On Black Holes and Entropy an introductory talk from an amateur admirer

David Szasz-Schagrin

Budapest Univeristy of Technology and Economics

2019. 10. 04.

$$S_{\rm BH} = \frac{Ac^3}{4\hbar G}$$

< ロ > < 同 > < 回 > < 回 >

Bekenstein, Jacob D., "Black holes and entropy", (1973), 10.1103/PhysRevD.7.2333

・ロッ ・雪 ・ ・ ヨ ・

Black holes

- A black hole is a region of spacetime that's gravitational acceleration is so strong → no particle or EM wave can escape it.
- 2 No-hair theorem: they can be described only by three externally observable parameters:
 - 1 mass M
 - **2** charge Q
 - 3 angular momentum L

Figure: NASA's visualization of a black hole.

・ロッ ・雪ッ ・ヨッ

Black hole types

Black holes are categorized by their external properties:

	Non-rotating $(L = 0)$	Rotating ($L \neq 0$)
Uncharged ($Q = 0$)	Schwarzschild	Kerr
Charged ($Q \neq 0$)	Reissner–Nordström	Kerr–Newman

If two black holes share the same (M, L, Q) values, they are said to be non differentiable. (No-hair theorem.)

Internal structure: How the black hole was formed. (e.g. from a white dwarf, neutron star, etc.)

Two black holes with different internal structures but same (M, L, Q) parameters are the same!

・ロッ ・雪 ・ ・ ヨ ・

The total mass

The total mass-energy of the black hole is given by:

$$M^2 = \frac{L^2}{4M_{\rm ir}^2} + \left(\frac{Q^2}{4M_{\rm ir}} + M_{\rm ir}\right)^2 \label{eq:M2}$$

where

- 1 L is the rotational energy
- 2 Q is the Coulomb energy
- 3 *M*_{ir} is irreducible mass-energy: this is the energy that **can not be extracted** (through 'Penrose processes').

< ロ > < 同 > < 回 > < 回 > :

Black holes and processes

- Black holes increase their horizon undergoing any processes. (Floyd and Penrose, conjecture)
- 2 A capture of a particle by a Kerr black hole can never end up lowering the **irreducible mass**. (Christodoulou)

$$M_{\rm ir} = \sqrt{A/16\pi}$$

- **3** Reversible processes $\rightarrow M_{ir}$ doesn't change.
- 4 A black hole's surface can not decrease in *any* process. (Hawking, general theorem, holds for a system of black holes as well)

area \Leftrightarrow entropy analogy? \Rightarrow black hole statistical physics?

Analogies

- i Entropy always increasing.
- ii Degradation of energy: entropy increasing = less energy can be converted to work.
- iii Separate thermodynamic systems in equilibrium can do work when interacting.

- ⇒ Black hole area always increasing.
- ⇔ The irreducible energy can't be extracted.

$$M \geq M_{\rm ir} = \sqrt{A/16\pi}$$

⇔ For a system of Schwarzschild black holes ($M = M_{ir}$) merging:

$$E_d = \sqrt{\sum A/16\pi} = \sqrt{\sum M_{\rm ir}^2}$$

On Black Holes and Entropy

A formal definition of black hole entropy

- Black hole analog of the first law: dE = TdS pdV.
- Rationalized area: $\alpha = A/(4\pi)$
- $\circ~$ Kerr black hole with (M,Q,L) rationalized area:

$$\alpha = r_+^2 + a^2 = 2Mr_+ - Q^2$$

where a = L/M; $r_{\pm} = M \pm \sqrt{M^2 - a^2 - Q^2}$

differentiation and manipulation:

$$dM = \underbrace{\Theta d\alpha}_{\text{entropy term}} + \underbrace{\Omega dL + \Phi dQ}_{\text{work term}}$$

$$\begin{array}{l} \Theta = \frac{1}{4}(r_{+} - r_{-})/\alpha \\ \Omega = a/\alpha \\ \Phi = Qr_{+}/\alpha \end{array} \rightarrow \alpha = \mbox{Black hole entropy} \end{array}$$

David Szasz-Schagrin | Budapest University of Technology and Economics | 2019. 10. 04.

