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Previously on Complex networks

I Erdős-Rényi model
I Small world
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Erdős-Rényi model, versions
I N nodes and L links placed randomly: (N, L)
I N nodes and links with probability p: (N, p)

I Number of links in a complete graph:

Lc =

(
N

2

)
=

N(N − 1)

2
I Relation between p and L:

p =
2L

N(N − 1)

N = 12 p = 0.3788 p = 0.758Page 3



Erdős-Rényi: degree distribution
I Poisson limit theorem, λ ≡ pN

lim
N→∞

(
N

k

)
pk(1− p)N−k = e−λ

λk

k!

I Poisson distribution: mean: λ, variance: λ

poisson(4,x)
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Erdős-Rényi: clustering coefficient

I Clustering coefficient:
I Let us consider two links of a node. The probability that it is a

triangle is proportional to the probability that the missing link
exists

I Thus
C = p =

〈k〉
N − 1

I In large ER graphs the clustering coefficient is almost zero
I There are hardly any triangles in the ER graphs
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Erdős-Rényi: assortativity

I The Erdős-Rényi graphs should be non-assortative:
I Reasoning: The link between nodes are established in an

independent way without any correlation so the actual node
with degree k randomly samples the graph, thus the average
degree of the friends is also k

I Funnily the probability to be connected to a node with degree
k is not proportional to k .

Noldus,Mieghem 2015
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Erdős-Rényi: Percolation

I Connected components: There is a path between any two
node of a connected component.

I Percolation: The network percolates if

lim
N→∞

|S∞|/N = lim
N→∞

P∞ > 0,

where S∞ is the largest connected component and |S∞| is its
size, and P∞ is the probability of node belonging to the largest
connected component.

I Which means that macroscopic fraction of the nodes belongs
to the largest connected components.

I Importance: functioning system cannot fall into (infinitely)
many pieces

Page 7



Erdős-Rényi: Percolation
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Erdős-Rényi: Summary

I Ensemble of random graphs
I No correlations
I Sharp degree distribution (Poisson)
I Small clustering coefficient
I Non-assortative
I Percolation threshold at 〈k〉 = 1
I Small world: average path length 〈s〉 ∼ logN
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Small World and clustering
I Erdős-Rényi networks are small words with low clustering
I Triangle lattices are large words with high clustering
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Watts-Strogatz model
I Take a lattice with high clustering
I Introduce shortcuts (rewire)
I Parameter p fraction of rewired links

networksciencebook.com
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Watts-Strogatz model
I Take a lattice with high clustering
I Introduce shortcuts (rewire)
I Parameter p fraction of rewired links
I Can be high clustering and small world

networksciencebook.com
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Watts-Strogatz model

I Degree distribution: shifted Poisson
I This is the major criticism towards the model
I On the other hand tunable randomness.
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Scale-free function

I What does it mean?
I Must not have scale included
I Problem: most mathematical functions require dimensionless

arguments, e.g. exp(x/x0), log(x/x0), sin(x/x0)

I Single exception: power law xα

I Mathematically: scale invariance

f (αx) = αk f (x)

I Solution:
f (x) = Axk
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Scale-freeness

P(x) ∼ x−γ

I What does it mean?
I Normalization? Must have minimum, or maximum value

depending on γ (or both!)
I Very uneven distribution: High probability of small value, but

very large values are also possible
I Few very rich and a lot of poor
I Origin? Bible: Matt. 25:29, For whoever has will be given

more, and they will have an abundance. Whoever does not
have, even what they have will be taken from them.
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Power law distribution

P(x) = Cx−γ

I Two cutoffs: x ∈ [a, b], C is set to∫ b

a
P(x)dx = 1

I Cumulative distribution:

P(x ′ > x) =

∫ b

x
P(x ′)dx =

C

γ − 1
x−(γ−1)

I The cumulative distribution decays with a smaller γ − 1
exponent
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Scale-freeness

I Economic inequality, Pareto (1890) distribution P(x) ∼ x−α,
a'2.5

Zyga Phys.org 2007
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Scale-freeness
I Pareto principle: 20-80 rule:
I 80% of wealth is in the hands of 20% of the population
I 80 % of land is owned by 20% of people
I 80% of the sales is due to 20% clients

Zyga Phys.org 2007
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Scale-freeness

I Views of youtube videos

Cha et al. 2009
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Scale-freeness

I WWW page popularity
I Exponents are γin ' 2.1 γout ' 2.45

networksciencebook.com
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Scale-freeness

I Number of sexual partners in Sweden
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Power law: plotting

networksciencebook.com
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Pareto principle
I Cumulative distribution is:

