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Random graphs/networks

» Generative models

» randomly generating observable quantities

» known examples:
» Erdés-Rényi, or random graph model — no structure
» Watts—Strogatz model — small world property
» Configuration model — degree distribution

» Stochastic Block Models (SBM)

» will be detailed today

P> community structure

» hierarchical structure

» Latent Space Models

» nodes live in a latent space

» link properties depend on
vertex-vertex proximity
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Random graphs/networks

» Growing networks
» networks change as function of time
> real life processes can be incorporated (realistic models)
> stationary state representative of network
» difficult to tune properties
» examples:
> Barabasi-Albert model (preferential attachment)
» Kumpula model (will be detailed today)

Kumpula, Jussi M., et al. PRL 99 (2007): 228701.
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Block models

i
> Why? i1 ¥
> Adjacency matrix - ‘.m;_.‘:m;.mf

» Communities
» Block structure

samples in random order ¢y

‘samplos in random order

Community structure in networks adjacency matrix
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Stochastic Block Models (SBM)

» Community structure

» Multiplex network (links are labeled)

Block matrix

Bl B2
S P, | P
: Py Py

B
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Multiplex representation

» Different layers (parents, children)
» Intra-layer links (parents — children)
» Pj; depends on the layers

» Here P;j=1 special case
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Link probability P;
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» Intra-group links with high probability but not 1 (not
everybody knows each other
» Inter-group links with much lower probability

[m]

=



Link probability P;

» Groupwise (blockwise) probability (i, refers to groups)
» P;; intra-group probability high
» Pj inter-group probability low

» Stochastic equivalence: Probabilities for all links within a block
are the same.
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Generative models

» Given N nodes
» Define probability distributions for P(G|6), where

» G is a network instance
» 0 set of parameters describing the edge configurations

» Generate:

» Given 0 a network instance G can be generated
» Inference:

> Given a network G we identify 6 that produces it

P(G|0) <=>[Generation]|[Inference] G = (V, E)
—— ——

model data
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Notation

Number of nodes: N
Indexes for nodes: u, v
Adjacency matrix: A,y
Number of blocks: K

Indexes for blocks: i, j

Link probability between groups: Pj;
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Stochastic Block Models (SBM)
Definition of 6:
> K: number of groups in the model
» z: a N dimensional vector indexing to which group a node
belongs to. E.g. z(i) € [1, K] gives the group index of node i.
» Pj: a K x K matrix describing the probability that a vertex of
group i is connected to a vertex of group j.

Note?:

Pj;: gives the probability that vertexes of group i are connected.
Note?:

Graphs of all groups are Erdés-Rényi random graphs
Note?:

Alternative definition: 8 = {K,z, P;j} = {K,s, P;j}, where s is a
K dimensional vector with the size of the group as value. Of course
K
s(i)=N
i=1

1
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Example: N=50, K=5, s = {10, 10, 10, 10, 10}

Generation
Erdés-Rényi graph

stochastic block matrix random graph

All examples: Aaron Clauset: Network Analysis and Modeling,
CSCl 5352, Lecture 16
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Example: N=50, K=5, s = {10, 10, 10, 10, 10}

Erdés-Rényi graph
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Example: N=50, K=5, s = {10, 10, 10, 10, 10}

Assortative communities
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Example: N=50, K=5, s = {10, 10, 10, 10, 10}

Ordered communities
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SBM: Degree distribution

> All groups are ER subgraph with Poisson degree distribution

» Resulting degree distribution is a mixture of Poissonians
K

E[nlz(n)=j]1 =) s(i)P;

i=1
The expected degree of a node n in group J.

Example for wide distribution

Pk 2K

degrea, k
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Generation

» Analyze parameter space

> Test for desired quantities, e.g. degree distribution, modularity,
assortativity.

Run parameter scan, and measure quantities

Draw a phase diagram

For practical use choose desired parameters

Nowdays: Estimate it with neural network

vvyyvyy

e.g. Adaptive coevolutionary networks:
0.6
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P
T Gross, B Blasius - Journal of the Royal Society Interface, 2008

Page 17



SBM: Inference

> How to guess # if we want to model a system with given
characteristics?

