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Information

» Coordinates:

> Torok Janos
» Email: torok@phy.bme.hu, torok72@gmail.com
» Consultation:

» F Il building, first floor 6 (after the first stairs to the right, at
the end of the corridor), Department of Theoretical Physics
» Upon demand (Email)

» Webpage:
http://physics.bme.hu/BMETE15MF76_kov?language=en

» Homework: http://www.phy.bme.hu/moodle
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http://physics.bme.hu/BMETE15MF76_kov?language=en
http://www.phy.bme.hu/moodle

Requirements

» Signature
» 70% participations
» 50% homework submitted and accepted
» Exam: mark
» 50%: From homeworks (individual)
» 50%: From projects (individual) presented in the last lecture,
or exam
» Turn it in language: English, Hungarian, German, French
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Introduction

» Complex Networks: graphs with non-trivial features

» Networks: graphs, which are nodes and edges
» Graphs: Objects with interactions
» Hope: network structure can help us understand the system

Lecture is based on the lectures of Janos Kertész
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Example (my favourite)

» Hungarian company 3 bases

Maven 7 from etworksciencebook.com by Barabasi.
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etworksciencebook.com

Page 6

Example (my favourite)

» CEO (red), top managers (blue), Managers (magenta), group
leaders (orange)
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Example (my favourite)

» Biggest hub, and links at distance 1 and 2
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Complex networks

» Social connections
» |T connections
» Hardware
> WWW
> Biology
» Food web
» Metabolism
» Neural connections
» Species
> Economy

» Trade
> Travel
» Product chains

» Politics

> Voters
» Relations
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Complexity vs. Complex

Complicated Complex
Torsen differential Bird flock, lungs
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Complexity

» Complexity, a scientific theory which asserts that some systems
display behavioral phenomena that are completely inexplicable
by any conventional analysis of the systems’ constituent parts.
These phenomena, commonly referred to as emergent
behaviour, seem to occur in many complex systems involving
living organisms, such as a stock market or the human brain.

John L. Casti, Encyclopaedia Britannica
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Complexity

» Many interacting components
» Particles: 103 — 1023
» Brain: 103 — 10!
» Humans: 34 — 10°
» Computers: 1000 — 10°

Page 11



Complexity

» Many interacting components

» Emergence: occurs when an entity is observed to have
properties its parts do not have on their own

» More is different, P.W. Anderson

» Brain: neurons — thoughts

» Humans: people — society

» Technology: interconnected computers — WWW
» Particles: crystal structure
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Complexity

» Many interacting components

> Emergence
» Nonlinearity

» Brain: neurons

» Humans: Reactions

» Technology: virus spreading
» Particles: three planet problem
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Complexity

Page 14

» Many interacting components
> Emergence
» Nonlinearity

> Spontaneous organization

» Brain: learning

» Humans: society

» Technology: Torrent community
» Particles: crystals



Complexity

» Many interacting components
> Emergence
» Nonlinearity
» Spontaneous organization
» Diversity

» Brain: Different interactions (spontaneous, at will)
» Humans: society

» Technology: Torrent community
» Particles: Phase separation
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Networks

> Skeleton of complex systems (units and interactions)
» Underlying network

» Without apprehending this network we cannot understand the
complex system — Holistic approach

Holism: Looking at systems as a whole is needed for theirs
understanding

Reductionism: The precise understanding of the fine details will
finally lead to the complete picture
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Why now?

Development of information technology
Data gathered

>
>
» Detailed understanding of building blocks of many systems
» Digitalized world

>

Interdisciplinary
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Network Science

» Citations per year
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etworksciencebook.com

What can we learn

» Disease spreading

Modem boundaries are

22012 Encyclopmdia Britannica, Inc.
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What can we learn

» Disease spreading
» Cascade effects
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What can we learn

» Disease spreading
» (Cascade effects

» Signaling out terrorists
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What can we learn

Page 22

» Disease spreading
» Cascade effects

» Signaling out terrorists

» System robustness




What can we learn

» Disease spreading

» Cascade effects

> Signaling out terrorists

» System robustness

» System efficiency

» Trade efficiency (product suggestions, etc.)
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Graph Theory

> Konigsberg (Kaliningrad) bridges
» Can we pass all the bridges exactly once?
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Graph Theory: Euler
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Wikipedia

