Semiconductor Physics

János Volk

BME TTK, Nov. 27th, 2018 volk@mfa.kfki.hu

Outlook

- GaN HEMT
 - Polar semiconductors
 - 2DEG and HEMT
- Si technology
 - Si crystal
 - Thin film formation
 - Etching techniques
 - Lithography
 - Ion implantation
- Trends
 - Future CMOS
 - More than more

GaN HEMT

Polar semiconductors

- Lack of crystal inversion symmetry
- Relatively low band gap, i.e. not insulator
- E.g. semiconductors in wurtzite crystal group (GaN, ZnO, AlN, SiC, CdS stb.)

Merits of GaN

- Epi-ready substrates are available: sapphire,
 SiC, Si (8"), AIN, GaN
- Band-gap engineering: AlGaN, InGaN
- Deposition methods:
 - MOCVD (MOVPE) (industrial)
 - MBE (research)

Crystal polarity

Wurtzite crystal: tensile stress

Wurtzite crystal: compressing stress

Piezoelectric polarization

- It plays an important for pseudomorphic epiatxial layers

Spontaneous polarization in wurtzite crystal

Spontaneous polarization

Most important case on epitaxial single crystals!

Epitaxial growth and lattice mismatch

- The bandgap and lattice parameters can be tuned in wide by changing the composition (Al_xGa_{1-x}N, In_xGa_{1-x}N, Al_xIn_{1-x}N).
- The physical parameters of the alloy can be estimated by Vegard's law (simple interpolation).
- High quality heterojunctions can be deposited using metal organic chemical vapor deposition.

Polarization on heterojunctions

Piezoelectric polarization in case of biaxial stress:

$$P_z = 2\frac{a-a_0}{a_0} \left(e_{31} - e_{33} \frac{C_{13}}{C_{33}} \right),$$

Two-dimentional electron gas (2DEG) at the heterointerface

Application: high electron mobility transistor

Advantage: No impurity scattering since the channel is pure GaN. (At room temperature optical phonon scattering dominates.)

High frequency devices and high power devices (U_{br}~200V, P~30 W/mm)

Si CMOS technology

IC industry: Success story of the last 70 years

Discrete device

Point contact **Trans**fer res**istor** (1947) J. Bardeen, W. Brattain, W. Shockley (Nobel price in 1956) **Ultra-large-scale integration (ULSI)**

3 billion transistors on single chip fabricated by 14-nm node technology

Si single crystal

High quality single crystal in large size

Single crystal Si grown by Czochralski method

Face central cubic crystal (fcc)

+ advantageous physical properties and good quality native oxide

- Microelectronics is based on mainly on Si.
- III-V semiconductors play an important role in optoelectronics.

Czochralski method

- Polysilicon nuggets with the dopants are melted in the quartz crucible at a T>1400°C
- Purity of the polysilicon nuggets 99.9999999% (9N)
- Si crystal Si crystal with the desired orientation (<100>,
 <110>, <111> is slowly pulled out; both the seed and the crucible is rotated to maintain homogeneity
- Typical impurity concentration: N_0 : 10¹⁸ cm⁻³, N_c : 10¹⁷ cm⁻³ (N_{si} =5·10²² 1/cm³)

Wafer processing

- Wafer surface is relatively smooth, subsequent steps takes less time
- Low throughput

Wire saw

- Wafer surface is relatively smooth, subsequent lapping takes less time
- Low throughput

The process is continued and finished by lapping, etching, polishing and cleaning

Wafer doping

Si wafer specification

Thin film formation

- Thermal oxidation
- Physical Vapor Deposition (PVD)
- Chemical Vapor Deposition (CVD)
- Electroplating

Thermal oxidation

- Converts Si on the wafer into SiO₂ to obtain high quality insulator or mask for ion implantation
- Annealing at a T=800-1200 °C in a quartz or SiC tube furnace using a movable quartz rack (boat)
- Atmosphere:
 - Water vapor (wet): Si+2H₂O→SiO₂+2H_{2 (g)} (higher growth rate)
 - O_2 (dry): Si+ $O_2 \rightarrow SiO_2$ (better quality)
- Domination of Si in the IC industry is partly due to the high quality thermal oxide

Sputter deposition (sputtering)

- A kind of physical vapor deposition (PVD) process for thin films
- Particles are ejected from the solid target due to ion bombardment
- Due to higher kinetic energy, better adhesion to the substrate than in case of vacuum evaporation
- Done either using DC voltage (DC sputtering) or AC voltage (13,56 MHz, RF sputtering)
- Metals can be deposited by DC or pulsed DC
- Insulators can be deposited either from ceramic target by RF or from metallic target in reactive atmosphere (e.g. AlN from Al in N₂ atmosphere)

