
Complex networks
Communities

János Török

Department of Theoretical Physics

April 24, 2020

Page 1



I Definition of a community?
I More connected to itself than to the rest

S. Fortunato, Phys. Rep. (2010)

Page 2



Communities: Classic view

I Disjunct communities
I Each node is assigned to a single community

Page 3



Communities: Classic view

I Overlapping communities
I A node can be part of different communiteis

Page 4



Communities: Classic view

I Hierarchical communities
I Different level of communities

Page 5



Strong communities

I Internal degree > extrenal degree for all member nodes
I Internal degree > extrenal degree to all other communities

Page 6



Weak communities

pin

pin

po

po

A B

I Internal degree of subgraph > extrenal degree

Page 7



Modern view

I Strong community: is a subgraph each of whose vertices has
a higher probability to be linked to every vertex of the
subgraph than to any other vertex of the graph.

I Weak community: is a subgraph such that the average edge
probability of each vertex with the other members of the group
exceeds the average edge probability of the vertex with the
vertices of any other group

Page 8



Alternative definitions

I Similarity, distance, e.g. hierarchical clustering
I Random walk, or diffusion (time spent in groups), e.g. infomap
I Presence of motifs, e.g. clique percolation
I Algorithms...

Page 9



Benchmarks

I Real network
I Known partition: (e.g. Zachary karate club)
I Metadata of a real network (e.g. orkut)

I Artificial benchmarks
I Stochastic block model (Girvan and Newman, with signle Pin

and Pout , and µ = kext/(kext + k int) as mixing parameter)
I Lancichinetti-Fortunato-Radicchi (LFR) Benchmark:

I Configuration model, with power law degree distribution
I Predefined community structure (originally power law

distribution)
I Node i has (1− µ)ki internal and µki external links, with µ

being the mixing parameter.

Page 10



Similarity measures

Let a11, (a00) be the number of nodes pairs (not) in the same
community in both partitions, a10, a01 be the number of nodes
pairs present only in one of the partitions:
I Rand index:

a11 + a00

a11 + a00 + a01 + a10

I Jaccard index
a11

a11 + a01 + a10

I Normalized mutual information (NMI)
I Omega index

Page 11



Similarity measures

I Rand index:
I Jaccard index
I Normalized mutual information (NMI):

Inorm =
2I (X ,Y )

H(X ) + H(Y )

where H(X ) = −
∑

x P(x) logP(x) Shannon entropy.
H(X ) = 0 for perfect clustering, and maximal for random
graph, and P(x) = nXx /n is the correctly assigned nodes in
cluster X , and I (X ,Y ) = H(X )− H(X |Y )

I Omega index

Page 12



Similarity measures

I Rand index:
I Jaccard index
I Normalized mutual information (NMI):
I Omega index

o(X ,Y ) =
2

n(n − 1)

∑
j

ajj

and
Ω(X ,Y ) =

o(X ,Y )− oe(X ,Y )

1− oe(X ,Y )

where oe(X ,Y ) is the expected value of o(X ,Y ) according to
a null model.

Page 13



Similarity measures: no uniqness

0.2 0.4 0.6 0.8

Mixing parameter µ

0.0

0.2

0.4

0.6

0.8

1.0

N
M

I

0.2 0.4 0.6 0.8

Mixing parameter µ

0.0

0.2

0.4

0.6

0.8

1.0

O
m

e
g
a

Ganxis

LinkCommunities

Page 14



Computation time

Page 15



Methods

I Infomap
I Girvan-Newman
I Link community

Page 16



Random Walks on Graphs

I Nodes in a community have higher probability for internal than
for external link.

I Random walker has a higher probability of remaining inside a
community than passing to an other.

I Use this feature for community detection.
I Infomap

Page 17



Infomap idea

I Take a (long) path of a random walker
I Encode it efficiently by giving unique address to each node
I Compress the encoding by assuming two level structure
I Give two level codes: Top ones (unique for each group), local

(can be the same in different groups). Ex:
I addresses in real life: Countries, Cities (there is also a

Budapest in the USA), Streets (you may find Main street in
many cities)

I domain names: .hu, .de; lower domains, e.g. notebook,
weather

Page 18



Huffman coding

I Compress data in the most efficient general way

Page 19



Huffman coding

1. Create a leaf node for each symbol and add it to the priority
queue.

2. While there is more than one node in the queue:
2.1 Remove the two nodes of highest priority (lowest probability)

from the queue
2.2 Create a new internal node with these two nodes as children

and with probability equal to the sum of the two nodes’
probabilities.

