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Outlook

 GaN HEMT
- Polar semiconductors 
- 2DEG and HEMT 

 Si technology
- Si crystal
- Thin film formation
- Etching techniques
- Lithography
- Ion implantation

 Trends
- Future CMOS
- More than more



GaN HEMT



Polar semiconductors

• Lack of crystal inversion symmetry
• Relatively low band gap, i.e. not insulator
• E.g. semiconductors in wurtzite crystal group (GaN, ZnO, AlN, SiC, CdS stb.)

Simplified band structure of GaN



 Epi-ready substrates are available: sapphire, 

SiC, Si (8”), AlN, GaN

 Band-gap engineering: AlGaN, InGaN

 Deposition methods:

- MOCVD (MOVPE) (industrial) 

- MBE (research)

MOVPE

Merits of GaN



Crystal polarity



Wurtzite crystal: relaxed



Wurtzite crystal: tensile stress



Piezoelectric polarization
- It plays an important for pseudomorphic epiatxial layers

Wurtzite crystal: compressing stress



Spontaneous
polarization

Spontaneous polarization in wurtzite crystal

fcc (abcabc…) Wurtzite (hcp: abab..)

Ideal value 
from atomic 
ball model



Field~ 1-10 MV/cm

In metals: screening of free carriers

Insulators: unscreened fix charges

Semiconductors: screening above the critical value

Polarization induced charges:

Most important case on epitaxial single crystals!

Spontaneous polarization



Epitaxial growth and lattice mismatch 

- The bandgap and lattice parameters can be tuned in wide by changing the composition 
(AlxGa1-xN, InxGa1-xN, AlxIn1-xN).

- The physical parameters of the alloy can be estimated by Vegard’s law (simple 
interpolation). 

- High quality heterojunctions can be deposited using metal organic chemical vapor 
deposition.



Polarization on heterojunctions

Piezoelectric polarization in case of  biaxial stress:

GaN GaN



Two-dimentional electron gas (2DEG) at the heterointerface

2DEG density:



Application: high electron mobility transistor

Advantage: No impurity scattering since the channel is pure GaN. (At room 
temperature optical phonon scattering dominates.) 

High frequency devices and high power devices  (Ubr~200V, P~30 W/mm)



Si CMOS technology



Discrete device

Point contact Transfer resistor (1947)
J. Bardeen, W. Brattain, W. Shockley 
(Nobel price in 1956)

Ultra-large-scale integration (ULSI)

3 billion transistors on single chip 
fabricated by 14-nm node technology

IC industry: Success story of the last 70 years



Si single crystal

Face central cubic crystal (fcc)

Single crystal Si grown by 
Czochralski method 

High quality single crystal in large size 

+ advantageous physical properties and good quality native oxide

• Microelectronics is based on mainly on Si. 
• III-V semiconductors play an important role in optoelectronics.



Czochralski method

• Si crystal Si crystal with the 
desired orientation (<100>, 
<110> , <111> is slowly pulled 
out; both the seed and the 
crucible is rotated to maintain 
homogeneity 

• Typical impurity concentration: 
NO: 1018 cm-3, NC: 1017 cm-3

(NSi=5⋅1022 1/cm3)

• Polysilicon nuggets with the dopants are melted in the quartz 
crucible at a T>1400°C

• Purity of the polysilicon nuggets  99.9999999%  (9N)



Wafer processing

Annular saw Wire saw

• Wafer surface is relatively smooth, 
subsequent steps takes less time

• Low throughput

• Wafer surface is relatively smooth, subsequent 
lapping takes less time

• Low throughput

The process is continued and finished by lapping, etching, polishing and cleaning



Wafer doping



Si wafer specification

12” Si wafer (300 mm)



Thin film formation

• Thermal oxidation
• Physical Vapor Deposition (PVD)
• Chemical Vapor Deposition (CVD)
• Electroplating



Thermal oxidation

• Converts Si on the wafer into SiO2 to obtain high quality 
insulator or mask for ion implantation

• Annealing at a T=800-1200 °C in a quartz or SiC tube 
furnace using a movable quartz rack (boat)

• Atmosphere:
• Water vapor (wet): Si+2H2O→SiO2+2H2 (g) (higher 

growth rate)
• O2 (dry): Si+O2→SiO2 (better quality)

• Domination of Si in the IC industry is partly due to the 
high quality thermal oxide



Sputter deposition (sputtering)
• A kind of physical vapor deposition (PVD) process 

for thin films
• Particles are ejected from the solid target due to 

ion bombardment
• Due to higher kinetic energy, better adhesion to 

the substrate than in case of vacuum evaporation
• Done either using DC voltage (DC sputtering) or 

AC voltage (13,56 MHz, RF sputtering)
• Metals can be deposited by DC or pulsed DC
• Insulators can be deposited either from ceramic 

target by RF or from metallic target in reactive 
atmosphere (e.g. AlN from Al in N2 atmosphere) 



