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Temporal motifs: occurrence of triangles
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Temporal motifs: occurrence of ordered sequences

Most frequent ones Least frequent ones
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Importance of different effects in temporal spreading

I Equal-weight link-sequence shuffled: Whole single-link event
sequences are randomly exchanged between links having the
same number of events

I Only link-link correlation is destroyed

Event sequence D C W B E 25%
Original X X X X X 33.7
Config. shuffle X × × × × 16.4
Config. keep X × × X × 23.8
Orig. shuffle X X X × × 22.9
Shuffle. keep X X × X × 27.5
W keep sh.,keep X X X X × 35.3

Page 4



Importance of different effects in temporal spreading
I Long time behaviour:
Event sequence D C W B E 25%
Original X X X X X 33.7
Config. shuffle X × × × × 16.4
Config. keep X × × X × 23.8
Orig. shuffle X X X × × 22.9
Shuffle. keep X X × X × 27.5
W keep sh.,keep X X X X × 35.3
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Importance of different effects in temporal spreading
I Everything slows down the spreading
I Burstiness has higher impact than topological structures
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Interevent time

I Time interval between successive events τ
I Distribution of τ is P(τ)

I Distribution is characterized by the average 〈τ〉 and the
variance σ

I Burstiness:
B =

σ − 〈τ〉
σ + 〈τ〉

I (a) B = −1: deterministic, (b) B = 0: Poisson, (c) B = 1:
bursty

Page 7



Spreading on networks

I One of the most important problems on networks
I Also one of the real success
I This lecture:

I Advanced mean-field calculations
I Cascade models
I Spreading in temporal networks
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Epidemic models: notations
I States:

I S: susceptible
I I: Infected
I R: Recovered (immune)
I E: Exposed (infected but not yet infecting)

I Rates: β, µ, η, γ
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SIR reality vs. model

I Perfect mixing
I Everybody can meet everybody
I Ebola
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SIR reality vs. model

I Perfect mixing
I Everybody can meet everybody
I Covid-19, South Korea
I Susceptible approximated
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SIS model: mean field

I Perfect mixing
I Everybody can meet everybody
I The different type meet with probability proportional to their

density
I Density of types:

ρα = Nα/N

I The mean field SIR equations:

dρI

dt
= βρIρS − µρI

dρS

dt
= −βρIρS + χρI

where χ = µ for SIS and χ = 0 for SIR.
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Epidemic threshold

I Linearization: ρI � 1, ρS ' 1

dρI

dt
= βρIρS − µρI

dρI

dt
' (β − µ)ρI

ρI (t) ' ρI (0) exp[(β − µ)t]

I Two regimes:
I β < µ: Disease dies out
I β > µ: Disease spreads

I Reproduction number: R0 = β/µ

I The epidemic threshold for perfectly mixing population is
R0 = 1 above which the epidemic spreads.
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SIR/SIS

I Above the epidemic threshold
I In SIS dynamic equilibrium
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SIS: Individual based mean field (IBMF)
I Markov chain approach
I Two state Xi = 1 for I and Xi = 0 for S .
I E [Xi (t)] expected value of Xi

I aij element of the adjacency matrix
I The Master equation:

dE [Xi (t)]

dt
= E

−µXi (t) + (1− Xi (t))β
∑
j

aijXj(t)


I Introducing λ = β/µ and rescaling the time by 1/µ
I For static network:

dρIi (t)

dt
= −ρIi (t) + λ

∑
j

aijρ
I
j (t)− λ

∑
j

aijE [Xi (t)Xj(t)]

Pastor-Satorras et el., Epidemic processes in complex networks (2015)
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SIS: Individual based mean field (IBMF)
I Markov chain approach
I The Master equation for static network:

dρIi (t)

dt
= −ρIi (t) + λ

∑
j

aijρ
I
j (t)− λ

∑
j

aijE [Xi (t)Xj(t)]

I No explicit solution due to the two term correlations
E [Xi (t)Xj(t)].