P>(x) =

∫ ∞
x

P(x ′)dx ′ =

(
x

xmin

)−γ+1

I For γ > 2 the fraction of wealth larger than x is

W (x) =

∫∞
x x ′P(x ′)dx ′∫∞
xmin

x ′P(x ′)dx ′
=

(
x

xmin

)−γ+1

= P>(x)
γ−2
γ−1
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Zipf plots

I George K. Zipf linguist
I Ordered the words according to their occurrence frequency

(1935)
I Plotted the frequency against the rank
I Zipf plot
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Zipf plots
I George K. Zipf linguist
I Ordered the words according to their occurrence frequency

(1935)
I Plotted the frequency against the rank
I Zipf plot (Wikipedia)
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Zipf plots
I George K. Zipf linguist
I Ordered the words according to their occurrence frequency

(1935)
I Plotted the frequency against the rank
I Zipf plot (Wikipedia)
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Zipf plots

I Meaning of Zipf plot
I Rank n with frequency f (n) = n−β

I There are n more frequent words than f −1(n)

I In other words f −1(n) is equivalent to the cumulative
frequency distribution β = 1/(γ − 1)
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Hungarian cities

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 10  100  1000  10000  100000  1e+06  1e+07

fr
e
q

size

"cityhist.dat"
2e7/x**2

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1  10  100  1000  10000

si
ze

rank

"cityzipf.dat"
8e5/x**0.9

Page 28



Inhomogeneities in networks

networksciencebook.com

Page 29



Scale free networks
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Scale free networks

Network N L k〈k〉 〉 kin2〈k〉 〉 kout2〈k〉 〉 k2〈k〉 〉 γinin γinout γin
Internet 192244 609066 6.34 - - 240.1 - - 3.42*
WWW 325729 1497134 4.6 1546 482.4 - 2 2.31 -
Power Grid 4941 6594 2.67 - - 10.3 - - Exp.
Mobile-Phone Calls 36595 91826 2.51 12 11.7 - 4.69* 5.01* -
Email 57194 103731 1.81 94.7 1163.9 - 3.43* 2.03* -
Science Collaboration 23133 93437 8.08 - - 178.2 - - 3.35*
Actor Network 702388 29397908 83.71 - - 47353.7 - - 2.12*
Citation Network 449673 4689479 10.43 971.5 198.8 - 3.03* 4.00* -
E. Coli Metabolism 1039 5802 5.58 535.7 396.7 - 2.43* 2.90* -
Protein Interactions 2018 2930 2.9 - - 32.3 - - 2.89*-
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Scale free networks: moments

I Moments of power law distribution

〈km〉 =

∫ ∞
kmin

kmP(k)dk

I Normalization (γ > 1)

P(k) = (γ − 1)kγ−1
min k−γ

I Moments, if 1 + m < γ:

〈km〉 =
kmmin(γ − 1)

γ − 1−m

I If m ≥ γ − 1 the moment diverges
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Scale free networks: moments
I Moments diverge for m ≥ γ − 1
I γ ≤ 2 → No average
I γ ≤ 3 → No variance
I Many networks fall in this category

Network N L k〈k〉 〉 kin2〈k〉 〉 kout2〈k〉 〉 k2〈k〉 〉 γinin γinout γin
Internet 192244 609066 6.34 - - 240.1 - - 3.42*
WWW 325729 1497134 4.6 1546 482.4 - 2 2.31 -
Power Grid 4941 6594 2.67 - - 10.3 - - Exp.
Mobile-Phone Calls 36595 91826 2.51 12 11.7 - 4.69* 5.01* -
Email 57194 103731 1.81 94.7 1163.9 - 3.43* 2.03* -
Science Collaboration 23133 93437 8.08 - - 178.2 - - 3.35*
Actor Network 702388 29397908 83.71 - - 47353.7 - - 2.12*
Citation Network 449673 4689479 10.43 971.5 198.8 - 3.03* 4.00* -
E. Coli Metabolism 1039 5802 5.58 535.7 396.7 - 2.43* 2.90* -
Protein Interactions 2018 2930 2.9 - - 32.3 - - 2.89*-
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Distances in scale free networks
Average distance scale with node number N as
I 〈l〉 ∼ const. for γ = 2 Size of the biggest hub is of order O(N)
I 〈l〉 ∼ 1

log(γ−1) log logN for 2 < γ < 3. Path length increases
slower than logarithmically, ultra-small world

I 〈l〉 ∼ logN/ log logN for γ = 3. Some key models produce
γ = 3

I 〈l〉 ∼ logN for γ > 3. The second moment of the degree
distribution is finite, similar to random network. Small world.

