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Mesoscopic structures

I Communities
I Core-periphery
I Layers
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Core-periphery: E.g. Internet routing
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Core-periphery: E.g. Bank network
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Core-periphery: E.g. Subway network
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Core-periphery, onion structures: adjacency matrix

Community Core-periphery multiple Core-periphery
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Multiple Core-periphery: e.g. Zakhary
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Core-periphery: Simple synthetic example
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Core: Definition

I Core: part with high
centrality

I Threshold on
centrality

I Is it enough?
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Core: Definition

Many ways to define densely connected parts in a network:
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Core: Definition
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Core: Definition

Table after Csermely et al. 2013
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Core: Discrete definition

I Borgatti-Everett
I Define Core: Ci , i ∈ [1,N]

Ci =

{
1 if i ∈ core
0 otherwise

I e.g. C = {0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0}, where 1 stands for core
nodes

I Cij = CiCj

I Maximize the overlap between Cij and the adjacency matrix∑
ij

AijCij = max
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Core: Discrete definition

I Borgatti-Everett
I Maximize the overlap between Cij and Aij
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Core: Modified discrete definition
I Define Core: Ci , i ∈ [1,N]

Ci =

{
1 if i ∈ core
0 otherwise

I Let s = {0, a, 1} a three dimensional vector with s(0)=0,
s(1)=a, s(2)=1

I Cij = s(Ci + Cj)
I Minimize ∑

ij ,i 6=j

(Aij − Cij)
2 = min
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Core: Modified discrete definition

I Minimize ∑
ij ,i 6=j

(Aij − Cij)
2 = min

I Either use standard stochastic optimization
I Or use implicit iterative method:

Ci =

∑
j ,i 6=j(Aij − Cij)

2∑
ij ,i 6=j C

2
ij
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Core: Modified continuous method

I Rombach et al.
I Core is never so disjoint
I Instead of a step function use a smooth one: g(i)
I Use two parameters

I α sharpness (α = 1 previous case with step function)
I β relative size of the core

I Many such functions e.g.

g(i) =
1
2
erf
(
β − i/N

1− α

)
+

1
2

I Instead:

g(i) =
1

1+ exp[−(i − Nβ)] tan(απ/2)

I For latter, g(i) = 0.5 depends on N, α, (No comment. . . )
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Core: Modified continuous method

g(i) =
1
2
erf
(
β − i/N

1− α

)
+

1
2

g(i) =
1

1+ exp[−(i − Nβ)] tan(απ/2)
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Core: Methods/score

1. method
I Start from (α, β)
I Maximize Rα,β =

∑
ij AijCij

I Then find optimal (α∗, β∗)

2. method
I Use a two dimensional set of (α, β)
I Maximize Rα,β =

∑
ij AijCij for each (α, β) pair

I Aggreagate results

CS(i) =
1
Z

∑
αβ

Rα,βCα,β(i)

where Z = maxi
∑
αβ Rα,βCα,β(i)

I This gives a core score for each node
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Core score example: network scientists
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Core score: Benchmarks

I The good old Block model:
I CP(N, d , p, k): N number of nodes, dN in the core, and other

parameters such that:
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Core score: Comparison

I Yet another centrality measure?

CP(100, 0.5, 0.25, k)
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Metro lines
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Metro lines

Number of stations
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Random walk based methods

I The probability that a walker at node i jumps to j

mij =
wij∑
k wik

with wij being the strength of link ij

I The probability of finding the walker in node i at time t is
πi (t)

I The stationary solution for the probability distribution of
finding a walker at node i is

πi =
σi∑
j σj

,

where σi =
∑

j wij
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Random walk based methods: persistence probability

I Let s be a partition of the network, then the probability that
the walker is in part d if it was in part c the step before:

ucd =

∑
i∈sc ,j∈sd πimij∑

i∈sc πi

mij =
wij∑
k wik

I Let us define αr = urr the persistence probability, as
τr = (1− αr )

−1 is the escape time from part r .
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Random walk based method: Algorithm

I Select at random a node i among those with minimal strength
I Set P1={1} and hence α1=0
I In the following steps chose the node (or random one from

nodes) having

αk = min
h∈N\Pk−1

∑
ij∈Pk−1

πimij +
∑

i∈Pk−1
(πim)ih + πhmhi )∑

i∈Pk−1
πi + πh

I The resulting αi is the CP profile.
I For complete graph αi=(k − 1)/(N − 1)
I For star graph: αi=0 for i ∈ [1,N − 1], and αN=1
I Centralization:

C = 1− 2
N − 2

N−1∑
k=1

αk
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Core-periphery profile, centralization
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Core-periphery profile, centralization: Example
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K-shell decomposition
I Remove nodes having one link
I Repeat until there are no nodes with k=1
I Do it now with k=2
I Now with three, etc. Four shalt thou not count, nor either

count thou two, excepting that thou then proceed to three.
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Comparison: K-shell decomposition and centralization

I Strong correlation with some outliers
I This anomaly indicates peculiarities of some specific nodes
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Comparison: K-shell decomposition and centralization
I Biggest outlier: Mexico, huge amount of trade but only with

USA → not central.
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Multiple cores: Algorithm

I Rerank nodes based on local connection to existing core
I Calculate region density for each node
I Find core sets based on thresholds
I Look for periphery classes

Single core Multiple core Community structure
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Multiple cores: Karate club
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Multiple cores: US polblogs

Examples from: Xiang et al. 2016
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