I Joint probability distribution cannot be calculated
I Assumption: neighboring nodes are statistically independent:

E [Xi (t)Xj(t)] ≡ E [Xi (t)]E [Xj(t)] = ρIi (t)ρIj (t)

I The Master equation for the SIS model thus reads:

dρIi (t)

dt
= −ρIi (t) + λ[1− ρIi (t)]

∑
j

aijρ
I
j (t)

Page 16



SIS: Individual based mean field (IBMF)

I The Master equation for static network SIS model in the
independent neighbors limit:

dρIi (t)

dt
= −ρIi (t) + λ[1− ρIi (t)]

∑
j

aijρ
I
j (t)

I Loss term: probability that node i is infected times the rate of
recovery (hidden in the rescaled time)

I Gain term: probability that node i is susceptible, times the
total probability that any of its nearest neighbors is infected,
times the effective transmission rate λ = β/µ
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SIS: Individual based mean field (IBMF)
I The Master equation for static network SIS model in the

independent neighbors limit:

dρIi (t)

dt
= −ρIi (t) + λ[1− ρIi (t)]

∑
j

aijρ
I
j (t)

I Linear stability analysis

dρIi (t)

dt
' −ρIi (t) + λ

∑
j

aijρ
I
j (t) =

∑
j

Jijρ
I
j (t)

with Jij = −δij + λaij
I An endemic state occurs when Λ1 the largest eigenvalue of J is

positive.
I The epidemic threshold is thus:

λ > λIBMF
c ≡ 1

Λ1
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SIS: Individual based mean field (IBMF)

I For networks with power law degree distribution P(k) ∼ k−γ

I Largest eigenvalue:

Λ1 = min(
√
kmax, 〈k2〉/〈k〉)

I The epidemic threshold:

λIBMF
c =

{
1√
kmax

if γ ≥ 5/2
〈k〉
〈k2〉 if 2 < γ < 5/2

I In both cases limN→∞ λ
IBMF
c = 0 for scale free networks

I Of course in finite system there is a small deviation but in
infinite systems there is no epidemic threshold since the largest
degree is infinite.

Page 19



SIS: Degree based mean field (DBMF)

I All nodes with the same degree are statistically equivalent.
I Degree has a maximum kmax

I Number of equations kmax

I Conditional probabilities: P(k ′|k) probability that a node with
degree k is connected to a node of degree k ′

I P(k ′|k) is the same for all k degree nodes.
I In the case of uncorrelated networks:

P(k ′|k) =
k ′P(k ′)

〈k〉
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SIS: Degree based mean field (DBMF)

I ρIk(t) is the probability that a node of degree k is infected at
time t

I Master equation:

dρIk(t)

dt
= −ρIk(t) + λk[1− ρIk(t)]

∑
k ′

P(k ′|k)ρIk ′(t)

I Note that the factor k in the gain term is for the number of
links the node of degree k has with that chance to get infected

I Linearized version

dρIk(t)

dt
' −ρIk(t) + λk

∑
k ′

P(k ′|k)ρIk ′(t) =
∑
k ′

Jkk ′ρ
I
k ′(t)

I With
Jkk ′ = −δkk ′ + λkP(k ′|k)
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SIS: Degree based mean field (DBMF)

I Linearized version

dρIk(t)

dt
' −ρIk(t) + λk

∑
k ′

P(k ′|k)ρIk ′(t) =
∑
k ′

Jkk ′ρ
I
k ′(t)

I With
Jkk ′ = −δkk ′ + λkP(k ′|k)

I There is an epidemic state if

λ > λDBMF
c =

1
Λ1

where again Λ1 is the largest eigenvalue of J
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SIS: Degree based mean field (DBMF)

I The epidemic threshold, for uncorrelated networks with

P(k ′|k) =
k ′P(k ′)

〈k〉

I Probability to find an infected node following a randomly
chosen edge

Θ =
∑
k ′

P(k ′|k) =
k ′P(k ′)

〈k〉
ρIk ′(t)

The Master equation of the Degree based mean field is

dρIk(t)

dt
= −ρIk(t) + λk[1− ρIk(t)]Θ

I The two latter equations can be solved in self-consistently.
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SIS: Degree based mean field (DBMF)
I The self-consistent solution allows for an epidemic state only if

λ > λDBMF
c =

〈k〉
〈k2〉

I For power law degree distribution with exponent 2 < γ ≤ 3
The threshold is 0 in the infinite limit.
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SIS: Comparison
I IBMF

λIBMF
c =

{
1√
kmax

if γ ≥ 5/2
〈k〉
〈k2〉 if 2 < γ < 5/2

I DBMF
λ > λDBMF

c =
〈k〉
〈k2〉

I Network: scale free with γ = 2.25
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SIS: Epidemic threshold

I It seems that in the scale free networks in the infinite system
there is no epidemic threshold

