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Percolation on networks (graphs)

» Network is defined by nodes and links

» Percolation gives us connected components

» Link removal percolation gives information about robustness,
and structure
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Percolation and attack on random networks

» Failure: equivalent to percolation: remove nodes at random
> Attack: remove most connected nodes
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Error vs. attacks
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Percolation and attack on random networks
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» Failure:
> Attack:

equivalent to percolation: remove nodes at random

remove most connected nodes
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Robustness

» Link/node removal percolation
» Here: random, and largest first
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» There is also weakest first

Poisson Scale-free
IUQ% -1.0 %-. — .
08 - %, (@) -os (b) | *squares: random failure
o6l &% los L & | e circles: targeted attack
D4; ;047 o 4
02 - ;02 - 1
0.0 = e 100 Lt
0 02 04 06 08 10

00 02 04 06 08 1.0 0.

Failures: little effect on the

integrity of the network if
scale free.
Attacks: fast breakdown

(d) |

= |: average

0 0
00 02 04 06 08 1.0 0.0 02 04 06 08 1.0

f

component size



Link removal percolation on networks
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» Granovetter hypothesis: The strength of the weak ties
» Human communities have strong connections

» These communities are connected with weak ties

» Test the structures with Link removal percolation
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Link removal percolation on networks

Ricc

0.8

0.6

0.4

Ricc

Page 8

0.8

0.6

0.4

0.2

0.8

(b) LD
o 0.6
o
S
o
0.4
0.2
asc. ——
desc. ----e-
0
(c) aging
Y
-‘-
.l
"
Y
asc. i
desc. -
0.2 0.4 0.6 0.8




Robustness

» Design networks to be optimal for both types of failures

» frand random percolation threshold
> 18 strongest first percolation threshold
> flot — frand L f28 aoqinst both (Arrghhhhhh.?27?)
» Scale free with exponent here A
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Robustness

» Composition of two power laws, with A = 2.5 for k > a, and «
for k < a.

» Fast decay for small degrees and power law afterwards
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Robustness

» Composition of two power laws, with A = 2.5 for kK > a, and «
for k < a.

» Fast decay for small degrees and power law afterwards
» Solid line two Dirac deltas:
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Robustness

» Composition of two power laws, with A = 2.5 for k > a, and
» Fast decay for small degrees and power law afterwards
» Solid line two Dirac deltas:
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Robustness against attacks

» Malicious attacks target central nodes, hubs

v

Solution: central nodes should be connected

» Assortative mixing is preferred (high degree nodes are
connected between each other)

» (Barabasi-Albert is thus a bad example)

» Robustness measure:

1 N
R:N(;_ls(Q)

» s(Q) fraction of nodes in the largest connected cluster after
removing @ = gN nodes

» Optimize for R
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Onion structures

» Robustness measure:

1 N
R=5 . s(Q)
Q=1

> 5(Q) fraction of nodes in the largest connected cluster after
removing @ = gN nodes

» Optimize R by only rewiring and keeping degree distribution
constant

» Onion structures are the best

> Assortative
» Layers with similar degree nodes
» Inter-layer connections
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Onion structures

» Assortative

» Layers with similar degree nodes

» Inter-layer connections

n-layer edges

———— Betwee

n-layer edges

I
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Chateau de Vincennes
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Optimization: costs
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Internet Autonomous system topology

Providers can connect to the top tier or be a customer
They are responsible for directing the Internet traffic
Simple protocols define the routing (mainly greedy)
Many optimizes the structure




Flight route optimization

> Suppose weight of a link is defined as
wjj = djj/tj

where dj; is the distance, and t;; is the traffic between two
cities

» When more paths are possible the most economical is used:
Cij = min w,
j=min w

» Keep total traffic constant

» Function to be optimized is the average cost to pay to travel
from any node to any other

2
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Flight route optimization

» Check a small circle;
> Let us assume di = d(A,B) =d(B,C) > d(A.C) =d’

