
Complex networks
Temporal networks

János Török

Department of Theoretical Physics

March 13, 2020

Page 1

Growing networks
I Simulate real life
I Use minimal elements
I Do not incorporate effect what one wants to recover
I Example: simulate social network (modular)

Page 2

Growth models

I Barabási-Albert model: Simple growth mechanism, preferential
attachment, model for Internet

I More complicated systems?
I Two versions of a simple model for social networks

Page 3

Social networks

I Human relation
I Very complicated dynamics
I Not really a growth model, more a dynamics steady state
I Observations:

I Weighted network
I Large clustering coefficient (friend of friends usually know each

other)
I Not scale free
I Small world
I Granovetter: Strength of the weak ties

Page 4

Granovetter: Strength of the weak ties
I Human groups are strongly connected
I There are weak connections connecting the groups
I These weak connections mean sproadic meeting
I Important for information flow
I Example: Find a job

Page 5

Kumpula model

I N nodes (originally unconnected)
I (a) Randomly meet someone (low probability) global

attachment
I (b) Two friends of someone get to know each other, cyclic

closure
I (c) An already present triangle gets strengthened

(a) (b) (c)

Page 6

Kumpula model
I N nodes (originally unconnected)
I (a) (with prob. pr) random link to an unconnected node. Link

weight w0
I (with prob. pd) i selects friend j with prob. proportional to the

link weight. j selects friend k similarly. Both links are
strengthened by δ. Two cases:
I (b) There is no link between i and k : create a link with p∆

with weight w0
I (c) There is a link between i and k : strengthen by δ

I (d) (with prob. pd) clear the links of a node (enforce steady
state, there are more realistic versions)

(a) (b) (c)
Page 7

Kumpula model: results (δ = 0, 0.1, 0.5, 1.0)

Page 8

http://yohm.github.io/p5js_simulations/wsn/

Kumpula model: results

Page 9

Kumpula model: results

Page 10

Kumpula model: results

I Very simple assumptions
I Emergence of community structure (depending on parameters)
I Good to test effects of elementary processes on global

structure
I Not apt for recovering well defined structures

Page 11

Multiplex networks: Social networks
Communication channel Social context

(a) (b)

Page 12

Axelrod model of dissemination of culture

I Each individual is endowed with a certain culture
I They have cultural needs and preferencies therein
I An individual’s culture is characterised by a list of F features
I Each feature has q different traits
I Assumptions

I people are more likely to interact with others who share many
of their cultural attributes

I these interactions tend to increase the number of cultural
attributes they share (thus making them more likely to interact
again).

Axelrod 1997

Page 13

Axelrod model of dissemination of culture

I Model
I One agent k (active) is selected at random.
I One of agent k ’s neighbours, denoted agent r (passive), is

selected at random.
I nkr number of features in which agents k and r matches
I Agents k and r interact with probability equal to their cultural

similarity nkr/f
I The interaction consist of k copying one of the unmatched

features of agent r
I In this way, agent k approaches agent r ’s cultural interests

MOVIE

Page 14

Multi layer model of social networks

I Peaple have F social features with
q values each

I Ego first selects feature (s)he wants
to do some social action

I (S)he can do it only with people
with matching the specific feature

I Random connection, rare
I Triangles: common

I Link selection proportional to
weight

I Link establishment with some
probability and strengthening
participating links

I Link aging

ji

i

i

j

j

k

Page 15

Link aging

I Steady state
I Relationships fade with time
I Communication is an instantaneous strengthening

Page 16

Multilayer social model: egocentric networks
F

=
4,

q
=
7

F
=
4,

q
=
4

F
=
4,

q
=
20

F
=
4,

q
=
4

Page 17

Multilayer social model: Phase diagram

Page 18

http://yohm.github.io/p5js_simulations/wsn_homophily/
http://yohm.github.io/p5js_simulations/wsn_homophily/

Link prediction

I If next link can be predicted, we can guess dynamics
I If process is known, we can rebuild the network (e.g.

preferential attachment)
I Correct missing links in ICT data
I Important for companies

Page 19

Triadic closure
I Triadic closure: friends of friends get friends.
I Cyclic closure: firends at distance d get friends
I Focal closure: tie formation is related to social focus (interest,

work, etc.)

Page 20

Triadic closure in twitter
I Twitter data
I Middle size celebrity (104−5 · 104 followers)
I Closure: New follower had link to an existing follower

Comedian, TV Presenter, Actor, Musician, Filmmaker, Actor
Page 21

Link prediction

I Given a social network structure can we predict, which links
will be formed in the future?

I Recommendation systems: If costumer A has chosen items
x,y,z what shall we recommend?

I How to uncover a criminal network from sparse data?
I How to reconstruct the network if only partial information is

awailable?

Page 22

Supervised learning

I Artificial neural network
I Use data to teach and test
I Useful for companies, can always be updated with new data
I Black box, does not help to recover important features

Page 23

Measures
I Given two nodes
I Define a measure
I The links with the highest measure will have the largest

probability to appear
I Let us visit the zoo of measures!