I Numerical simulations show also this picture
I Note that in the SIS model there is a dynamic steady state

with a fraction of infected nodes
I In scale-free networks only part of the system will be infected,

the hubs and the immediate neighborhood.
I Concepts of:

I Epidemic state: Homogeneously infected
I Active state: Small finite active part

I Thankfully real systems are never infinite and never scale-free
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Problems with SIR model
I Fully mixed society → network
I Disease either dies out fast or infects the whole society even

on networks → geographical location with travel links effected
by the infection

I Inhomogeneous society → age groups and connections as in
SBM

Ram and Schaposnik, Sci. Rep. 2021
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Problems with SIR model

I Fully mixed society → network
I Disease either dies out fast or infects the whole society even

on networks → geographical location with travel links effected
by the infection

I Inhomogeneous society → age groups and connections as in
SBM

I Computational limitations → two level systems
I Government measures → new states in the SIR model

Khan, Van Bussel, Hussain, Epidemiology and Infection 2020
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Immunization

I Often the task is to stop the spreading
I Sometimes one can immunize part of the society
I Can we stop the spreading?
I Example:

I Of course, if every newborn baby is vaccinated, the population
is safe. This is the way, how smallpox (Variola) was defeated.

I Estimated death in 20 th century: 300 Million
I Estimated infected in 1967: 15 Million
I 1979: WHO declared smallpox eradicated
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Immunization

I Epidemic threshold (complete graph/fully mixed state):

R0 =
β

µ


> 1 outbreak
= 1 threshold
< 1 localized

I The density of the immune vertices is g , then:

β′ = β(1− g)

I The threshold for networks

β(1− g)

µ
=
〈k〉
〈k2〉

I For infinitely large scale free network with γ ≤ 3 we get gc = 1
I For random immunization everybody must be vaccinated
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Immunization

I Epidemic threshold for networks

β(1− g)

µ
=
〈k〉
〈k2〉

I Targeted immunization: immunize high degree nodes
I This decreases the variance faster than the average

〈k〉g
〈k2〉g

>
β(1− g)

µ

which defines the critical value of g
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Immunization
I Targeted immunization: immunize high degree nodes

〈k〉g
〈k2〉g

>
β(1− g)

µ

which defines the critical value of g

Pastor-Satorras, Vespignani, 2001
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Innovation spreading
I Rogers (1962)

I Mahajan, Muller and Bass (1990)
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Threshold model

I Sometimes the spreading is due to load from the neighbors
I E.g. if too many of my neighbors are infected I will also get

infected
I Innovation spreading: many of my friends have iPhone I will

also get one.
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Threshold model

I Networks with average degree 〈k〉 = z

I Nodes have threshold φi
I If the number of active nodes in the neighborhood reach φi

then the node becomes active (too many friends have some
product I will also buy it)

I Start from a small seed
I If thresholds are sufficiently low cascades may propagate

through the whole system (size ∼ O(N))
Watts, A simple model of global cascades on random networks (2002)
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Threshold model

I In large uncorrelated random networks there are hardly any
triangles

I Vulnerable nodes are the ones where the threshold is less than
φi < 1/ki , one neighbor is enough to get infected

I Global cascade is possible if these nodes percolate
I This is the cascade condition

z >
∑
k

k(k − 1)P(k)P(φ≤1/k)

I k(k − 1) increases with k

I P(φ≤1/k) decreases with k

I Two or 0 solutions
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Threshold model: Phase diagram

I Points simulation
I Dashed line calculated threshold
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Threshold model: Phase diagram
I Top line: first order phase transition of cascades
I Bottom line: second order phase transition of network

percolation limit
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Threshold model: Phase diagram
I φ With normal distribution and σ variance
I Scale free graph

I
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Fall of a social network site
I Users leave due to exogenous effects (advertisements, news,

etc.)
I Users leave if some part of their friends leave.
I This depends on the embeddedness of the user
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Fall of a social network site: Model
I Users leave due to exogenous effects (advertisements, news,

etc.):
I Here rate of leave increases with time as was the popularity of

the alternative site
I Users with low degree are more susceptible to global effects

I Users leave if their friends leave.
I Threshold model with threshold above 50%
I Leave is not immediate one needs time (τ) to recognize friend

is inactive
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Percolation
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Percolation

Behavior of connected cluster
I Site percolation
I Bond percolation
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Percolation model

I Random environment
I With probability p site vacant (conducts)
I Two states: percolates or not!
I Percolation: presence of infinite cluster, in infinitely large

system the cluster holds finite fraction of nodes.
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Percolation theory