» Cost function (T is the average traffic between two cities):
2d + d’
L1 = T

» Cut connection (B, C). The new cost function

_d+d

£2— T <£1

» The optimal path is a tree!
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Tree model

» If it is known that the network is a tree task is easier:

d
ﬁu = bei

t
ecT €

where b, is the link betweenness centrality
» The optimal traffic

_ Tbed,
Y e Vbede

» The optimal traffic tree can then be obtained by minimizing

£=73 Vhede

eeT

L=> bld’

ecT

te

» More generally

where 1 and v control the relative importance of distance
against topology as measured by centrality
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Optimal traffic on networks
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» Exponential degree distribution

» Power law betweenness distribution
» Hierarchical organizations

> u=v=205




Optimal traffic on networks
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(c)

Page 22

(0,1) (1/2,1/2)
2
%
N .‘V“‘v
(1,1) (1,0)

(d)



Spreading on networks

» One of the most important problems on networks
> Also one of the real success

» This lecture:

» Advanced mean-field calculations
» Cascade models
» Spreading in temporal networks
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Epidemic models: notations
> States:

» S: susceptible
» |: Infected

» R: Recovered (immune)
» E: Exposed (infected but not yet infecting)
» Rates: 5, u, 1, v
= 51
u
siks s -
n
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SIR reality vs. model

» Perfect mixing
» Everybody can meet everybody
» Ebola

Figurel. Confirmed weekly Ebola virus disease cases reported from Guinea,

a0, Liberia and Sierra Leone
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SIR reality vs. model
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» Perfect mixing

» Everybody can meet everybody
» Covid-19, South Korea

» Susceptible approximated
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SIS model: mean field

» Perfect mixing

v

Everybody can meet everybody

» The different type meet with probability proportional to their
density

» Density of types:
o = N*/N

» The mean field SIR equations:

dp’

— = 000" — !
dp®
— =B +xp’

where x = p for SIS and y = 0 for SIR.
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Epidemic threshold

> Linearization: p! <1, p° ~ 1
dp’ !
dr (B—wp

p'(t) = p'(0) exp[(5 — p)t]

> Two regimes:

» 3 < p: Disease dies out
» 3 > p: Disease spreads

» Reproduction number: Ry = 5/p

» The epidemic threshold for perfectly mixing population is
Ro = 1 above which the epidemic spreads.
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SIR/SIS

» Above the epidemic threshold
» In SIS dynamics equilibrium

density of infected

SIS

SIR

time

Exponential growth Peak of epidemics Final stage
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SIS: Individual based mean field (IBMF)

» Markov chain approach
» Two state X; =1 for / and X; =0 for S.
» E[X(t)] expected value of X;

> a;; element of the adjacency matrix

» The Master equation:

dE[X:
G = £ |t + 0 X000 S s

» Introducing A = 3/ ant rescaling the time by 1/u
> For static network:

dpdlg ) _ +>\Za,,pj )‘ZaUE[Xi(t)Xj(t)]

Pastor-Satorras et el., Epidemic processes in complex networks (2015)
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SIS: Individual based mean field (IBMF)

» Markov chain approach
» The Master equation for static network:

!
dpc’;ft) = —pi(t) + XD ayp(t) = A aE[Xi(£)X;(t)]
j ]

» No explicit solution due to the two term correlations
ELXi(£)X (1))
Joint probability distribution cannot be calculated

v

» Assumption: neighboring nodes are statistically independent:
E[Xi(6)X(1)] = EIX(DIELX(8)] = pi(£)p) (1)
» The Master equation for the SIS model thus reads:

1
P ey 4 A (] Y a0
Jj
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SIS: Individual based mean field (IBMF)
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» The Master equation for static network SIS model in the
independent neighbors limit:

dpj(t) I I I
—g = Pilt) F AL = pi(t)] > apj(t)
J

» Loss term: probability that node i is infected times the rate of
recovery (hidden in the rescaled time)