» To be determined: K, s, Pj. Total:

1 4+ (K-1)+K(K-1)/2+ K =K(K+3)/2
K s Py, i#i Pi

» Brute force will not work
» Maximum likelihood estimation

> estimate the parameters of a stochastic model such that they
maximize the likelihood of obtaining the predefined
observations.

» given the value K the task is to estimate the values of z, and
P;
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Maximum likelihood: Example

» We have four nodes and the network is a square

> We want to use the Erdés-Rényi model

> What is p for which we get the square with the maximum
likelihood?

» Obviously it is p=2/3. But we can get anything like:
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SBM: Maximum likelihood

» Likelihood function: Calculate the probability of having an
edge between nodes u, v if there was an edge, or the
probability of not having an edge if there was none:

£(6M,z)= [T Plw.v)iel [[ (1 Pl(w.v)e]),

(u,v)EE (u,v)€E

where P[(u, v)|0] is the probability of generating an edge
between nodes u, v.

» The number of possible links between groups:

N — 5;5j if i 75]
Y si(si—1)/2 ifi=j

» Expected number of links between groups is denoted by Ej;
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SBM: Maximum likelihood

It is obvious that the maximum is when P; = Ej;/Nj;:

L(GIM,z)= [] Plwv)ol T] {1- Pl(uv)I6]}

(u,v)EE (u,v)¢E

SIONC
ij Nij N

It is customary to calculate the log:

log £(G|M,z) = [Ejlog Ej + (Njj — Eyj) log(Nj; — Ej7) — Nj; log Nj]
» What does £ mean?
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SBM: Likelihood example

- - -y -
/7 \ 7 \ P \\I \
/ / 4
| \ \ ( |

/ / |
\ \ \
\__,/ \__,/ \.._____//\\_I

Lpaa = 0.000244 . ..

Lyoon = 0.043304 ...
I Lieq = —8.3178....

In Lgooq = —3.1395...

Myaq | red  blue

Megaod | red blue
red | 4/6 2/8

red | 3/3 1/9
blue | 1/9  3/3 blue | 2/8 1/1
E.\ Ei E.\ Ni—Ei
£(GIM,2) = (J) (1_U>
1:[ N N;
3)\° 3)\% [1\'[8)\°
— (2 12 = b .13 0° =0.0433...
() (73) (o) (5) g mooes
N—— =1

=1
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SBM: Likelihood meaning

- - - e, -~

V4 \N 7 \ // \\/ \

/ /

. M b M'
/ / |

\ \ \

~_-7 27 \--.___.//\\_/

Lgood = 0.043304 . .. Lpag = 0.000244 . ..
I Lyo0d = —3.1395 ... In Lpoq = —8.3178...
Mggoa | red blue Myaq | red  blue
red | 3/3 1/9 red | 4/6 2/8
blue | 1/9 3/3 blue | 2/8 1/1

» Loood = 177 - Lyaq: The good partition is 177 times more
likely to generate the original data than the bad one.
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SBM: Optimizing the likelihood
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> For given K we may optimize the partition, see example.

» Optimizing K: problem — with increasing K the number of fit
parameters increase as well — better fit

» Limiting case K = N, P; = Aj;, — perfect fit, and £L =1

» Some knowledge is required from the system to estimate K



SBM: Problems

> SBM: Nodes in one block have similar degrees

» Good example: egocentric network

o]
o
I 4
oQOO ©

» Bad example: Zachary karate club
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SBM: Zachary karate club

» Social partition, vs. SBM partition

7
SZaN

» Likelihood values

Meoeia | A (17) B (17) Mgy | A (5) B (29)

A (17) | 35/136  11/289 A(5)] 5/10 54/145

B (17) | 11/289 32/136 B (29) | 54/145 19/406

A(17) | 0.2574  0.0381 A (5)] 05000 0.3724

B (17) | 0.0381 0.2353 B (29) | 0.3724 0.0468
social division, In £ = —198.50 SBM division, In £ = —179.39

» SBM is 108 times more likely!
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Degree corrected SBM

» Introduce a new parameter for each vertex ~, which controls
the expected degree of node u

