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Erdős-Rényi model

I Creating networks from random model
I Most basic construction: Take N nodes and L links and place

the links randomly
I This is the Erdős-Rényi model of random networks (1960)
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Erdős-Rényi model, versions
I N nodes and L links placed randomly: (N, L)
I N nodes and links with probability p: (N, p)

I Number of links in a complete graph:

Lc =

(
N

2

)
=

N(N − 1)
2

I Relation between p and L:

p =
2L

N(N − 1)

N = 12 p = 0.3788 p = 0.758 http://tetelwiki.mafihe.hu/Page 3
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Erdős-Rényi: equivalence of different versions

I Equivalence of the two definition is only in ensemble average
I N = 12, p = 1/6,

〈L〉 = 12 · 11
2 · 6

= 11

L = 12 L = 11 L = 8
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Erdős-Rényi: equivalence of different versions

I How precisely can we get networks with L links?
I Number of different ways L links can be placed

(Lc = N(N − 1)/2 is number of links in the complete graph):

P(L, Lc) =

(
Lc
L

)
I The probability of finding a graph with exactly L links using

probability p:

P(N, p; L) =

(
Lc
L

)
pL(1− p)Lc−L

I Binomial distribution
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Erdős-Rényi: equivalence of different versions

I The probability of finding a graph with exactly L links using
probability p:

P(N, p; L) =

(
Lc
L

)
pL(1− p)Lc−L

I Average number of links in a graph of (N, p)

〈L〉 =
Lc∑

L=601

L

(
Lc
L

)
pL(1− p)Lc−L =

Lc∑
L=1

L
Lc !

L!(Lc − L)!
pL(1− p)Lc−L =

= pLc

Lc∑
L=1

(Lc − 1)!
(L− 1)!(Lc − L)!

pL−1(1− p)Lc−L = pLc · 1
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Erdős-Rényi: equivalence of different versions
I Average number of links in a graph of (N, p): 〈L〉 = pLc
I Similar derivation (in the second round two terms:

L = (L− 1) + 1):

〈L2〉 = p2L2
c + p(1− p)Lc

I Variance:
σ2 = 〈L2〉 − 〈L〉2 = Lcp(1− p)

I Relative variance:

σ

〈L〉
=

√
Lcp(1− p)

p2L2
c

=

√
(1− p)

pLc

I Very sharp for large graphs

σ

〈L〉
=

√
(1− p)

pLc
'

√
2(1− p)

p

1
N
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Erdős-Rényi: degree distribution

I Probability of a node to have k links:

P(k) =

(
N − 1
k

)
pk(1− p)N−1−k

I Average degree:
〈k〉 = p(N − 1)

I Variance of node degree

σ2
k = p(1− p)(N − 1)

I Relative variance

σk
〈k〉

=

√
(1− p)

p(N − 1)
= O(N−1/2)

I Narrow distribution
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Erdős-Rényi: degree distribution
I Poisson limit theorem, λ ≡ pN

lim
N→∞

(
N

k

)
pk(1− p)N−k = e−λ

λk

k!

I Poisson distribution: mean: λ, variance: λ

poisson(4,x)
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Erdős-Rényi: degree distribution
I Degree distribution of the large Erdős-Rényi graphs is narrow:

σk
〈k〉

= O(N−1/2)

I It attracts the main criticism points
I BUT

I Are networks which are considered scale free really scale free?

Degree distribution

facebook

telephone

SNS

tw
itt

er

Broido and Clause (2018)
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Erdős-Rényi: degree distribution
I Empirical social network site degree distributions

Degree distribution

facebook

telephone

SNS
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er
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Erdős-Rényi: degree distribution

I Test of scale freeness on ∼ 1000 empirical networks

Broido and Clause (2018)
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Erdős-Rényi: degree distribution
I Some networks have indeed narrow degree distribution
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Erdős-Rényi: degree distribution

I Some networks do not have indeed narrow degree distribution
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Erdős-Rényi: the null model

I Some other measures can be of importance
I Erdős-Rényi graphs are truly random and uncorrelated
I Other quantities should show these baseline values
I This makes ER graphs a good basic null model candidate
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Erdős-Rényi: clustering coefficient

I Clustering coefficient:
I Let us consider two links of a node. The probability that it is a

triangle is proportional to the probability that the missing link
exists

I Thus
C = p =

〈k〉
N − 1

I In large ER graphs the clustering coefficient is almost zero
I There are hardly any triangles in the ER graphs
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Erdős-Rényi: assortativity

I The Erdős-Rényi graphs should be non-assortative:
I Reasoning: The link between nodes are established in an

independent way without any correlation so the actual node
with degree k randomly samples the graph, thus the average
degree of the friends is also k

I Funnily the probability to be connected to a node with degree
k is not proportional to k .