» Euler's theorem: An Eulerian path on a graph is possible if
there are no nodes with odd number of links or there are
exactly two such nodes

» A round trip (circle) is possible if there are no nodes with odd
number of links.
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Graph Theory: Basics

» Graph:
G={V,E}
where
V' vertices (nodes) (i,/,k,...)
E: edges (links) (ejj,...)
> Network: graph of a system
» Representation:

Nodes: dots
Links: lines between dots
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Graph Theory: Types

» Loops: edge starting/ending on the same node: graph 6/Z
» Multiple edges: graph 7/esq, epr

» Directed: graph 8

> Wighted: graph 9,10

» Simple graphs: no loop, no multiple edges, graph 1,2,3,4,5,9
» Bipartite graph: G ={U,V,E}, ej € E,ic U, jeV
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http://techieme.in/graph-theory/

Graph: Adjacency matrix

» Matrix Aj; the number of links between nodes i and j
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Graph Theory: Weighted graphs

> Weight matrix:

u v w x y

u 02 0 1 0

v 2 0 3 00
Wo=1, 03 0 4 0
x 1 0 4 05

y 00 0 5 0

GRAPH 9
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Graph data

» Adjacency matrix: only in memory for small or sparse ones
> Edges list: database, data file

12
13
23

» Adjacency list: generally the most compact, bonus: easy
neighbor search

123
213
312

» Multiline adjacency list: Only for datafile, same but easier to
parse

12
2

NP WWwE D W
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Graph Theory: paths

» Path: sequence of adjacent nodes (connected with edges)
where all nodes are distinct, e.g. SQRP

» Trail: sequence of adjacent nodes (connected with edges)
where all edges are distinct, e.g. SQSTRPRQ

» Walk: sequence of adjacent nodes (connected with edges),
e.g. PRQRQST

» Circle: a closed path

» In directed network, the path can follow only the direction of
an arrow.
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Graph Theory: paths

» The length of the shortest path between two nodes. Length is
measured in steps

» There can be more than one shortest paths

> Example:
> d(4,6) =2
> d(6,4) =1
> d(3,2) =1
> d(2,3) = oo

N

Page 32



Graph Theory: components

» Components, clusters: Set of nodes, with at least one path
between any pair of them. (An isolated node is also considered

as a component.)

» A graph is connected if it consists of only one component

S ALY

GRAPH 1 GRAPH 2 GRAPH 3 GRAPH 4
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Graph Theory: components

» Component is not trivial for directed graph

» Strongly connected: path in both direction between all pair
of nodes.

> Weakly connected: the undirected version is connected

5

3 Giant Weakly Connected component (GWCC)
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Graph Theory: subgraphs

» Subgraph: G’ = {V' E'} is subgraph of G = {V, E} if
V/ C V, E' C E and all endpoints of E’ are in V’

» Spanning subgraph: V' =V

> Tree: A graph where no circles are possible

» Spanning tree: A spanning subgraph with no circles

OO
ANLA

spanning subgraphs of C'y

the graph Cy
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Graph Theory: degree

Page 36

> Degree: The degree of a node is the number of links of a
node: ki = |{ej € E}|
> In Degree: In directed graphs: k; = |{eji € E}|
» Out Degree: In directed graphs: ki = |{ej € E}|
> Example:
Graph 5: kp:27 kQZQ, kRZQ, k5:3, kT:].
Graph 6: /(W:].7 kX:17 ky:3, kZ:3
Graph 7: kp=2, k=3, k=4, ks=3, kr=2
Graph 8: In: ki=1, ko=2, k3=0, ka=2, ks=1, kg=2
Graph 8: Out k1=2, ko=0, k3=2, ky=1, ks=1, kg=2
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Graph Theory: degree distribution

» Moments: mean, variance

» Distribution: which function fits it most, where is its maxima,
etc.
» Degree distribution:

» n(k), number of nodes with degree k
> P(k), probability that a node has degree k, NP(k) = n(k)

> Average degree:

1 N N
(k)= 5> k=3 kP(K)
i=1 i=1

» For directed graphs, of course, we have (k) and (k°!t)
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Graph Theory: average degree

» Complete graphs: L = N(N —1)/2, (A link gives two
contacts!)
(k) = lim (N—1) =00