» The probability of a link between node u and v instead of a
Bernoulli distribution is now a Poisson distribution with mean
PYU’Yva(u)z(v)-

» The probability of observing the network G with adjacency
matrix A,, is then

(’VU'YVPZ u)z(v )AW
P(Gly,z, Pu) = H A(uv)!( ) exp( Yu P (u)z(V))

u<v

(2'7u

)AUU/Z 1
2
( uu/2)' exp (_2’YuPz(u)z(u)>
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Degree corrected SBM

(Vu v Pz(u)z )
P(Glv,2, Pu) = H A( )I( V) exp (_'YU'Yva(u)z(v)) X

u<v uv:

Auu/?2
(372Pz(wz(w) 1
X (Auu/2)! exp <_27u (U)Z(”)>

N;N;E; /2 1
:CH%UHPU iEil exp <—2P,-j> )
u i

where
> C= (HU<VAUV! Hu 2Auu/2(Auu/2)!)_l is a constant

> Ej =2, Auwdiz(u)0jz(v) as before the number of links
between groups i and ;.

> k, is the degree of node u
» N; is the number of nodes in group i
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Degree corrected SBM

» Logarithm of likelihood, leaving out constant factors:

log £=2 " kylogvu + Y _(Ejlog Py — Py)

» This function should be maximized

> At maximum the derivative is zero which gives:

.k 5
Au= — Pij = Ejj

» This gives a new log likelihood function

) Eij
log £ = Z Ejjlog e
ij

where k; is the number of links in group /
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Degree corrected SBM: null model

» Logarithm of likelihood, leaving out constant factors:

) Eii
log £ = ZEU log y

RiKj
y "

where k; is the number of links in group /
» Similar to the definition of modularity.

» Null model is not Erdés-Rényi but a network with the expected
degree sequence.
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Degree corrected SBM: Results

SBM degree corrected SBM
US political blogs
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Degree corrected SBM: Algorithm

> In principle: Given K, calculate £ for all possible divisions and
select the one with the largest value.

> This is impossible ~ ()
» Optimization in a multi dimensional space

» Separate field of research
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Optimization
Methods:

> Gradient (greedy):
» Always decrease the path length
» Fast, but gets trapped in a local minimum

» Simulated annealing:
» define elementary step
» decrease temperature slowly
> if energy is decreased by move — do it
» allow for increase of energy with probability proportional to

P~ exp(—AE/T)

%3 % NCD
Temperature
A
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Simulated annealing for SBM

Elementary step

» Ergodic: able to reach all states, time and ensemble averages
are the same

Non ergodic Ergodic Ergodic

» e.g. transfer a node from block i to j
» long self averaging times (middle example)
» clever choice of elementary step

Other name: Markov Chain Monte Carlo
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Simulated annealing for SBM

Elementary step

» Transfer a node u from i to j, (k is a randomly chosen block)

Nix + €

p(i — jlk) = Ne + cK

where Ny is the number of links between groups i and k and
N the links in block k. € > 0 a free parameter. This tests
how much v is attached to k

» The transition probability is thus:

e—ﬁmogizkpﬁp("—UIk) 1}
T
>k PP — ilk)

where 3 = 1/T inverse temperature, p; is the fraction of
neighbors of node u belonging to block k.

w(u,i—>j):min{
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Simulated annealing for SBM

Elementary step

» Transfer a node u from i to j, (k is a randomly chosen block)

Ny + ¢

p(i — jlk) = Ne 12K

» The transition probability is thus:

e—ﬁAIogﬁZk pip(i — jlk) 1}

(o1 +5) = min{ > PLPG = iR’

» 3 = oo: greedy algorithm.
» Slowly increase 3: simulated annealing

» An efficient C++ implementation of the algorithm described
here is freely available as part of the graph-tool Python library
at http://graph-tool.skewed.de (Peixoto, 2014)
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http://graph-tool.skewed.de

SBM: Optimal selection for K

Page 37

>
>
| 2

L grows with

K

asymptotic increase log £ ~ (K — 1)?