Network N L k〈k〉 〉 kin2〈k〉 〉 kout2〈k〉 〉 k2〈k〉 〉 γinin γinout γin
Internet 192244 609066 6.34 - - 240.1 - - 3.42*
WWW 325729 1497134 4.6 1546 482.4 - 2 2.31 -
Power Grid 4941 6594 2.67 - - 10.3 - - Exp.
Mobile-Phone Calls 36595 91826 2.51 12 11.7 - 4.69* 5.01* -
Email 57194 103731 1.81 94.7 1163.9 - 3.43* 2.03* -
Science Collaboration 23133 93437 8.08 - - 178.2 - - 3.35*
Actor Network 702388 29397908 83.71 - - 47353.7 - - 2.12*
Citation Network 449673 4689479 10.43 971.5 198.8 - 3.03* 4.00* -
E. Coli Metabolism 1039 5802 5.58 535.7 396.7 - 2.43* 2.90* -
Protein Interactions 2018 2930 2.9 - - 32.3 - - 2.89*-
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Configuration model

I How to generate random uncorrelated networks with given
degree distribution.

I E.g. Random regular graph: all nodes have exactly k links
I Idea: Generate nodes with given distribution of stubs (half

links) and connect the links randomly.
I Below is an example with the algoritm
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Configuration model

I Idea: Generate nodes with given distribution of stubs (half
links) and connect the links randomly.

I This is a model for degree sequence (for large N it will be
representative for the distribution)

I For a given degree sequence all possible pairings have the same
probability

I Above can be proven from the construction algorithm
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Configuration model: Problems
I Self loops, multiple links
I Graphs with these objects will be over represented in the

ensemble
I Prohibiting such pairings will mess up distribution (though

sometimes a necessity)
I For large N and sparse (ki/L→ 0) networks their probability is

negligible.
I Problems with power law distributions especially with γ < 3
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Configuration model: Clustering
I A node with at least two links connect to nodes i and j .
I A link connects to a node with degree k with probability

proportional to p(k)k , where p(k) is the probability of finding
a node with degree k

I Excess degree distribution is the probability distribution, for a
vertex reached by following an edge, of the number of other
edges attached to that vertex:

qk =
(k + 1)p(k + 1)

〈k〉

i

j
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Configuration model: Clustering
I A node with at least two links connect to nodes i and j .
I A link connects to a node with degree k with probability

proportional to p(k)k , where p(k) is the probability of finding
a node with degree k

I Excess degree distribution is the probability distribution, for a
vertex reached by following an edge, of the number of other
edges attached to that vertex:

qk =
(k + 1)p(k + 1)

〈k〉

I The global clustering coefficient:

C =
∞∑
ki ,kj

qkiqkj
kikj
2L

=
1
2L

( ∞∑
k=0

kqk

)2

= · · · =
1
N

(
〈k2〉 − 〈k〉

)2
〈k〉3

I Vanishes for large N unless 〈k2〉 diverges.
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Configuration model: Assortativity
I A node with at least two links connect to nodes i and j .
I A link connects to a node with degree k with probability

proportional to p(k)k , where p(k) is the probability of finding
a node with degree k

I Probability of connecting to a node with degree k is

pnn(k) =
kp(k)

〈k〉
I Average degree of neighbors:

〈k〉nn =
∑
k

kpnn(k) =
∑
k

k2p(k)

〈k〉
=
〈k2〉
〈k〉

I The configuration model is thus non-assortative
I However 〈k〉nn > k

〈k〉nn − 〈k〉 =
〈k2〉
〈k〉
− 〈k〉 =

〈k2〉 − 〈k〉
〈k〉

=
σ2
k

〈k〉
> 0
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Configuration model: Percolation

I Let us do the same as for the Erdős-Rényi.
I u is the probability of a node not belonging to the giant

component
I For any node the links should go to nodes not belonging to

the giant component

u =
∞∑
k=1

pnn(k)uk−1 =
∑
k

kp(k)

〈k〉
uk−1 ≡ g(u)

here we used that pnn depends on k and some result from
above.