Page 24

Common neighbors

I Local
I Graph distance
I Common neighbors (CN)
I Jaccard (JC)
I Adamic-Adar (AA)
I Preferential attachment (PA)

I Global
I Katz score
I Hitting time
I PageRank

x

y

Page 25

Graph distance

I Length of the shortest path
I Negated, (or inverse) to give higher

score for better guesses
I Generally not very reliable, as it

starts with value of 2 and the value
of 3 is already around average value

I Cannot distinguish between the
second neighbors

x

y

GD = 2

Page 26

Common neighbors

I Number of common neighbors

CN = |Γ(x) ∩ Γ(y)|

I In spite of its simplicity surprisingly
accurate

I Use this if you have no better idea

x

y

CN = 3

Page 27

Jaccard’s coefficient

I Number of common neighbors
normalized by the number of total
neighbors

CN =
|Γ(x) ∩ Γ(y)|
|Γ(x) ∪ Γ(y)|

I Normalization does not necessarily
improve results especially if k is
large

I In most cases it is worse than
common neighbors

x

y

CN = 3/8

Page 28

Adamic/Adar

I Consider all common neighbors
I Weight common neighbors with low

degree higher
I The idea behind this is that a low

degree node, which connects both
are more likely to get connected

AA =
∑

z∈Γ(x)∩Γ(y)

1
log |Γ(z)|

I Generally the best performance

x

y

k=

k=

k=5

4

4

AA =
1

log(4)
+

1
log(4)

+
1

log(5)

Page 29

Preferential attachment

I Neighborhood size as feature value
I Rich gets richer

PA = |Γ(x)| · |Γ(y)|

I Far the worst
x

y

k=5

k=6

PA = 5 · 6 = 30

Page 30

Katzβ

I Consider all possible path between
x and y

I Sum them with penalty for longer
path

KS =
∑

p∈path(x ,y)

β|p|

where |p| is the length of the path
I β < 1, but generally
β ' O(10−2 − 10−4)

I Very small β is similar to common
neighbors because then only paths
of length contribute

x

y

x

y

β = 0.1

KS =3 · 0.13 + 4 · 0.14+

+ 5 · 0.15 +O(0.16)
(1)

Page 31

Katzβ

I Consider all possible path between x and y

I Sum them with penalty for longer path

KS =
∑

p∈path(x ,y)

β|p|

where |p| is the length of the path
I Generally excellent performance
I An O(N3) method
I It is equivalent to calculating

(I − βA)−1 − I

where A is the adjacency matrix, I the identity matrix

Page 32

Hitting time

I Start a random walker at x
I Measure the expected time it needs to reach y

I It is the hitting time

HT = −Hx ,y

I From mediocre to worst performance

Page 33

Commute time

I Symmetrized hitting time

HT = −Hx ,y − Hy ,x

I Much better, acceptable performance

Page 34

Normalized commute time

I Problem with hitting time that high degree nodes with high
stationary probability (π) get the walker fast irrespective of the
starting point

I Normalize with it

HT = −Hx ,yπy − Hy ,xπx

I Worse than unnormalized

Page 35

Rooted page rank

I Random walker starting from x

I With probability 1− α to goes on randomly
I With probability α it is reset to x

I Depending on α may achieve very good performance
I Equivalent to

RPR = (1− β)(I − βA · D−1)−1

where Dii = ki a diagonal matrix with the degrees

Page 36

SimRank

I Two objects are similar if they are similar to two similar objects
I Check all neighboring pairs and average similarity
I Similarity is defined in a recursive way

simRank(x , y) =

{
1 if x = y

γ
∑

a∈Γ(x)

∑
b∈Γ(y) simRank(a,b)

|Γ(x)|·|Γ(y)| otherwise

I Acceptable performance

Page 37

Reduced Adjacency matrix

I Approximate the Adjacency matrix with a lower rank matrix
I Choose a norm and k

I Identify the rank-k matrix the norm of which is closest to the
norm of A

I Calculate everything on this low rank matrix
I Especially common neighbors works nicely

Page 38

Link predictor comparison: Random prediction

Page 39

Link predictor comparison: Graph distance

Page 40

Link predictor comparison: Common neighbors

Page 41

Link predictor comparison: Table

Page 42

Recommendation
I Company based on data

I Social

Page 43

Recommendation: on action

Page 44

Recommendation: on surfing

Page 45

Recommendation: Problems

I A good recommender
I Show programming titles to a software engineer and baby toys

to a new mother.
I Don’t recommend items user already knows or would find

anyway.
I Expand user’s taste without offending or annoying him/her. . .

I Challenges
I Huge amounts of data, tens of millions of customers and

millions of distinct catalog items.
I Results are required to be returned in real time.
I New customers have limited information.
I Old customers can have a glut of information.
I Customer data is volatile.

Page 46

Similarity: User/Item

Page 47

Recommendation: similarity measures

Similarity based methods

User similarity

Here 𝑟𝑢 is the average rating of user 𝑢, 𝑠𝑢𝑣 is the user similarity matrix
and 𝜅 = 1/ 𝑣 |𝑠𝑢𝑣| the normalization factor.

Item similarity

Here 𝑠𝛼𝛽 is the item similarity and Γ𝑢 is the set of items evaluated by 𝑢.

Definition of similarity:
Can be defined
similarly for 𝑠𝛼𝛽

Page 48

User based recommendation

I Put users into clusters
I Recommend on actions in clusters
I Slow and bad performance
I Machine learning with model is generally the best and the

fastest

Page 49