Noldus,Mieghem 2015
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Erdős-Rényi: Percolation

I Connected components: There is a path between any two
node of a connected component.

I Percolation: The network percolates if

lim
N→∞

|S∞|/N = lim
N→∞

P∞ > 0,

where S∞ is the largest connected component and |S∞| is its
size, and P∞ is the probability of node belonging to the largest
connected component.

I Which means that macroscopic fraction of the nodes belongs
to the largest connected components.

I Importance: functioning system cannot fall into (infinitely)
many pieces
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Erdős-Rényi: Percolation

I Percolation transition: Analogous to thermodynamic phase
transition.

I Can be continuous (e.g. ER) or discontinuous (e.g.
interconnected networks)

I Susceptibility: diverges at the transition
I Susceptibility: average cluster size without the giant

component
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Erdős-Rényi: Percolation
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Erdős-Rényi: Percolation threshold

I Where is the percolation threshold?
I u probability, that a node does not belong to the giant

component
I A node does not belong to the giant component if all its links

are either nonexistent (1− p) or connect to a node not
belonging to the giant component (pu):

u = (1− p + pu)N−1

log u = (N − 1) log
(
1− 〈k〉

N − 1
(1− u)

)
log u ' −〈k〉(1− u)

I Probability for a node to be in the giant component:

P∞ = 1− u = 1− exp(−〈k〉P∞)
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Erdős-Rényi: Percolation threshold
I Where is the percolation threshold?

P∞ = 1− u = 1− exp(−〈k〉P∞)

x
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Erdős-Rényi: Percolation threshold
I Where is the percolation threshold?

P∞ = 1− u = 1− exp(−〈k〉P∞)

I Trivial solution at P∞ = 0
I Non-trivial solution if 〈k〉 > 1
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Erdős-Rényi: Percolation threshold
I Where is the percolation threshold?

P∞ = 1− u = 1− exp(−〈k〉P∞)

I Trivial solution at P∞ = 0
I Non-trivial solution if 〈k〉 > 1

d

dP∞
[1− exp(−〈k〉P∞)] = 1

〈k〉 exp(−〈k〉P∞) = 1

I At the transition P∞ = 0, so 〈k〉c = 1

x
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Erdős-Rényi: Percolation exponents

I Control parameter k̃ = 〈k〉 − 〈k〉c = 〈k〉 − 1� 1
(We are close to the transition)

I Order parameter

P∞ = 1− exp(−〈k〉P∞)

I We assume that exp(P∞) is small, so up to second order

P∞ = 1−
[
1− 〈k〉P∞ +

1
2
〈k〉2P2

∞

]
1− 〈k〉 = k̃ =

1
2
P∞

I This gives β = 1
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Erdős-Rényi: Pathlengths
I ER graphs have few circles
I They can make paths shorter
I Consider the worst case: no circles
I The graph is a tree with average degree 〈k〉
I Note that k has a narrow distribution for large N
I Assume a perfect tree, with degree exactly 〈k〉
I This is called a Cayley tree
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Cayley tree
I Degree z = 〈k〉, generation n

I Number of nodes:

N =
z(z − 1)n − 1

z − 2

I Percolation threshold z = 2 (Note that there are more nodes
in the last layer with degree 1 then the rest with degree two)
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Cayley tree

I Average path length 〈s〉 ' 2n
I n ∼ logN

I The length of the average path increases logarithmically:
Small world
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Erdős-Rényi: Summary

I Ensemble of random graphs
I No correlations
I Sharp degree distribution (Poisson)
I Small clustering coefficient
I Non-assortative
I Percolation threshold at 〈k〉 = 1
I Small world

Page 29



Small World

I Karinthy: A fascinating game grew out of this discussion. One
of us suggested performing the following experiment to prove
that the population of the Earth is closer together now than
they have ever been before. We should select any person from
the 1.5 billion inhabitants of the Earth – anyone, anywhere at
all. He bet us that, using no more than five individuals, one of
whom is a personal acquaintance, he could contact the
selected individual using nothing except the network of
personal acquaintances.