N—oo

» Spanning tree: L = N — 1 (circle minus 1 link),

(k) = lim 2(N —1)/N =2
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Graph Theory: Sparse-dense graphs

> [ o N, for large N
» X\ = 1: Sparse graph
» )\ =2: Dense graph
» (k) o< N, for large N
» 1 = 0: Sparse graph
» 1 = 1: Dense graph

> Almost all real graphs are sparse

Ky Ky
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Graph Theory: Adjacency matrix and degree

» Degree: Undirected, symmetric matrix
N N
ki=> Aj=) Aj
j=1 j=1
» Degree: directed, non-symmetric matrix

N
K=" Ay
Jj=1
N
K= A
j=1

T s
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2

GRAPH 8
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Graph Theory: Powers of the adjacency matrix

» (A");; number of n-step walks between nodes i and j

» Proof: Induction. For n = 1 trivially true. Assume it is true
for n — 1. All n-walks to j come from n — 1 walks to a
neighbor k of j, provided there is a link from k to j.

w X Y Z w X Y Z
W o 0 1 0 w 1 1 0 1
As=|X 0 0 1 0| A2=|X 1 1 0 1
Y 1 1 0 1 Y 0 0 3 2
Z 0 0 1 2 Z 1 1 2 5
z
Y
w
XGRAPHG
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Graph measaures: Average distance

» Defined for a single component: average distance between all

node pairs:

» Diameter of a network:

0 = max dj;
i

» Usually For large N, (d) ~ 6 ~ N*

» If A =0 (equiv. logarithmic increase): Small world
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Graph measaures: Average distance

> Average distance:

1

dy=——(14+24+14+2+1+1+2+3+19)=16
(d) 5(5_1)(++++++++)

u v

» Diameter of a network:

0 =maxdj =3
i

GRAPH 9
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Graph measaures: Clustering coefficient

» Average distance: fraction of triangles realized out all
possible ones at node i

2nA7,-
ki(ki — 1)’

where np ; is the number of triangles at node i.
> Average clustering coefficient:

1 N
(C) = NZC"
i=1

» Global clustering coefficient: fraction of triangles realized out
all possible ones.

C = I{(i,J, k) circle, i # j # k}|
[{(i,j, k) path, i # j # k}|

3 x Numberoftriangles

C =

- Numberofconnectedtriples
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Graph measaures: Clustering coefficient

» Example from Barabasi's http://networksciencebook.com/

WX

C=1/2

13
(Ch= E =0.310
173 2/3
Co= i =0.375
8
0
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http://networksciencebook.com/

Graph measaures: Conditional probability

» Conditional probability: P(x|c) normalized distribution of x
for cases when condition ¢ holds.
» Example: Clustering coefficient of nodes of degree k:

(G) = ik S Gk =3 cP(Clk)
ilki=k C

https://arxiv.org/pdf/0908.1143
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https://arxiv.org/pdf/0908.1143

Graph measaures: Pearson correlation coefficient

» Pearson correlation coefficient:

_ E(X = px)(Y — py)]

rx,y

oxXOy

[z mean of Z

oz standard deviation of Z
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Graph measaures: Assortativity

> Assortativity: (knn(k)) average degree of the neighbors of
nodes with degree k

» (knn(k)) increasing — assortative mixing

» (knn(k)) decreasing — disassortative mixing

> Assortativity coefficient: Pearson correlation coefficient of
degree between pairs of linked nodes, with r > 0 for
assortative and r < 0 for disassotative mixing.
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Graph measaures: Assortativity

> Assortativity: (knn(k)) average degree of the neighbors of
nodes with degree k

» (knn(k)) increasing — assortative mixing

» (knn(k)) decreasing — disassortative mixing

> Assortativity coefficient: Pearson correlation coefficient of
degree between pairs of linked nodes, with r > 0 for
assortative and r < 0 for disassotative mixing.

Network n ¥
Physics coauthorship (a) 52909 0.363
Biology coauthorship (a) 1520251 0127
Mathematics coauthorship (b} 253339 0.120
Film actor collaborations (c) 449913 0.208
Company directors (d) 7673 0.276
Internet (e) 10697 - 189
World-Wide Web (f) 269 504 —0.065
Protein interactions {g) 2115 -0 156
Meural network (h) 307 =163
Marine food web (i) 134 —0.247
Freshwater food web (j) 92 —0.276
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