2.3 Add the new node to the queue.

3. The remaining node is the root node and the tree is complete.

Page 20



Huffman coding, vs. infomap

I Can a coding be more efficient than Huffman coding?
I If we know more about the data yes!
I Answer: Two level coding (Of course it would be stupid for

text)

Page 21



Sample random path and Huffman coding
Path length: 314 bits

Page 22



Sample random path and Huffman coding
Path length: 243 bits

Page 23



Infomap: Algorithm

I Start with Huffman coding
I Optimize coding to minimize the map equation:

L = qyH(Q) +
nc∑
i=1

pi�H(P i ),

where H(Q) is the frequency-weighted average length of
codewords for inter group jumps, H(P i ) is frequency-weighted
average length of codewords for group i .

I Implementation: Start with all nodes as different communities
I Merge them if L decreases

Page 24



Infomap

I One of the most popular
I Fast for large networks
I Relability is comparable to more complex methods

Page 25



Modularity
Global method
I eαβ percentage of edges between modules (clusters) α and β

probability edge is in module α is eαα
I aα percentage of edges with at least 1 end in module α

probability a random edge would fall into module α

23

1

I Modularity is

Q =
k∑

α=1

(eαα − a2
α)

I aα =
∑

β eαβ
I Try to maximize Q

Page 26



Modularity algorithm

I Rewrite Q:

Q =
1
2m

∑
i ,j∈same

[
Aij −

kikj
2m

]
2m =

∑
i ki

I Only two modules
I si = ±1: 1 if node i is in module 1; -1 otherwise

Q =
1
4m

∑
{i ,j}

[
Aij −

kikj
2m

]
(si sj + 1)

I +1 is a constant can be omitted
I Change the vector si to maximize Q

Page 27



Modularity algorithm

Q =
1
4m

∑
{i ,j}

[
Aij −

kikj
2m

]
si sj

I Try to find ±1 vector si that maximizes the modularity.
I Start with two groups
I Then split one of the two groups using the same technique
I Very similar to spin glass Hamiltonian
I Generally a np-complete problem, we can use the same

techniques.
I Often steepest descent is used, (greedy method): change the

site that would increase the modularity the most.

Page 28



iWiW vs. counties: aggregate connections between cities

Page 29



Problems with modularity
Resolution

Q =
1
4m

∑
{i ,j}

[
Aij −

kikj
2m

]
si sj

I On large networks normalization factor m can be very large
I (It relies on random network model)
I The expected edge between modules decreases and drops

below 1
I A single link is a strong connection.
I Small modules will not be found

Page 30



Girvan-Newman method

I Hyerarchical method
I Global decisive procedure
I Based on centrality
I Cut the edge with highest centrality
I Recalculate centrality after each cut

Page 31



Centrality

Business as usual

(A) Betweenness
centrality

(B) Closeness
centrality

(C) Eigenvector
centrality

(D) Degree centrality
(E) Harmonic

Centrality
(F) Katz centrality

Page 32



Girvan-Newman method: example

Page 33



Girvan-Newman method: where to cut

I Girvan-Newman: Modularity
I Community structure almos always hierarchical

I Kinship: family, grandparents, cousins, etc.
I Social contacts: e.g. School, year, class, friends in the class

Page 34



Girvan-Newman example: Zakhary

Page 35



Link hierarchical method
I Aka: Link communities, Ahn method
I Nodes may belong to multiple communities
I Cluster links not nodes
I It is much rarer that a link is shared between two communities

(e.g. a relative is also a collegue, or a collegue is also a friend)

Page 36



Ahn method
I n+(i) number of neighbors of node i including itself
I Similarity measure

S [(i , k), (j , k)] =
|n+(i) ∩ n+(j)|
|n+(i) ∪ n+(j)|

Page 37



Ahn method
I Calculate link distances
I Merge clusters using single-linkage (minimal distance between

two clusters)
I Cut the dendrogram according to average link density of the

clusters

Page 38



Ahn method
I Calculate link distances
I Merge clusters using single-linkage (minimal distance between

two clusters)
I Cut the dendrogram according to average link density of the

clusters

Page 39



Ahn method
I Good for social networks

Page 40



Clique percolation

I Motivation: clusters are formed with at least triangles
I Can be generalized to any k-clique