I Six degrees of separation
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Small World
I Stanley Milgram experiment:

I Letters addressed to a Boston broker
I People in the Midwest were selected randomly and the packet

was sent to them with instructions
I Letters mast have had to pass on to someone with whom the

recipient was on a first-name basis

Page 31



Small World

I Stanley Milgram experiment:
I Letters addressed to a Boston broker
I People in the Midwest were selected randomly and the packet

was sent to them with instructions
I Letters mast have had to pass on to someone with whom the

recipient was on a first-name basis
I 64 of 296 arrived at the destination
I Average number of hops was between 5.5 and 6
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Small World
I Second experiment
I 24 out of 160 arrived
I Letters reached fast the location
I Then circled around
I Picture below is wrong
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Small World
I Modern version: Duncan J. Watts
I Send emails, same rules
I ∼ 60000 emails were sent
I 37% arrived
I The average number of hops was 4.01
I They corrected for incomplete chains and found number of

hops between 5 and 7
I Correction was needed due to bad representation of long chains

Dodds Muhamad Watts Science 2003
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Small World

I What about facebook?
I It can be easily measured (by facbook only argh...)
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Small World
I What about facebook?
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Small World and clustering
I Erdős-Rényi networks are small words with low clustering
I Triangle lattices are large words with high clustering
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Watts-Strogatz model
I Take a lattice with high clustering
I Introduce shortcuts (rewire)
I Parameter p fraction of rewired links

networksciencebook.com
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Watts-Strogatz model
I Take a lattice with high clustering
I Introduce shortcuts (rewire)
I Parameter p fraction of rewired links
I Can be high clustering and small world

networksciencebook.com
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Watts-Strogatz model

I Degree distribution: shifted Poisson
I This is the major criticism towards the model
I On the other hand tunable randomness.
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Scale-free function

I What does it mean?
I Must not have scale included
I Problem: most mathematical functions require dimensionless

arguments, e.g. exp(x/x0), log(x/x0), sin(x/x0)
I Single exception: power law xα

I Mathematically: scale invariance

f (αx) = αk f (x)

I Solution:
f (x) = Axk
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Scale-freeness

P(x) ∼ x−γ

I What does it mean?
I Normalization? Must have minimum, or maximum value

depending on γ (or both!)
I Very uneven distribution: High probability of small value, but

very large values are also possible
I Few very rich and a lot of poor
I Origin? Bible: Matt. 25:29, For whoever has will be given

more, and they will have an abundance. Whoever does not
have, even what they have will be taken from them.
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Power law distribution

P(x) = Cx−γ

I Two cutoffs: x ∈ [a, b], C is set to∫ b

a
P(x)dx = 1

I Cumulative distribution:

P(x ′ > x) =

∫ b

x
P(x ′)dx =

C

γ − 1
x−(γ−1)

I The cumulative distribution decays with a smaller γ − 1
exponent
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Scale-freeness

I Economic inequality, Pareto (1890) distribution P(x) ∼ x−α,
a'2.5

Zyga Phys.org 2007
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Scale-freeness
I Pareto principle: 20-80 rule:
I 80% of wealth is in the hands of 20% of the population
I 80 % of land is owned by 20% of people
I 80% of the sales is due to 20% clients

Zyga Phys.org 2007
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Scale-freeness

I Views of youtube videos

Cha et al. 2009
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Scale-freeness

I WWW page popularity
I Exponents are γin ' 2.1 γout ' 2.45

networksciencebook.com
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Scale-freeness

I Number of sexual partners in Sweden
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Power law: plotting

networksciencebook.com
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Pareto principle
I Cumulative distribution is:

P>(x) =

∫ ∞
x

P(x ′)dx ′ =

(
x

xmin

)−γ+1

I For γ > 2 the fraction of wealth larger than x is

W (x) =

∫∞
x x ′P(x ′)dx ′∫∞
xmin

x ′P(x ′)dx ′
=

(
x

xmin

)−γ+1

= P>(x)
γ−2
γ−1
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Zipf plots

I George K. Zipf linguist
I Ordered the words according to their occurrence frequency

(1935)
I Plotted the frequency against the rank
I Zipf plot
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Zipf plots
I George K. Zipf linguist
I Ordered the words according to their occurrence frequency

(1935)
I Plotted the frequency against the rank
I Zipf plot (Wikipedia)
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Zipf plots
I George K. Zipf linguist
I Ordered the words according to their occurrence frequency

(1935)
I Plotted the frequency against the rank
I Zipf plot (Wikipedia)
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Zipf plots