Chemical vapor deposition (CVD)

- Wafer is exposed to one or more volatile precursor which react and/or decompose on the substrate surface to produce high quality thin film
- Volatile by-products are removed by gas flow through the reaction chamber
- Materials in various forms: epitaxial, polycrystalline, amorphous
- Materials: Si, SiO2, SiC, SixN, SiON, W, high-k dielectrics, low-k dielectrics
- Several types:
 - By operation conditions: atmospheric, low-pressure (LPCVD), ultrahigh vacuum
 - Plasma methods: plasma-enhanced (PECVD), remote plasma enhanced (RPCVD)
 - By the precursor: metalorganic chemical vapor deposition (MOCVD) etc.

Atomic layer deposition (ALD)

 A subclass of chemical vapor deposition based on subsequential use of gas phase chemical process

Etching techniques

Wet etching

- Liquid etchant
- Chemical reaction
- High selectivity

Dry etching

- Vapor phase etchants
- Chemical and physical processes
- Lower selectivity

Isotropic

E.g. HF-HNO₃-CH₃COOH (polishing etchant): etching rate is not direction dependent

Anisotropic

E.g. KOH etch: Etching rate depends on the crystal faces

Reactive ion etching

- Chemically reactive plasma to remove materials deposited on the wafer
- Plasma generated in vacuum by an electromagnetic field

Photolithography for etching

Photolithography for lift-off

Photolithography

Spin-coater to cover the substrate with photoresist

Mask aligner to expose the photoresist through the mask Developer to remove the exposed photoresist (in case of positive resist)

Photolithography

Critical dimension for projection type:

$$CD = k_1 \frac{\lambda}{NA}$$

K1: process related factor ~0.4 NA: numerical aperture

Light/UV source:

- Hg lamp: 436 nm (g-line), 405 (h-line), 365 nm (i-line)
- Excimer laser: 248 nm (KrF), 193 nm (ArF); close to the absorption edge of air
- Extreme UV: 13.5 nm

Ion implantation

- Ions are accelerated into a solid target for doping (e.g. B for p-type, P for n-type)
- Both kinetic energy and dose can be accurately controlled
- Depth profile can be designed using Monte Carlo simulation (e.g. SRIM)
- Dopants are thermally activated after ion-implantation (substitutional position)

Silicon on Insulator (SOI) wafer

- Thin single crystal Si layer (device) on a buried oxide (BOX)
- To reduce parasitic device capacitance and leakage current
- Also often used for microelectromechanical systems (MEMS): membrane and cantilevers

Simox process

Smart cut

Back-end of the line (BEOL) interconnetions

- Traditional IC connectors are made of Al
- Lower resistivity is needed to improve the performance (lower Joule heating, higher current density)
- Challenge with: patterning; doesn't produce volatile byproduct
- Solution: **Damascene process** (introduced by IBM in the 1990s)

Damascene gold plate

Damascene process

Instead of etching the metal via photolithography pattern, gaps in low-k dielectric are filled by PVD seed layer and electroplated Cu.

State-of-the-art SRAM

Trends in IC industry

Evolution of the CMOS technology

Transistor Innovations Enable Technology Cadence

- The progress follows the Moore's law
- Continuously shrinking dimension; currently the state-of-the art node is 16/14 nm
- New transistor architectures emerge: Fin-FET trigate etc.

CMOS today

Tri-gate Fin-FET of Intel with 14-nm technology (2014)

Future of CMOS

- New device architectures: horizontal and vertical nanowires (NW) for gate-all-around (GAA) transistors
- New channel materials beyond Si: Ge-Si or Ge for p-MOS, III-V (InGaAs) for n-MOS (no novel 2D material or CNT on the horizon, yet)

Future of IC technology

SYSTEM SCALING

Will need technology innovation and design innovation hand-in-hand

- 3D integration and chip cooling rather than size reduction
- Economical concerns: 450 mm wafer, EUV lithography etc.? Cost per chip does not decrease further.

ASML's EUV lithography machine may eventually look like

More Moore vs. More than Moore

More-than-Moore with new functions

- System-on-chip
- MEMS/NEMS sensors and actuators
- Sheap, printed and flexible electronics, RF ID-s
- Internet of (every) things (IoT),
 autonomous sensor networks powered
 by energy harvesters

Main challenge of this century where the semiconductor (nanowires) can play a key role: energy!

- Renewable sources: solar cells (Si), energy harvesters for IoT etc.
- Reduce or mitigate the costs: lighting (GaN, 20%), ICT

Energy consumption of ICT >10%

www.mems.hu

