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Technical details of the course

● 1+12 lectures
● Book:    A Short Course on Topological 

Insulators: Band-structure topology and 
edge states in one and two dimensions

● On arxiv 
● End of semester: written + oral exam for 

grade

● The book and extra material downloadable from 
eik.bme.hu/~palyi/TopologicalInsulators2017Fall/



  

Insulator: has bulk energy gap separating fully occupied 
bands from fully empty ones

(includes superconductors in mean-field, 
  using Bogoliubov-de Gennes trick)

Bulk: 
  -simple, can be clean,
  -most of the energy states
  -decides insulator/conductor

Boundary/edge: 
   -disordered
   -few of the energy states
   -can hinder contact



  

Topological Insulator: has protected, extended midgap 
states on surface, which lead to robust, quantized physics



  

2D Chern Insulators: 1-way 
conducting states
→ no backscattering
→ perfect edge conduction



  

“Why call them Topological Insulators?”
 a) Robust physics at the edge (2D: conductance 
via edge state channels) quantified by small
integers

1D, quantum wire: 
   # of topologically protected 
    0-energy states at ends of wire

3D: 
   # of Dirac cones on surface

Cannot change by continuous deformation that 
leaves bulk insulating
 → TOPOLOGICAL INVARIANT



  

“Why call them Topological Insulators?”
 b) Bulk description has a topological invariant, generalized 
“winding” in Brillouin Zone

Example: 2D, two levels: 

Mapping from d-dimensional torus to Bloch sphere

More general 2D: Chern number of 
occupied bands



  

Central, beautiful idea of Topological Insulators:
Bulk—boundary correspondence:
“winding number” of bulk = # of edge states

Central aim of the course: 
prove bulk—boundary correspondence 
for the 2-dimensional case

 gather tools, build intuition

generalize/understand

weeks 1-5:

week 6:

weeks 7-10:



  

week 1: 1 Dimension, quantum wires with 
Sublattice Symmetry

Toy model (for polyacetylene): 
Su-Schrieffer-Heeger (SSH, 1979), chemistry Nobel 2000

●Edge States
●Topological invariant (Adiabatic deformations)
●Bulk Hamiltonian
●Bulk Invariant (winding number)
●Bulk—boundary correspondence through adiabaticity

acquire familiarity with basic concepts:



  

weeks 2,3: Gather mathematical tools: 
Berry phase, Chern number, Polarization

Bulk polarization 
identified with Zak 
phase:
Projected to a 
single 
sublattice:

Sublattice 
polarization:



  

weeks 4-5: Gather conceptual tool: 
Thouless Charge Pump

Archimedes screw: 
displace water by 
periodic pump
 - x liter per cycle

Thouless pump: displace charge
by periodic change in potential shape
 - n charges per cycle



  

week 6: Bulk—boundary correspondence for 
   2-dimensional Chern Insulators

Proof by mapping Chern Insulator to a Thouless pump
 (a variant of dimensional reduction)



  

week 7: Continuum models of topological insulators

●Envelope Function Approximation
●No Brillouin Zone 
●Simple analytical arguments



  

weeks 8-9: Time-reversal-symmetric Topological 
Insulators

●Two types of time reversal
●Time reversal prevents one-way 
propagation (Chern=0)
●Kramers degeneracy
●Edge states protected by time 
reversal



  

week 10: Electrical conduction as “smoking 
gun” signature of edge states: 
what it means, how it is measured 

●Landauer--Büttiker picture of conductance
●Interpreting experiments
●Effects of decoherence



  

week 11 Topological semimetals, Weyl 
semimetals

●Topologically protected band crossings
●2D: graphene, 3D: Weyl semimetals
●Surface Fermi arcs



  

weeks 12? If we have time at end of semester, 
explore extra material

Scattering theory of topological insulators, 
Green’s function formulation

More on experiments and model systems

Generalized topological invariants using 
differential geometry

Topologically protected states on topological 
defects



  

Next semester: Topological Superconductors

Bogoliubov—de Gennes

Majorana fermions in wires & 2D

Applications for quantum computing

Complete Periodic Table of Topological Insulators

Taste of Topological Order (interacting systems)



  

An example for how well developed the theory is: 
universality classes of Topological Insulators, 
“Periodic Table”

•Kitaev (2008)
•Schnyder, Ryu, Furusaki, Ludwig (2009)
•Teo & Kane, PRB 82, 115120 (2010)



  

Summary & motivation

   - Band Insulators can have bulk topological invariants

   - Universality: dimension, symmetries matter 

   - Bulk topological invariants predict edge states 

   - Systems of different dimensionality connected 

   - Useful for protection of quantum information

   - Window into Topological Order



  

We teach this course using 
Peer Instruction

1. Prepare for class
Read next section of lecture notes, 

(watch youtube lectures, 
discuss with friends, solve exercises)

2. First part of class: 
we summarize, 
you ask your questions

3. 2nd part of class: structured discussion

1st step



  

Peer Instruction: 10-15-min structured discussion, 
all students participate

Eric Mazur, Harvard professor (quantum optics)
 - developed for premed Harvard course 1990 
 - improved continuously, large online community



  

1’

1’, 2’, …,  10’
Reminder of 
pre-studied material

2’ - 5’
Instructor’s best 
answer explained 
(by instructor or 
selected student)
+ class questions

5’
Convince your 
neighbor!

1’
Voting by:
 - hands
 - color cards
 - mobile app 
     (kahoot, …)
 - clicker

2’
ConcepTest

Peer Instruction: 10-15-min structured 
discussion, all students participate

1’
Brief individual 
thinking for an 
informed guess



  

Example: 2-dimensional smooth vector fields
on punctured disks (as in Kosterlitz-Thouless)

  ≃  homotopic equivalence: v(r) w(r)  iff they can be connected ≃  
continuously 

≃  

≃  



  

  ≃  homotopic equivalence: v(r) w(r)  iff they can be connected ≃  
continuously 

≃  

≃  

Example: 2-dimensional smooth vector fields
on punctured disks (as in Kosterlitz-Thouless)




  

2-dimensional smooth vector fields
and winding numbers

Winding number N of v(r) along a closed loop is 
topological invariant: obstruction for continuous deformations

≃  

≃  

  N = 0 

 N = 1 



  

How many of the small ones is  ≃  
to the big one?

A) 0?

B) 1?

C) 2?

D) 3?



  

Answer: 2 are  to the big field≃  
(1. calculate winding number)

 N = -1 

 N = 1 

 N = 1 

 N = 1 



  

Answer: 2 are  to the big field≃  
(2. show animation)

 N = -1 

 N = 1 

 N = 1 




  

Peer Instruction makes lecturing (more) useful

● Breaks monotonicity 
● Engages high-achieving and 

underachieving students
● Develops communication skills, 

self-confidence
● Gives real-life understanding
● Pre-lecture reading needed

Fun game for students Useful feedback for instructor
● Allows to shape course 
● Voting: Instant feedback about 

whole group
● Listening in to discussions:

individual problems
● ConcepTests needed (many online)



  

If you put some energy into this Topological 
Insulators course during semester, this will be fun!

● Read ahead in the lecture notes (on website)
● Participate in classroom
● Feel free to experiment with python scripts (on 

website)

http://physics.bme.hu/BMETE11MF34_kov

+ Develop deep understanding of topic before the exam period
+ Develop communication skills

you need to:

you obtain:


