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Rice-Mele model: SSH model+sublattice potential.
Breaks chiral & inversion symmetry = ...charge pumping

N N-1
H=wv Z im, A)(m, B| + h.c. + w

Z im + 1, BY(m, A| + h.c.
m=1 m=1
N
+U Z |m7 A><m7A‘ o |m7 B><m7B|
m=1
d,
U U+ we "k f
H(k) - <v + we'k —U )

= uo, + (v + wcosk)o, + wsin ko,

Used in Chapter 1 to break chiral symmetry




Run a charge pump by making Rice-Mele parameters
time-dependent (periodically)
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Make hoppings v(t), w(t), onsite energies u(t) periodically time-dependent
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1. Charge pumping as a “control freak” means we always
we know which dimer an electron is on

Control freak:

no hopping between dimers:
v(t)=0 or w(t)=0, always.

— Know where electron is
— “Bucket brigade” for electrons
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2. Shifting position in bulk = must shift energy at edge
— topological dispersion relation branches at edge
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amplitudes u,v,w

energy I

3. If this pump effect is topological, it must persist even if
we don't keep track of electrons (not control freak)
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4. State transfer between bulk bands takes place at edge.
Net no. of states transferred = Q topological invariant

N = number of times E = € is crossed from £ < € to E > €;
N_ = number of times £ = £ 1s crossed from E > £ to E < &;

Q0 = N+ — N_ = net number of edge states pumped up in energy .
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Bulk topological invariant in charge pumping is Chern
number

e Proof 1: track “electron positions” using Wannier states
(today) (®)

1 P .l "'er

Axos = — 5{ B dkds.
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* Proof 2: integrate adiabatic current over timestep
(next week)
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Polarization, Berry phase, Wannier states,
charge pumping

needed to prove charge pumping
great tool for visualizing bulk processes

Main result:
Wannier center = Berry phase, gauge independent mod 2pi
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Interpret as Bulk Electric Polarization
)

Paceric = 5= | k() o fu(i)

+ Inversion symmetry quantizes polarization
+ Chiral symmetry quantizes polarization



Don’t confuse plane wave eigenstates |V, (k))
with internal space states |y, (k))

Eigenstates of bulk Hamiltonian: plane waves delocalized over whole lattice
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Wannier states are a set of tightly localized basis states

that span the occupied band

2 projector to occupied
P = Z |\Ij(k)><qj(k)| subspace
k
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Wannier states are obtained by Fourier transform, with
arbitrary gauge function a(k)

N
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gauge function a(k) can be used to make
Wannier function tightly localized
(1D: can be exponentially localized)



Wannier center (w(j)|X|w(j)) =position of charge
= Berry phase of |u(k))

ORI = 5 [ dk (k)| Beuh)) + 5

obtained by partial integration

j€Z gauge dependent (bulk polarization defined mod 1)
Agrees with intuitive result ;[T
Pelectric — _/ dk<u(k)’6k|u(k)>

P



Useful numerical tool to calculate Wannier centers is
Resta’s unitary position operator X = %

A

Definition: X — W0k

Respects periodic boundary condition
Unitary operator that shifts momentum

Connection to position:

(@) = 2 log (] X|0)

o

(see discussion in quantum optics on “phase operator”)



Eigenvalues of the projected unitary position operator
give the Wannier centers
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W Wilson loop, @ is Berry phase

eigenvalues A of X, give Wannier centers

\, = einék—|—10g(VV)/N _ |W’1/N 673(¢+n5k)/1\7



Chiral symmetry quantizes bulk polarization

H(k)|u(k)) = —E(k)|u(k)) HK)|v(k)) = E(k)|v(k))
u(k)) = " T|u(k))

Berry phase of lower band = Berry phase of upper band:



Chiral symmetry quantizes bulk polarization
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Elementary properties of Berry phase:

't et?P— =1

Two options: bulk polarization O or %



Bulk topological invariant in charge pumping using
Wannier states

Fully occupied band
= Slater determinant of plane waves
= Slater det’'nt of localized, equidistant Wannier states

Wannier states gauge dependent,
Wannier state center = Berry phase, only up to n2pi
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Using locally smooth gauge, calculate Wannier charge
pumping via Stokes theorem — Chern number



Peer instruction questions



The Wannier state from the nw band centered around site j is denoted
by |[wn(j)) .

Consider the Wannier states from different bands, n'#n,
and for different positions, j'#j, i.e., |ww)(j)), |wm(j')).

Which of the overlaps is guaranteed to be zero by construction,
the one between different bands, or the one between different positions?

@ ™) =07 W™ ()™ ()| =07

c) Neither the one nor the second

@Both



Consider the very slow pump protocol, where H = v(t)o, + u(t)o,. The initial
state is the ground state at ¢ = 0, that is, ¥; = (1,0). Which protocol does not
shift the charge?
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Consider the very slow pump protocol, where H = v(t)o, + u(t)o, The initial
state is the ground state at ¢t = 0, that is, ¢); = (1,0). What is the final state
and why?
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Consider adiabatic pumping in the Rice-Mele model with the depicted time
dependence of the parameters. Is this a control-freak pump?

d(k,t)o = [v(t) +w(t)cos(k)]or 1
+w(t) sin(k)o, + u(t)o.
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time ¢t/T
@ it is not a control-freak cycle as the graph is not assembled from straight

lines
it is not even adiabatic as the gap closes during the cycle

c' it is a control-freak cycle because the corresponding d(k, t) surface is a torus

@ it is a control-freak cycle because the energy eigenstates can be chosen to
be localized to dimers



Which of the figures below could represent the edge states at a certain edge in
a pumping process?

@*X one of the above




Which of the figures below could represent the edge states of a pump sequence
with Chern number 27
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The figures represent the v = 1 case of the pump sequence defined by
(a)

alt) = sin(2ntiT),
v(t) v + cos(27t/T),
Wity = 1;

L]
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in the finite-sized Rice-Mele model with N=4 unit cells.

Assume that initially the electronic system is in its ground state: the four elec-
trons occupy the negative-energy states. At least how many cycles should be

completed to arrive to this ground state again? -
o) v

c)4 i |
O = g



The figures represent the v = 1 case of the pump sequence defined by

3
u(t) = sin(2nt/T), R
v(t) = o+ cos(2nt/T), S
wt) = 1, g

0 0.25 0.5 0.75 1
time t/T

in the finite-sized Rice-Mele model with N=4 unit cells.
Do you expect to see any qualitative difference in the energy-vs-time graph,

if ¥ =1 is changed to v = 1.57 v
2
O 1

@ Yes: bulk states become degenerate S

c) Yes: all degeneracies are lifted at t=0.5 T N A
-2
@ Yes: two edge states appear on both edges A
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The figure represent the v = 1.5 case of the pump sequence defined by

u(t) = sin(27t/T),
v(t) = v+ cos(2mt/T),
w(t) = 1,

in the finite-sized Rice-Mele model with N=4 unit cells.

Assume that initially the electronic system is in its ground state: the four elec-
trons occupy the negative-energy states. At least how many cycles should be
completed to arrive to this ground state again?
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