I Meaning of Zipf plot
I Rank n with frequency f (n) = n−β

I There are n more frequent words than f −1(n)

I In other words f −1(n) is equivalent to the cumulative
frequency distribution β = 1/(γ − 1)
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Hungarian cities
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Inhomogeneities in networks

networksciencebook.com
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Scale free networks
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Scale free networks

Network N L k〈k〉 〉 kin2〈k〉 〉 kout2〈k〉 〉 k2〈k〉 〉 γinin γinout γin
Internet 192244 609066 6.34 - - 240.1 - - 3.42*
WWW 325729 1497134 4.6 1546 482.4 - 2 2.31 -
Power Grid 4941 6594 2.67 - - 10.3 - - Exp.
Mobile-Phone Calls 36595 91826 2.51 12 11.7 - 4.69* 5.01* -
Email 57194 103731 1.81 94.7 1163.9 - 3.43* 2.03* -
Science Collaboration 23133 93437 8.08 - - 178.2 - - 3.35*
Actor Network 702388 29397908 83.71 - - 47353.7 - - 2.12*
Citation Network 449673 4689479 10.43 971.5 198.8 - 3.03* 4.00* -
E. Coli Metabolism 1039 5802 5.58 535.7 396.7 - 2.43* 2.90* -
Protein Interactions 2018 2930 2.9 - - 32.3 - - 2.89*-
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Scale free networks: moments

I Moments of power law distribution

〈km〉 =
∫ ∞
kmin

kmP(k)dk

I Normalization (γ > 1)

P(k) = (γ − 1)kγ−1
min k−γ

I Moments, if 1+m < γ:

〈km〉 =
kmmin(γ − 1)
γ − 1−m

I If m ≥ γ − 1 the moment diverges
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Scale free networks: moments
I Moments diverge for m ≥ γ − 1
I γ ≤ 2 → No average
I γ ≤ 3 → No variance
I Many networks fall in this category

Network N L k〈k〉 〉 kin2〈k〉 〉 kout2〈k〉 〉 k2〈k〉 〉 γinin γinout γin
Internet 192244 609066 6.34 - - 240.1 - - 3.42*
WWW 325729 1497134 4.6 1546 482.4 - 2 2.31 -
Power Grid 4941 6594 2.67 - - 10.3 - - Exp.
Mobile-Phone Calls 36595 91826 2.51 12 11.7 - 4.69* 5.01* -
Email 57194 103731 1.81 94.7 1163.9 - 3.43* 2.03* -
Science Collaboration 23133 93437 8.08 - - 178.2 - - 3.35*
Actor Network 702388 29397908 83.71 - - 47353.7 - - 2.12*
Citation Network 449673 4689479 10.43 971.5 198.8 - 3.03* 4.00* -
E. Coli Metabolism 1039 5802 5.58 535.7 396.7 - 2.43* 2.90* -
Protein Interactions 2018 2930 2.9 - - 32.3 - - 2.89*-
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Distances in scale free networks
Average distance scale with node number N as
I 〈l〉 ∼ const. for γ = 2 Size of the biggest hub is of order O(N)
I 〈l〉 ∼ 1

log(γ−1) log logN for 2 < γ < 3. Path length increases
slower than logarithmically, ultra-small world

I 〈l〉 ∼ logN/ log logN for γ = 3. Some key models produce
γ = 3

I 〈l〉 ∼ logN for γ > 3. The second moment of the degree
distribution is finite, similar to random network. Small world.

Network N L k〈k〉 〉 kin2〈k〉 〉 kout2〈k〉 〉 k2〈k〉 〉 γinin γinout γin
Internet 192244 609066 6.34 - - 240.1 - - 3.42*
WWW 325729 1497134 4.6 1546 482.4 - 2 2.31 -
Power Grid 4941 6594 2.67 - - 10.3 - - Exp.
Mobile-Phone Calls 36595 91826 2.51 12 11.7 - 4.69* 5.01* -
Email 57194 103731 1.81 94.7 1163.9 - 3.43* 2.03* -
Science Collaboration 23133 93437 8.08 - - 178.2 - - 3.35*
Actor Network 702388 29397908 83.71 - - 47353.7 - - 2.12*
Citation Network 449673 4689479 10.43 971.5 198.8 - 3.03* 4.00* -
E. Coli Metabolism 1039 5802 5.58 535.7 396.7 - 2.43* 2.90* -
Protein Interactions 2018 2930 2.9 - - 32.3 - - 2.89*-
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