Chemical vapor deposition (CVD)
• Wafer is exposed to one or more volatile precursor which react and/or decompose 

on the substrate surface to produce high quality thin film
• Volatile by-products are removed by gas flow through the reaction chamber
• Materials in various forms: epitaxial, polycrystalline, amorphous
• Materials: Si, SiO2, SiC, SixN, SiON, W, high-k dielectrics, low-k dielectrics
• Several types:

• By operation conditions: atmospheric, low-pressure (LPCVD), ultrahigh vacuum
• Plasma methods: plasma-enhanced (PECVD), remote plasma enhanced (RPCVD)
• By the precursor: metalorganic chemical vapor deposition (MOCVD) etc. 

LP CVD



Atomic layer deposition (ALD)
• A subclass of  chemical vapor deposition based on subsequential use of gas 

phase chemical process



Etching techniques

Wet etching
• Liquid etchant
• Chemical reaction
• High selectivity

Dry etching
• Vapor phase etchants
• Chemical and physical processes
• Lower selectivity 

Isotropic Anisotropic

E.g. KOH etch: Etching rate 
depends on the crystal faces

E.g. HF-HNO3-CH3COOH (polishing 
etchant): etching rate is not direction 
dependent



Reactive ion etching

• Chemically reactive plasma to remove materials deposited on the wafer 
• Plasma generated in vacuum by an electromagnetic field 



Photolithography for etching 



Photolithography for lift-off



Photolithography

Spin-coater to cover the 
substrate with 
photoresist

Mask aligner to expose 
the photoresist through 
the mask

Developer to remove the 
exposed photoresist (in 
case of positive resist) 



Photolithography

Light/UV source:
• Hg lamp: 436 nm (g-line), 405 (h-line), 365 nm (i-line)
• Excimer laser: 248 nm (KrF), 193 nm (ArF); close to the absorption edge of air 
• Extreme UV: 13.5 nm

Critical dimension for 
projection type: 

𝐶𝐶𝐶𝐶 = 𝑘𝑘1
𝜆𝜆
𝑁𝑁𝑁𝑁

K1: process related factor ~0.4
NA: numerical aperture 



Ion implantation
• Ions are accelerated into a solid target for doping (e.g. B for p-type, P for n-type)
• Both kinetic energy and dose can be accurately controlled 
• Depth profile can be designed using Monte Carlo simulation (e.g. SRIM)
• Dopants are thermally activated after ion-implantation (substitutional position)



Silicon on Insulator (SOI) wafer

• Thin single crystal Si layer (device) on a buried oxide (BOX) 
• To reduce parasitic device capacitance and leakage current
• Also often used for microelectromechanical systems (MEMS): 

membrane and cantilevers  

Simox process

Smart cut



Back-end of the line (BEOL) interconnetions

• Traditional IC connectors are made of Al
• Lower resistivity is needed to improve the performance 

(lower Joule  heating, higher current density)
• Challenge with: patterning; doesn’t produce volatile 

byproduct
• Solution: Damascene process (introduced by IBM in the 

1990s)

Damascene gold plate



Damascene process

State-of-the-art SRAM

Instead of etching the metal via photolithography pattern, gaps in low-k dielectric are 
filled by PVD seed layer and electroplated Cu.



Trends in IC industry



• The progress follows the Moore’s law

• Continuously shrinking dimension; currently 

the state-of-the art node is 16/14 nm

• New transistor architectures emerge: Fin-FET 

trigate etc.  

Evolution of the CMOS technology



Tri-gate Fin-FET of Intel with 14-nm technology (2014) 

CMOS today



• New device architectures: horizontal and vertical nanowires (NW) for gate-all-around (GAA) 

transistors

• New channel materials beyond Si: Ge-Si or Ge for p-MOS, III-V (InGaAs) for n-MOS (no novel 2D 

material or CNT on the horizon, yet)

Future of CMOS



• 3D integration and chip cooling rather 

than size reduction

• Economical concerns: 450 mm wafer, EUV 

lithography etc.? Cost per chip does not 

decrease further.

ASML's EUV lithography machine may eventually look like

Future of IC technology



More-than-Moore with new functions

- System-on-chip

- MEMS/NEMS sensors and actuators

- Sheap, printed and flexible electronics, 

RF ID-s

- Internet of (every) things (IoT), 

autonomous sensor networks powered 

by energy harvesters 

Main challenge of this century where the semiconductor (nanowires) can play a key role: energy!

- Renewable sources: solar cells (Si), energy harvesters for IoT etc.

- Reduce or mitigate the costs: lighting (GaN, 20%), ICT

More Moore vs. More than Moore



http://www.google.com/about/datacenters/gallery/#/all

Energy consumption of ICT >10%



www.mems.hu
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