» Gain term: probability that node i/ is susceptible, times the
total probability that any of its nearest neighbors is infected,
times the effective transmission rate A = 3/



SIS: Individual based mean field (IBMF)

» The Master equation for static network SIS model in the
independent neighbors limit:

I
) — i) 4201 (0] Y el

J

» Linear stability analysis

dpj(t) I I I
g = —pj(t) + )\Za,-jpj(t) = ZJUPj(t)
J J

with J,'j = —5,’j + )\a,-j
» An endemic state occurs when A; the largest eigenvalue of J is
positive.
» The epidemic threshold is thus:
A amvE = L
c /\1
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SIS: Individual based mean field (IBMF)

» For networks with power law degree distribution P(k) ~ k=7

» Largest eigenvalue:

A = min( V Kmax <k2>/<k>)
» The epidemic threshold:
1 .
AIBMF _ ) Vo if 72> 5/2
¢ Gy if2<y<5)2
> In both cases limy_,oo ABMF = 0

» Numerically the threshold is at the maximum of

0 = ()2
=N
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SIS: Individual based mean field (IBMF)
» The epidemic threshold:

1 .
\IBMF _ T if v >5/2
c Gy if2<y<5/2

) ] L AL
10§ 10 R -

/ ”

N 10

threshold
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SIS: Degree based mean field (DBMF)

» All nodes with the same degree are statistically equivalent.

v

Number of equations kpax

Conditional probabilities: P(k’|k) probability that a node with
degree k is connected to a node of degree k’

v

v

P(k'|k) is the same for all k degree nodes.

v

In the case of uncorrelated networks:
k'P(k")
(k)

P(K|k) =
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SIS: Degree based mean field (DBMF)
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> pl(t) is the probability that a node of degree k is infected at
time t

» Master equation:

I
dﬂgt(t) = (1) + AK[L = ph(8)] 3 P(K K)oke()

kl

> Note that the factor k in the gain term is for the number of
links the node of degree k has with that chance to get infected

» Linearized version

M =~ =Pk ( + Ak P k/|k pk’ Jkk/pk’
dt Zk, Z
> With
Ikt = —Okir + AkP(K'| k)



SIS: Degree based mean field (DBMF)

» Linearized version

ko) K(£) + XKD P(K |K) ZJ :
4 ~ —pk pk’ kk pk’
k/

> With
Jukr = —Oupr + )\kP(k’|k)

» There is an epidemic state if

1
A )\DBMF -
> Al AL

where again A; is the largest eigenvalue of J
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SIS: Degree based mean field (DBMF)

» The epidemic threshold, for uncorrelated networks with
k'P(k")
(k)

» Probability to find an infected node following a randomly
chosen edge

P(K'[k) =

0 =3 P(KIK) = “TiD (0
.

The Master equation of the Degree based mean field is

|
D) _ (1) + ML~ ()]

» The two latter equations can be solved in self-consistently.
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SIS: Degree based mean field (DBMF)
» The self-consistent solution allows for an epidemic state only if

k)

A )\DBMF — <

e (K2)

» For power law degree distribution with exponent 2 < v <3
The threshold is 0 in the infinite limit.

threshold
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SIS: Comparison

> IBMF
\IBME _ T ify>5/2
< Ty if2<y<5/2
> DBMF
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SIS: Epidemic threshold
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It seems that in the infinite system there is no epidemic
threshold

Numerical simulations show also this picture

Note that in the SIS model there is a dynamic steady state
with a fraction of infected nodes

In scale-free networks only part of the system will be infected,
the hubs and the immediate neighborhood.

Concepts of:

» Epidemic state: Homogeneously infected
» Active state: Small finite active part

Thankfully real systems are never infinite



SIS: More realistic models
» Degree-degree correlations:
P Assortativity

» Pearson correlation coefficient r
» Largest eigenvalue

» Clustering may increase the threshold

> Weak clustering c(k) ~ 1/k threshold remains 0

» Strong clustering c(k) ~ 1/k~2, if & < 1 threshold increases
» Community structure slows down the spreading

B 3
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5
0

0 10 20 30
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I[mmunization
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» Often the task is to stop the spreading

» Sometimes one can immunize part of the society
» Can we stop the spreading?

> Example:

» Of course, if every newborn baby is vaccinated, the population
is safe. This is the way, how smallpox (Variola) was defeated.

» Estimated death in 20 th century: 300 Million

» Estimated infected in 1967: 15 Million

» 1979: WHO declared smallpox eradicated



I[mmunization

» Epidemic threshold (complete graph/fully mixed state):

3 > 1 outbreak
Ro = =< =1 threshold
a <1 localized

» The density of the immune vertices is g, then:

8'=p(1-g)
» The threshold for networks
Bl-g) _ (K
1 (k?)

» For infinitely large scale free network with v < 3 we get g = 1

» For random immunization everybody must be vaccinated
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I[mmunization

» Epidemic threshold for networks

pl-g) _ (k)

1 (k?)

» Targeted immunization: immunize high degree nodes

» This decreases the variance faster than the average

<k>g B(1-g)

K~ n

which defines the critical value of g
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I[mmunization

» Targeted immunization: immunize high degree nodes
(k)g > B(1-g)
2
(k)¢ ©
which defines the critical value of g

1.0

G—=6 Uniform Immunization

G—= Targeted Immunization |

Page 47 Pastor-Satorras, Vespignani, 2001
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Innovation spreading

» Rogers (1962)

Early

Majority | Majority
Adopters

Innovators

Laggards

» Mahajan, Muller and Bass (1990)

Adoptions Due to
Mass Media

Adoptions Due to
Interpersonal
Communication

Time —————3p

N



Threshold model

» Sometimes the spreading is due to load from the neighbors

» E.g. if too many of my neighbors are infected | will also get
infected

» Innovation spreading: many of my friends have iPhone | will
also get one.
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Threshold model
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v

Networks with average degree (k) = z
Nodes have threshold ¢;

If the number of active nodes in the neighborhood reach ¢;
then the node becomes active (too many friends have some
product | will also buy it)

Start from a small seed
If thresholds are sufficiently low cascades may propagate
through the whole system (size ~ O(N))

Watts, A simple model of global cascades on random networks (2002)



Threshold model
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» In large uncorrelated random networks there are hardly any
triangles

» Vulnerable nodes are the ones where the threshold is less than
¢i < 1/k;, one neighbor is enough to get infected

» Global cascade is possible if these nodes percolate

» This is the cascade condition

z>Zk — 1)P(k)P(¢<1/k)

» k(k — 1) increases with k
» P(¢p<1/k) decreases with k

» Two or 0 solutions



Threshold model: Phase diagram

» Points simulation
» Dashed line calculated threshold
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Threshold model: Phase diagram

» Top line: first order phase transition of cascades

» Bottom line: second order phase transition of network
percolation limit
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Threshold model: Phase diagram

» ¢ With normal distribution and o variance
> Scale free graph
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Fall of a social network site

> Users leave due to exogenous effects (advertisements, news,
etc.)

» Users leave if some part of their friends leave.
» This depends on the embeddedness of the user
0.12

0.1

0.04 h
0.02 b
() e M | | | | | |
0 01 02 03 04 05 06 0.7 0.8 09 1
Fend
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Fall of a social network site: Model

» Users leave due to exogenous effects (advertisements, news,
etc.):
» Here rate of leave increases with time as was the popularity of
the alternative site
» Users with low degree are more susceptible to global effects
> Users leave if their friends leave.
» Threshold model with threshold above 45%
> Leave is not immediate one needs time (7) to recognize friend

is inactive
Z
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