I k = 2 normal percolation

Page 41



Clique percolation

I It will definitely lead to overlapping communities, but overlap
is limited to k − 1 nodes

I k-clusters are included in k − 1 clusters

Page 42



Clique percolation

I Algorithm
I Similar to normal percolation on networks but with multiple

loops
I Advantages

I Different level of clusters
I Clusters are generally relevant
I No heuristics

I Disadvantages
I Running time cannot be guessed (finding the maximal clique is

an np-complete problem)
I Code may run for ages

Page 43



Comparison
Layout Ahn (biggest first)

Infomap Modularity (greedy)
Page 44



Comparison
Clique3 Clique4

Clique5 Clique6
Page 45



Comparison
Ahn Infomap

Modularity Clique 6
Page 46



Comparison: Newman-Girvan
Layer 0 Layer 1

Layer 5 Layer 10
Page 47



Comparison
Infomap Modularity (greedy)

Clique 6 Newman-Girvan layer 10
Page 48



Dynamical networks
I Almost all networks evolve in time
I How is the dynamics related to the structure?
I Let us study a random walker:

Page 49



Dynamical networks

I Let P(C , t) e the probability that a walker is in community C
at time 0 and t.

I Partition stability measure:

R =
∑
C

[P(C , t)− P(C ,∞)]

I P(C ,∞) is the probability to find two independent random
walkers in the same community

Page 50



Dynamical networks: Stability of partitions

I Let P(C , t) e the probability that a walker is in community C
at time 0 and t.

I Partition stability measure:

R(t) =
∑
C

[P(C , t)− P(C ,∞)]

I P(C ,∞) is the probability to find two independent random
walkers in the same community

I If the partition is stable R(t) decays slowly
I It can be used as a resolution parameter

Page 51



Dynamical networks: Stability of partitions

I Use an undirected graph
I Define a discrete random walk
I On a given node i the density of the random walkers is

pi (t + 1) =
∑
j

Aji

kout
j

pj(t)

with kout
j =

∑
i Aji

I For unweighted, undirected network Aij = Aji is the adjacency
matrix

I The stationary density is

p∗i =
ki
2L

Page 52



Dynamical networks: Stability of partitions

I The probability that a walker is in community C is∑
j∈C

kj
2L

I The probability of a random walker to be in C during two
successive time steps is ∑

i ,j∈C

Aij

kj

kj
2L

I The stability at time t = 1:

R(t=1) =
∑
C

∑
i ,j∈C

[
Aij

kj

kj
2L
− ki

2L
kj
2L

]
= Q

Page 53



Dynamical networks: Stability of partitions

I The stability at time t = 1:

R(t=1) =
∑
C

∑
i ,j∈C

[
Aij

kj

kj
2L
− ki

2L
kj
2L

]
= Q

I New, independent introduction of modularity
I assumption of the configuration model as null model naturally

appears
I For weighted network R(t=1) takes a different form

Page 54



Dynamical networks: Limits of R(t)
I Continuous timescale, with Bij = Aij/kj :

ṗi (t) =
∑
j

Aij

kj
pj − pi

ṗ(t) = (B-I)p(t)

I Solution is an exponential

p(t) = e(B−I )tp(0)

R(t) =
∑
C

∑
i ,j∈C

[
e(B-I)t kj

2L
− ki

2L
kj
2L

]
I For t=0

R(t) = 1−
∑
C

∑
i ,j∈C

ki
2L

kj
2L

I Maximum with every node as separate community
Page 55



Dynamical networks: Limits of R(t)
I For t=0

R(t) = 1−
∑
C

∑
i ,j∈C

ki
2L

kj
2L

I Maximum with every node as separate community
I For larger times two communities

Page 56



Temporal communities

I Communities come and go
I Merge and split
I Connections fade and strengthen

Page 57



Temporal data

Page 58



Temporal data

I Slices in time s
I Aijs coupling between nodes
I Cjrs coupling between slices

Page 59



Temporal data

I Slices in time s

I Aijs coupling between nodes
I Cjrs coupling between slices
I kjs =

∑
i Aijs

I cjs =
∑

r Cjrs

I κjs = kjs + cjs
I New quality function:

Q(t) =
1
2µ

∑
ijsr

{(
Ai js − γs

kiskjs
2ms

)
δsr + δijCjsr

}
δ(gis , gjr )

I where γs is the resolution parameter

Page 60



Temporal data: Examples

Page 61



Temporal data: Examples

Page 62



Temporal data: Examples

Page 63