I u = 1 is the trivial solution: no giant component!
I Similarly to ER we must have g ′(u)|u=1 > 1 for this
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Configuration model: Percolation
I The function we had

g(u) =
1
〈k〉

∑
k

kp(k)uk−1

I We must have g ′(u)|u=1 > 1

g ′(u) =
1
〈k〉

∑
k

k(k − 1)p(k)uk−2

I At u = 1

g ′(u)|u=1 =
1
〈k〉

(∑
k

k2p(k)−
∑
k

kp(k)

)
=

1
〈k〉

(
〈k2〉 − 〈k〉

)
> 1

I This gives
〈k2〉 − 2〈k〉 > 0
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Configuration model: Percolation

I The Molloy-Reed criterion for existence of a giant component

〈k2〉 − 2〈k〉 > 0 or κ ≡ 〈k
2〉
〈k〉

> 2

I Erdős-Rényi: 〈k2〉 = 〈k〉(1 + 〈k〉)

κ =
〈k〉(1 + 〈k〉)
〈k〉

= 1 + 〈k〉 > 2

From which we get back 〈k〉 > 1
I Random regular graph: 〈k〉 = k , 〈k2〉 = k2:

k − 2 > 0 → k > 2
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Configuration model: Percolation

I Power law distribution with γ
I Relative size of the giant component
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Network models

I Up to now: geometric (static) models
I Reality: growth
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Network models

I Lewis Carroll - The Complete Illustrated Works. Gramercy
Books, New York (1982). Page 727

"That’s another thing we’ve learned from your Nation," said Mein
Herr, "map-making. But we’ve carried it much further than you.
What do you consider the largest map that would be really useful?"
"About six inches to the mile."
""Only six inches!"exclaimed Mein Herr. "We very soon got to six
yards to the mile. Then we tried a hundred yards to the mile. And
then came the grandest idea of all! We actually made a map of the
country, on the scale of a mile to the mile!"
"Have you used it much?" I enquired.
"It has never been spread out, yet," said Mein Herr: "the farmers
objected: they said it would cover the whole country, and shut out
the sunlight! So we now use the country itself, as its own map, and
I assure you it does nearly as well.
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Network models: number of parameters?
I Physicist folklore:
I Two parameters: linear
I Three parameters: parabola
I With four parameters I can fit an elephant, and with five I can

make him wiggle his trunk - Von Neumann
I Make it as simple as possible
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Preferential attachment

I Start with a seed of small network (e.g. clique)
I Attach new nodes to the existing network.
I If attached randomly, random network with exponential degree

distribution
I Popular ones have higher chance to get new connections
I New ones attach with probability proportional to existing

degree
I This is preferential attachment
I In networks it is called the Barabási-Albert model
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Barabási-Albert model
I Probability that a node connects to a node is proportional to

the degree of the target node:

Π(i) =
ki∑
j kj

I Parameter m number of links the new node makes
I Published in 1999
I Extensive impact on science
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Barabási-Albert model

I Empirical degree distribution: power law
I Exponent independent of m
I γ = 3
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Preferential attachment
Similar models:
I György Pólya (1887-1985) 1923: Polya process in the

mathematics literature
I George Udmy Yule (1871-1951) in 1925: the number of

species per genus of flowering plants; Yule process in statistics
I Robert Gibrat (1904-1980), 1931: rule of proportional growth

Gibrat process in economics
I George Kinsley Zipf (1902-1950), 1949: the distribution of

wealth in the society.
I Herbert Alexander Simon (1916-2001), 1955, the distribution

of city sizes and other phenomena
I Derek de Solla Price (1922-1983), 1976, used it to explain the

citation statistics of scientific publications, "cumulative
advantage”

I Robert Merton (1910-2003), 1968: Matthew effect
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Barabási-Albert model: Degree distribution calculation
I Number of nodes in time t, N(t) = t

I Number of links at time t, L(t) = mt

I Average degree at time t, 〈k〉(t) = 2m/N
I Number of nodes with degree k at time t

N(k , t) = Np(k , t) = tp(k , t)

I Preferential attachment:

Π(k) =
k∑
j kj

=
k

2mt

I Number of links added to nodes of degree k after the arrival of
a new node

k

2mt︸︷︷︸
Preferential attachment

× tp(k , t)︸ ︷︷ ︸
Total number of k nodes

× m︸︷︷︸
New links

=
k

2
p(k , t)
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Barabási-Albert model: Degree distribution calculation

I Number of links added to nodes of degree k after the arrival of
a new node

k

2mt︸︷︷︸
Preferential attachment

× tp(k , t)︸ ︷︷ ︸
Total number of k nodes

× m︸︷︷︸
New links

=
k

2
p(k , t)

I Discrete time Master equation

(t + 1)p(k , t + 1)− tp(k , t) =
k − 1
2

p(k − 1, t)− k

2
p(k , t)
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Barabási-Albert model: Degree distribution calculation

I Discrete time Master equation

(t + 1)p(k , t + 1)− tp(k , t) =
k − 1
2

p(k − 1, t)− k

2
p(k , t)

I For k = m it is different, the gain term is the newly arriving
node:

(t + 1)p(m, t + 1)− tp(m, t) = 1− m

2
p(m, t)
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Barabási-Albert model: Degree distribution calculation

I We are interested in the steady state

lim
t→∞

p(k , t) = p(k)

I Steady state solution of the Master equation:

p(k) =
k − 1
2

p(k − 1)− k

2
p(k)

p(m) = 1− m

2
p(m)

I Recursive relations

p(k) =
k − 1
k + 2

p(k − 1) for k > m

p(m) =
2

m + 2
otherwise
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Barabási-Albert model: Degree distribution calculation

I Solution

p(k) =
2m(m + 1)

k(k + 1)(k + 2)

I Asymptotically
p(k) ∼ k−3

I Independent of m
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Initial Attractiveness Model
I Even nodes without connections can be popular
I Often cited example: Citation networks (paper with no

citation can be cited)

Π(ki ) =
A + ki

A +
∑

j kj

I Asymptotically p(k) ∼ k−γ

I γ = 2 + A/m tunable exponent

Dorogovtsev, Mendes, Samukhin, Phys. Rev. Lett. 85, 4633 (2000)
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Distances in scale free networks

Average distance scale with node number N as
I 〈l〉 ∼ const. for γ = 2 Size of the biggest hub is of order O(N)

I 〈l〉 ∼ 1
log(γ−1) log logN for 2 < γ < 3. Path length increases

slower than logarithmically, ultra-small world
I 〈l〉 ∼ logN/ log logN for γ = 3. Some key models produce
γ = 3

I 〈l〉 ∼ logN for γ > 3. The second moment of the degree
distribution is finite, similar to random network. Small world.
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Assortativity in Barabási-Albert model
No calculations here :-)
I Disassortative regime γ < 3, −m < A < 0:

knn ∼ m
(m + A)1−A/m

2m + a
ζ

(
2m

2m + a

)
N−A/(2m+A)kA/m

Only the k depdendence:

knn(k) ∼ k−|A|/m

I Neutra regime γ = 3, A = 0

knn(k) ∼ M

2
logN

I Weak assortative regime γ > 3, A > 0

knn(k) ∼ (m + A) log

(
k

m + a

)
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Clustering in Barabási-Albert model

Calculations :-!
I Definition

C =
2N(∆)

k(k − 1)

I Probability that nodes i and j are connected: P(i , j)

I Probability that nodes i , j , l form a triangle

Nl(∆) =
∑
i ,j

P(i , j)P(j , l)P(l , i)

I We need to calculate P(i , j)

I For this we will need the time evolution of the degree of the
nodes
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Time evolution in Barabási-Albert model
I The time evolution of the degree of the nodes

∂ki
∂t
∝ Π(ki ) = m

ki∑
j kj

I Time is measured in units of nodes added, so at time t there
are N = t number of nodes and L = mt number of links

I So
∂ki
∂t
∝ ki

2t
I Solution

ki (t) = m
√

t/ti ∼ t1/2
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Time evolution in Barabási-Albert model

I The time evolution of the degree of the nodes

ki (t) = m
√

t/ti ∼ t1/2

I Advantage of the first comers!
I Very often one can take ti ≡ i
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Clustering in Barabási-Albert model

I Assume that ti < tj (i came first)

P(i , j) = mΠ(ki (tj)) = mki (tj)/

(∑
l

kl

)
= m

ki (tj)

2mtj

I We know the time evolution of ki (tj)

ki (tj) = m
√

tj/ti

I From where we get

P(i , j) =
m

2
(ti tj)

−1/2

I Huhh... It is symmetric in i and j!
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Clustering in Barabási-Albert model

I Back to the number of triangles:

Nl(∆) =
∑
i ,j

P(i , j)P(j , l)P(l , i) =

=
m3

8

∑
ti ,tj

(ti tj)
−1/2(tj tl)

−1/2(tl ti )
−1/2

=
m3

8l

N∑
ti=1

1
ti

N∑
tj=1

1
tj

I For large times N →∞

Nl(∆) =
m3

8l
log2 N
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Clustering in Barabási-Albert model

I So we have the number of triangles:

Nl(∆) =
m3

8l
log2 N

I We also know that

kl(t) = m
√

N/tl so kl(kl − 1) ' m2N/tl

I Finally the clustering coefficient is

C =
2m3

8l log2 N

kl(kl − 1)
=

m

8
log2 N

N

I For large networks N →∞ the clustering vanishes C → 0
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Clustering in Barabási-Albert model
I The clustering coefficient for BA networks

C =
m

8
log2 N

N
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Other models
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