Use log L* =

log £ — (K — 1)? which is expected to become a

constant for large K
e.g.. simulated data s = (250, 250, 250, 250), px o< k~*1, for
k e [kmina kmax]

Graph B=K
. —86
‘T —&8.8
-9.0
= 25
@ —94
-9.6




SBM: Optimal selection for K

x10°
—84FT T
~ —86f
“I‘ —8.8F

—9.0F
o 94t

—9.6

L controls the precision of
the likelihood function

B=4L={0,1,23, 4}
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SBM: Summary

v

Very flexible, generative method to model

v

Communities, but also arbitrary mixing patterns, including, for
example, bipartite, and core-periphery structures;

Able to separate noise from structure;

No resolution limit

Generalization to directed, weighted networks possible.
Structure detection is converted to parameter inference

Increasingly efficient algorithms

vVvYvyVvVvyVvyy

Can be used to detect communities
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SBM: Suggested reading

» B. Karrer and M. E. J. Newman, Degree-corrected block
modeling, Physical Review E 83, 016107 (2011)

» T.P. Peixoto, Efficient Monte Carlo and greedy heuristic for
the inference of stochastic block models, Physical Review E 89
(1), 012804 (2014)

» T.P. Peixoto, Hierarchical Block Structures and

High-Resolution Model Selection in Large Networks, Physical
Review X 4, 011047 (2014)
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Growing networks

» Simulate real life

» Use minimal elements

» Do not incorporate effect what one wants to recover
» Example: simulate social network (modular)

N



Growth models

» Barabasi-Albert model: Simple growth mechanism, preferential
attachment, model for Internet

» More complicated systems?

» Two version of a simple model for social networks
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Social networks

» Human relation
» Very complicated dynamics
» Not really a growth model, more a dynamics steady state

» Observations:
» Weighted network
» Large clustering coefficient (friend of friends usually know each
other)
> Not scale free
Small world
Granovetter: Strength of the weak ties

vy
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Granovetter: Strength of the weak ties

» Human groups are strongly connected

» There are weak connections connecting the groups
» These weak connections mean sproadic meeting

» Important for information flow

» Example: Find a job
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Kumpula model

» N nodes (originally unconnected)

» (a) Randomly meet someone (low probability) global
attachment

» (b) Two friends of someone get to know each other, cyclic
closure

» (c) An already present triangle gets strengthened
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Kumpula model

» N nodes (originally unconnected)
» (a) (with prob. p,) random link to an unconnected node. Link
weight wy
» (with prob. py) i selects friend j with prob. proportional to the
link weight. j selects friend k similarly. Both links are
strengthened by J. Two cases:
» (b) There is no link between i and k: create a link with pa
with weight wy
» (c) There is a link between i and k: strengthen by &
» (d) (with prob. py) clear the links of a node (enforce steady
state, there are more realistic versions)
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Kumpula

model: results (0 =0, 0.1, 0.5, 1.0)



http://yohm.github.io/p5js_simulations/wsn/

Kumpula model: results

FIG. 3: Ry—4 (O) and {n,) (A) as a function of 4. Results
are averaged over 10 realizations of N = 5 x 10* networks.
Error bars are measured standard deviations.
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Kumpula model: results
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FIG. 3: Ry—4 (O) and {n,} (A) as a function of §. Results
are averaged over 10 realizations of N = 5 x 10" networks.
Error bars are measured standard deviations.
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Kumpula model: results

» Very simple assumptions
» Emergence of community structure (depending on parameters)

» Good to test effects of elementary processes on global
structure

» Not apt for recovering well defined structures
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Multiplex networks: Social networks
Communication channel
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Social context




Multi layer model of social networks

» Peaple have F social features with I:I
q values each

» Ego first selects feature (s)he wants @ ---@

to do some social action l J

» (S)he can do it only with people
with matching the specific feature @ ----@
» Random connection, rare i K J
» Triangles: common
» Link selection proportional to ’
weight
» Link establishment with some
probability and strengthening i j
participating links !
» Link aging N
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Multilayer social model: egocentric networks

N ?ﬁﬂ 4
- >
w
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Multilayer social model: Phase diagram
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http://yohm.github.io/p5js_simulations/wsn_homophily/
http://yohm.github.io/p5js_simulations/wsn_homophily/