Questions (in infinite systems):
1. Is there an infinite cluster in infinite systems?
2. How many infinite clusters are there?
3. Mean cluster size (without the infinite one)?
4. Cluster size distribution

Answers:
1. Above a critical density with probability 1 below it with

probability 0
2. Only 1!
3. Decreases as a power low away from the critical density
4. Power law
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Percolation theory

Questions (in infinite systems):
1. Is there an infinite cluster in infinite systems?
2. How many infinite clusters are there?
3. Cluster size distribution (ns)
4. Mean cluster size (without the infinite one)? (S =

∑
s s

2ns)
Answers:
1. if p > pc then yes, otherwise no
2. Only 1!
3. ns ∼ s−τ

4. S ∼ |p − pc |−γ

Like a second order phase transition in a geometric system!
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Percolation model
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Percolation model
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Percolating cluster
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I Largest cluster
I fractal with fractal dimension of df

I S∞ ∼


ξdf log(N/ξd) p < pc

Ndf /d p = pc

NP∞(p) p > pc

I Largest not infinite cluster: size ∼ |p − pc |−ν
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Percolation on networks (graphs)

I Network is defined by nodes and links
I Percolation gives us connected components
I Link removal percolation gives information about robustness,

and structure

Page 50



Percolation and attack on random networks
I Failure: equivalent to percolation: remove nodes at random
I Attack: remove most connected nodes
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Error vs. attacks
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Percolation and attack on random networks
I Failure: equivalent to percolation: remove nodes at random
I Attack: remove most connected nodes
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Robustness
I Link/node removal percolation
I Here: random, and largest first
I There is also weakest first
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Link removal percolation on networks
I Granovetter hypothesis: The strength of the weak ties
I Human communities have strong connections
I These communities are connected with weak ties
I Test the structures with Link removal percolation
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Link removal percolation on networks
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Robustness
I Resistant both against random and targeted attacks.
I Must have hubs to resist random attacks
I Small degree nodes should be interconnected so they remain

viable after removal of the hubs
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Robustness against attacks

I Malicious attacks target central nodes, hubs
I Solution: central nodes should be connected
I Assortative mixing is preferred (high degree nodes are

connected between each other)
I (Barabasi-Albert is thus a bad example)
I Robustness measure:

R =
1
N

N∑
Q=1

s(Q)

I s(Q) fraction of nodes in the largest connected cluster after
removing Q = qN nodes

I Optimize for R
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Onion structures
I Robustness measure:

R =
1
N

N∑
Q=1

s(Q)

I s(Q) fraction of nodes in the largest connected cluster after
removing Q = qN nodes

I Optimize R by only rewiring and keeping degree distribution
constant

I Onion structures are the most robust
I Assortative
I Layers with similar degree nodes
I Inter-layer connections
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Onion structures
I Assortative
I Layers with similar degree nodes
I Inter-layer connections
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Château de Vincennes
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Optimization: costs
I Internet Autonomous system topology
I Providers can connect to the top tier or be a customer
I They are responsible for directing the Internet traffic
I Simple protocols define the routing (mainly greedy)
I Many optimizes the structure
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Flight route optimization
I Suppose weight of a link is defined as

wij = dij/tij

where dij is the distance, and tij is the traffic between two
cities

I When more paths are possible the most economical is used:

Cij = min
p∈P

∑
l∈p

wl

I Keep total traffic constant
I Function to be optimized is the average cost to pay to travel

from any node to any other

L =
2

N(N − 1)

∑
i<j

Cij
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Flight route optimization

I Check a small circle:
I Let us assume d1 = d(A,B) = d(B,C ) > d(A.C ) = d ′

I Cost function (T is the average traffic between two cities):

L1 =
2d + d ′

T

I Cut connection (B,C ). The new cost function

L2 =
d + d ′

2T
< L1

I The optimal path is a tree!
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Tree model
I If it is known that the network is a tree task is easier:

Lt =
∑
e∈T

be
de
te

where be is the link betweenness centrality
I The optimal traffic

te =
T
√
bede∑

e

√
bede

I The optimal traffic tree can then be obtained by minimizing

L =
∑
e∈T

√
bede

I More generally
L =

∑
e∈T

bµe d
ν
e

where µ and ν control the relative importance of distance
against topology as measured by centrality
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Optimal traffic on networks
I Exponential degree distribution
I Power law betweenness distribution
I Hierarchical organizations
I µ = ν = 0.5
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Optimal traffic on networks
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