the EFA Schrödinger equation (7.40) to establish the zero-energy
states localized to the domain wall, which were revealed earlier in the lattice SSH
model. That is, we look for evanescent solutions of Eq. (7.40) on both sides of the
domain wall, and try to match them at the interface x = 0. For the x > 0 region, our
evanescent-wave Ansatz reads

jx>0(x) =

 
a

b

!
e�kx (7.42)

with k > 0. Substituting this to Eq. (7.40) yields a quadratic characteristic equation
for the energy E, having two solutions

E± =±
q

M2
0 �w2k2. (7.43)

The corresponding unnormalized spinors read

5

Consider the massive 1D Dirac Hamiltonian, with a step-like mass domain wall as depicted.

Ĥ = M(x)�̂x + p̂�̂y

What is the structure of the energy spectrum of this system?
(black line: discrete level; blue region: continuum)
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6

Consider the massive 1D Dirac Hamiltonian, with a gradual mass domain wall as depicted, M(x) = ↵x.

Ĥ = M(x)�̂x + p̂�̂y

What is the structure of the energy spectrum of this system?
(black line: discrete level; blue region: continuum)
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Domain wall and the structure of the energy spectrum (3)
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Consider the massive 1D Dirac Hamiltonian, with a gradual mass domain wall as depicted, M(x) = ↵x.

Ĥ = M(x)�̂x + p̂�̂y

What is the structure of the energy spectrum of this system?
(black line: discrete level; blue region: continuum)
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7

Consider the massive 1D Dirac Hamiltonian, with the mass domain wall as depicted.

Ĥ = M(x)�̂x + p̂�̂y

Which figure can represent the structure of the
energy spectrum of the system?
(black line: discrete level; blue region: continuum)



Fate of a bound state after a sudden change (1)

x

V(x)

8

Consider an electron in one dimension.
It is described by the Hamiltonian Ĥ = p̂2

2m + V (x).
Initially, we have the blue confinement potential, and the electron
occupies the ground state of the Hamiltonian, which is a bound state.
Suddenly, the potential changes to the red one.
What happens to the electron?

(a) Nothing, it remains in the same state.

(b) It escapes from the bound state and spreads away from its original position.

(c) It remains confined in the vicinity of its original position, but starts to oscillate.

(d) None of the above.
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final



Fate of a bound state after a sudden change (2)
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9

Consider an electron in one dimension.
It is described by the Hamiltonian Ĥ = p̂2

2m + V (x).
Initially, we have the blue confinement potential, and the electron
occupies the ground state of the Hamiltonian, which is a bound state.
Suddenly, the potential changes to the red one.
What happens to the electron?

(a) Nothing, it remains in the same state.

(b) It escapes from the bound state and spreads away from its original position.

(c) It remains confined in the vicinity of its original position, but starts to oscillate.

(d) Part of it escapes, part of it remains localized and starts to oscillate.

x
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Fate of a bound state after a sudden change (3)
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10

Consider an electron in one dimension.
It is described by the one-dimensional massive Dirac equation:
Ĥ = M(x)�̂z � wp̂�̂y

Initially, we have the blue mass domain wall, and the electron
occupies the zero-energy bound state.
Suddenly, the mass profile changes to the red one.
What happens to the electron?

(a) Nothing, it remains in the same state.

(b) It escapes from the bound state and spreads away from its original position.

(c) It remains confined in the vicinity of its original position, but starts to oscillate.

(d) Part of it escapes, part of it remains localized and starts to oscillate.



Fate of a bound state after a sudden change (4)
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Consider an electron in one dimension.
It is described by the one-dimensional massive Dirac equation:
Ĥ = M(x)�̂z � wp̂�̂y

Initially, we have the blue mass domain wall, and the electron
occupies the zero-energy bound state.
Suddenly, the mass profile changes to the red one.
What happens to the electron?

(a) Nothing, it remains in the same state.

(b) It escapes from the bound state and spreads away from its original position.

(c) It remains confined in the vicinity of its original position, but starts to oscillate.

(d) Part of it escapes, part of it remains localized and starts to oscillate.
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Fate of a bound state after a sudden change (5)
11

Consider an electron in one dimension. It is described by the one-dimensional SSH model.
Initially, we have a domain wall between a trivial and a topological half-chain,
both in the fully dimerized limit, and an electron occupies the zero-energy bound state.
Suddenly, the hoppings are rearranged such that the trivial part becomes topological
and the topological part becomes trivial, again both fully dimerized.
What happens to the electron?

(a) Nothing, it remains in the same state.

(b) It escapes from the bound state and spreads away from its original position.

(c) It remains confined in the vicinity of its original position, but starts to oscillate.

(d) Part of it escapes, part of it remains localized and starts to oscillate.

18 1 The Su-Schrieffer-Heeger (SSH) model

Fig. 1.8 A long, fully dimerized SSH chain with 3 domains. The boundaries between the domains,
the “domain walls”, host zero energy eigenstates (yellow shading). These can be localized on a
single site, as for the domain wall at n = 3, or on a superposition of sites, as the odd superposition
of the ends of the trimer shared between the n = 6 and n = 7 unit cells. .

superposition of the two end sites form a zero energy eigenstate. In the the example
of Fig. 1.8, this is

Ĥ(|6,Bi� |7,Bi) = 0. (1.41)

Note that, just as the edge states at the ends of the chain, these zero energy states at
the interfaces have wavefunctions that take nonzero values on one sublattice only.

From a perfect dimerized phase without domains it is only possible to germinate
an even number of interfaces. This means that if one encounters a domain wall with
a localized state on one sublattice then there will be another domain wall somewhere
in the system – possibly at the system’s edge – with a localized state on the opposite
sublattice.

Consider a domain wall in an SSH system that is not in the fully dimerized limit.
The wavefunctions of the edge states at the domain walls will penetrate to some
small depth into the bulk, with exponentially decaying evanescent tails. For two
domain walls at a distance of M unit cells, the two edge states on the walls will
hybridize, form “bonding” and “anti-bonding” states. At half filling, of these only
the negative energy eigenstate will be occupied. This state hosts a single electron,
however, its wavefunction is localized with equal weight on the two domain walls.
Hence each domain wall, when well separated from other domain walls and the ends
of the chain, will carry half an electronic charge. This effect is sometimes referred
to as “fractionalization” of the charge.

1.5.2 Exact calculation of edge states

The zero energy edge states of the SSH model can also be calculated exactly, even
in the absence of translational invariance. Take an SSH model on N unit cells, with
complex intracell and intercell hopping amplitudes,

Ĥ =
N

Â
m=1

�
vm |m,Bihm,A|+h.c.

�
+

N�1

Â
m=1

�
wm |m+1,Aihm,B|+h.c.

�
. (1.42)

We are looking for a zero energy eigenstate of this Hamiltonian,
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We are looking for a zero energy eigenstate of this Hamiltonian,
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