On Black Holes and Entropy

Information and entropy

1 Entropy: lack of information about the actual internal configuration of the system. Shannon's formula for the entropy:

$$S = -\sum_{n} p_n \log p_n$$

2 Information = constraints on $(p_n) \rightarrow$ entropy is decreased

$$\Delta I = -\Delta S$$

- e.g. isothermic compression of ideal gas
- 3 Unit of information: bit (when a yes/no question is answered)
- 4 Second law of thermodynamics: entropy is increasing in a system towards equilibrium = washing out of the effects of initial conditions.

・ロ と ・ 雪 と ・ 雪 と ・ 一 ・

Black hole "thermodynamics"

For information: black hole = thermodynamic system

Black hole entropy

Black hole entropy measures the inaccessibility of internal configurations which realize the "thermodynamic" (externally observable) variables in equilibrium:

$$(p, T, V) \leftrightarrow (M, L, Q)$$

Internal configuration = how the black hole was formed

Black hole entropy \neq thermodynamic entropy!

Construction of S_{BH}

Programme

- i We assume: $S_{BH} = f(\alpha)$ where *f* is monotonically increasing.
- ii We want S_{BH} to be valid for any, even dynamically evolving black hole. Expection: loss of information about initial conditions \rightarrow gradual increase in S_{BH} .

iii Hawking's theorem supports the choice of f.

e.g. a possible choice:

 $f(\alpha) \propto \sqrt{\alpha}$

Claim: merging of two Schwarzschild black holes prohibits this.

 $(S_{\rm BH} \propto M_{\rm ir} = M_{\rm Sch})$

(日)

Expression for the black hole entropy

A simple choice: $f(\alpha) = \gamma \alpha$. \rightarrow no contradiction!

Dimensional analysis: $\gamma = \eta \hbar^{-1}$; η dimensionless. Quantum nature!

How to get η ?

- 1 We can't cause of quantum nature. BUT.
- **2** Throw particle into a Kerr black hole \rightarrow information lost.
- 3 What's the minimum surface increase? That's exactly 1 bit of entropy increase. → integration gives back f.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Expression for the black hole entropy

Lengthy calculations \rightarrow for a spherical particle with radius b and rest mass μ :

 $(\Delta \alpha)_{\rm min} = 2 \mu b$

(independent of black hole parameters (M, L, Q))

What is b?

- b =Compton wavelength ($\mu \hbar^{-1}$)
- \Rightarrow no internal structure! \rightarrow 1 bit information ("exists or not?")
- \Rightarrow smallest entropy increase

quantum effects set a bound of

$$(\Delta \alpha)_{\rm min} = 2\mu\hbar\mu^{-1} = 2\hbar$$

Expression for the black hole entropy

Thus:

$$(\Delta S_{\mathsf{BH}})_{\mathsf{min}} = (\Delta \alpha)_{\mathsf{min}} \frac{df}{d\alpha} = \log 2 \quad \Rightarrow \quad f(\alpha) = \left(\frac{1}{2}\log 2\right) \hbar^{-1} \alpha$$

Giving us

The black hole entropy $S_{\rm BH} = \left(\frac{1}{2}\log 2\right) \hbar^{-1}\alpha$ in conventional units:

$$S_{\mathsf{BH}} = \left(\frac{\log 2}{8\pi}\right) \frac{k_B c^3 A}{\hbar G}$$

Black hole "temperature": $T_{bh}^{-1} = (\partial S_{BH}/\partial M)_{L,Q} = (2\hbar/\log 2)\Theta$

Generalized second law of thermodynamics

Thought experiment:

Body containing common entropy goes down the black hole \rightarrow we can't tell whether the total common entropy decreased in the process.

However, the black hole entropy compensates.

Generalized second law

The common entropy in the black hole exterior plus the **black hole** entropy never decreases.

$$\Delta S_{\mathsf{BH}} + \Delta S_{\mathsf{c}} = \Delta (S_{\mathsf{BH}} + S_{\mathsf{c}}) > 0$$

Note: we neglected statistical fluctuations.

Black hole thermodynamics

First law

$$dM = \Theta d\alpha + \Omega dL + \Phi dQ$$

The black hole entropy

$$S_{\mathsf{BH}} = \left(\frac{\log 2}{8\pi}\right) \frac{k_B c^3 A}{\hbar G}$$

Generalized second law

$$\Delta S_{\mathsf{BH}} + \Delta S_{\mathsf{C}} = \Delta (S_{\mathsf{BH}} + S_{\mathsf{C}}) > 0$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >