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Diffusion on networks

I Random walk
I On lattices we know how it works.
I In what sense will it be different?
I What are the relevant measure for the probability distribution

of the walker?
I Why is it important?
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Diffusion on one dimensional lattice

I Master equation, lattice and arbitrary coordinates:

P(i , t + 1) =P(i , t) +
1
2
P(i − 1, t) +

1
2
P(i + 1, t)︸ ︷︷ ︸

gain

−P(i , t)︸ ︷︷ ︸
loss

P(x , t + ∆t) =P(x , t)+

+ D
∆t

∆x2 [P(x −∆x , t)− 2P(x , t) + P(x + ∆x , t)]

I Continuum limit: diffusion equation

∂P(x , t)

∂t
= D

∂2P(x , t)

∂x2

I Solution
P(x , t) =

1√
4πDt

e−
x2
4Dt
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Diffusion on one dimensional lattice

I Continuum limit: diffusion equation

∂P(x , t)

∂t
= D

∂2P(x , t)

∂x2

I Solution
P(x , t) =

1√
4πDt

e−
x2
4Dt

I Moments of the coordinate

〈x〉 =

∫ ∞
−∞

xP(x , t)dx = 0

〈x2〉 =

∫ ∞
−∞

x2P(x , t)dx = 2Dt
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Random walk on lattice

I Moments of the coordinate

〈x〉 =

∫ ∞
−∞

xP(x , t)dx = 0

〈x2〉 =

∫ ∞
−∞

x2P(x , t)dx = 2Dt

I Probability to return to origin (Pólya theorem):

d pret
1 1
2 1
3 0.34
4 0.19
5 0.145
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Random walk on lattice

I Expected number of distinct sites visited by the random walk

d Dt

1 ∼
√
t

2 ∼ t/ log t
3 ≤ d ∼ t

I The trail of the random walk is a fractal with fractal dimension
d = 2

I In d = 1 the trail is self-overlapping
I In d = 2 it gradually fills the space
I In d > 4 the walk does not cross itself
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Random walk on graphs

I Distance is not as important of a quantity as in lattices
I Important quantities:

I Number of visited distinct sites
I Probability of return
I Probability of finding the walker on a given node
I Probability from going one node to the other
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Random walk on Watts-Strogatz graph

I p = 0 We have a one dimensional lattice
I p = 1 Random network is similar to trees upon trees, always

new regions are explored
I Interesting regime 0 < p � 1:

I Characteristic distance between two crosslink ending: ξ ∼ 1/p
I One dimensional system up to tξ ∼ ξ2
I Infinite dimension afterwards
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Random walk on Watts-Strogatz graph
I Interesting regime 0 < p � 1:
I Characteristic distance between two crosslink ending: ξ ∼ 1/p
I One dimensional system up to tξ ∼ ξ2
I Infinite dimension afterwards
I Number of visited distinct sites:

Dt =
√
tf (t/tξ) =

√
tf (tp2)

f (x) =

{
const if x � 1
√
x if x � 1
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Random walk on graphs
I Let r be the rate of leaving a site
I The walker at node i

I Moves randomly to any neighbour, with the same probability
I Nodes are characterized by their degree ki
I In order to land on a node with degree k from a node with

degree k ′ the latter must have a neighbour with degree k

I The probability of going from a node with degree k ′ to a node
with degree k is P(k ′|k)/k ′, where the latter is the probability
of a node with degree k ′ have a neighbour with degree k
(assortativity)

I Master equation (nk(t) number of walkers on nodes with
degree k)

∂nk(t)

∂t
= −rnk(t) + rk

∑
k ′

P(k ′|k)nk ′(t)/k ′
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Random walk on graphs

I Master equation (nk(t) number of walkers on nodes with
degree k)

∂nk(t)

∂t
= −rnk(t) + rk

∑
k ′

P(k ′|k)nk ′(t)/k ′

I The first term is the loss term: walkers leave with rate r
I The gain term is proportional to

I Walking rate
I The degree of the node k (walkers may come in through k

links)
I The probability that it comes from a node with degree k ′
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Random walk on graphs

I Master equation (nk(t) number of walkers on nodes with
degree k)

∂nk(t)

∂t
= −rnk(t) + rk

∑
k ′

P(k ′|k)nk ′(t)/k ′

I For uncorrelated networks we have

P(k ′|k) =
k ′P(k ′)

〈k〉

I Which leads to

∂nk(t)

∂t
= −rnk(t) + r

k

〈k〉
∑
k ′

nk ′(t)

Page 12



Random walk on graphs

I Master equation on uncorrelated graphs

∂nk(t)

∂t
= −rnk(t) + r

k

〈k〉
∑
k ′

nk ′(t)

I The stationary solution (left hand side vanishes):

nk =
k

〈k〉
n

N
,

where n is the number of walkers. Or with probability

pk =
k

〈k〉
1
N
,

where pk is the probability of finding the walker at a node with
degree k
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Random walk on graphs

I The probability of finding the walker at a node with degree k

pk =
k

〈k〉
1
N
,

I It is more likely to find the walkers at hubs than in a dead end
I There are more drunk people at Deák tér and at Nyugati than

e.g. at Gárdonyi tér.
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Diffusion equation on graphs

I Recall diffusion equation on 1d lattice:

Φ(x , t+∆t) = Φ(x , t)+D∆t[Φ(x−∆x , t)−2Φ(x , t)+Φ(x+∆x , t)]

I Which can be rewritten as

Φ(x , t + ∆t) = Φ(x , t) + dtDLΦ(x , t),

where

LΦ(x , t) =
∑

dx∈±∆x

Φ(x + dx)− Φ(x)
∑

dx∈±∆x

1

I Multiple dimensions:

LΦ(r, t) =
∑

dr∈nn.
Φ(r + dr)− Φ(r)

∑
dr∈nn.

1
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Diffusion equation on graphs

I Diffusion equation on lattices

LΦ(r, t) =
∑

dr∈nn.
Φ(r + dr)− Φ(r)

∑
dr∈nn.

1
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Diffusion equation on graphs
I Diffusion equation on lattices

LΦ(r, t) =
∑

dr∈nn.
Φ(r + dr)− Φ(r)

∑
dr∈nn.

1

I Laplace matrix has 1 values where the adjacency matrix would
also be 1 and apart from the diagonal is zero where the
adjacency matrix would be 0

I The diagonal is minus the degree of the node.
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Diffusion equation on graphs

I Diffusion equation on lattices

LΦ(r, t) =
∑

dr∈nn.
Φ(r + dr)− Φ(r)

∑
dr∈nn.

1

I Generalization to graphs

Lij = Aij − kiδij

I Valid also for directed graphs:
I Not symmetric
I In diagonal kout

i
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Spectral analysis
I Diffusion operator on graphs

Lij = Aij − kiδij

I Spectral analysis ∑
j

Lijuj = λiui

I Larges eigenvalue: 0, Eigenvector: (1, 1, 1, . . . ) with
multiplicity equals to the number of connected components

I Second largest eigenvalue shows how difficult it is to split the
graph into two large pieces. (How easy it is to reach all parts
of the network)

λ(2) = −n for an n-clique
λ(2) = −1 for a star
λ(2) = −2 + 2 cos(π/N) for an n-chain

I The last one goes to zero for N →∞
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Spectral analysis of the diffusion operator
I Diffusion equation on graph
I Initial condition: walker on node i0 at t=0
I Probability to be at node i at time t

∂p(i , t|i0, 0)

∂t
=
∑
j

Lijp(j , t|i0, 0)

I Eigenvalue distribution (average them over all node):

ρ(λ) =

〈
1
N

N∑
i=1

δ(λ− λ(i))

〉

I Laplace transform:

p̃i ,i0(s) =

∫ ∞
0

e−stp(i , t|i0, 0)dt
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Spectral analysis of the diffusion operator

I Diffusion equation on graph

∂p(i , t|i0, 0)

∂t
=
∑
j

Lijp(j , t|i0, 0)

I Laplace transform:

p̃i ,i0(s) =

∫ ∞
0

e−stp(i , t|i0, 0)dt

I From the diffusion equation

sp̃i ,i0 − δi ,i0 =
∑
j

Lij p̃j ,i0

I f ′(t) → Laplace transform → sF (s)− f (0+)

Page 21



Spectral analysis of the diffusion operator

I Laplace transform:

p̃i ,i0(s) =

∫ ∞
0

e−stp(i , t|i0, 0)dt

I From the diffusion equation

sp̃i ,i0 − δi ,i0 =
∑
j

Lij p̃j ,i0

I From where ∑
j

(sδi ,j − Lij)p̃j ,i0 = δi ,i0

Page 22



Spectral analysis of the diffusion operator

I Probability to return to the origin

p0(t) =

〈
1
N

∑
i0

p(i0, t|i0, 0)

〉

I Laplace transform

p̃0(s) =

〈
1
N

∑
i0

p̃(i0, t|i0, 0)

〉
=

〈
1
N

Trp̃(i0, t|i0, 0)

〉
=

=

〈
1
N

Tr (sδij − Lij)
−1
〉

=

〈
1
N

∑
i

1
s − λ(i)

〉
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Spectral analysis of the diffusion operator
I Probability to return to the origin

p0(t) =

〈
1
N

∑
i0

p(i0, t|i0, 0)

〉

I Laplace transform

p̃0(s) =

〈
1
N

∑
i0

p̃(i0, t|i0, 0)

〉
=

〈
1
N

∑
i

1
s − λ(i)

〉

I Transfer back

p0(t) =

∫
ets
〈

1
s − λ(i)

〉
ds =

〈
1
N

∑
i

eλ
(i)t

〉

p0(t) =

∫ 0

−∞
etλρ(λ)dλ
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Spectral analysis of the diffusion operator

I Probability to return to the origin

p0(t) =

∫ 0

−∞
etλρ(λ)dλ

I The shape of the spectrum thus determines the return
probability

I Example: Watts-Strogatz small world

p0(t)− p0(∞) ∼

{
t−d/2 if t � tξ

exp
(
−(p2t)1/3) if t � tξ

I The spectrum of the Laplacian is related also to the
community structure of the network

I The largest eigenvalue describes the stationary state.
I The second largest is related to processes longest time scales.
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Transition probability
I Transition probability from node i to j .
I We can exit node i an any of its link
I We can enter node j only of there is a connection

Pij =
Aij

ki

I The probability of going from i to j in t steps is:

Pi→j(t) =
∑
k

Pik

∑
l

Pkl

∑
m

Plm · · ·
∑
v

PsvPvj =
(
Pt
)
ij

I Pt is the tth power of the P matrix
I Distance measure

rij(t) =

√√√√ N∑
l=1

(Pt
il − Pt

jl)
2

kl
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Hierarchical clustering
1. Define a norm between nodes d(a, b)

2. At the beginning each node is a separate cluster
3. Merge the two closest clusters into one
4. Repeat 3.

Norm between clusters ||A− B||
I Maximum or complete linkage clustering:

max{d(a, b) : a ∈ A, b ∈ B}

I Minimum or single-linkage clustering:

min{d(a, b) : a ∈ A, b ∈ B}

I Mean or average linkage clustering:

1
||A|| ||B||

∑
a∈A

∑
b∈B

d(a, b)
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Hierarchical clustering
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Hierarchical clustering, using transfer distance
I t = 3
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Random Walks on Graphs

I Nodes in a community have higher probability for internal than
for external link.

I Random walker has a higher probability of remaining inside a
community than passing to an other.

I Use this feature for community detection.
I Infomap
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Infomap idea

I Take a (long) path of a random walker
I Encode it efficiently by giving unique address to each node
I Compress the encoding by assuming two level structure
I Give two level codes: Top ones (unique for each group), local

(can be the same in different groups). Ex:
I addresses in real life: Countries, Cities (there is also a

Budapest in the USA), Streets (you may find Main street in
many cities)

I domain names: .hu, .de; lower domains, e.g. notebook,
weather
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Huffman coding

I Compress data in the most efficient general way
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Huffman coding

1. Create a leaf node for each symbol and add it to the priority
queue.

2. While there is more than one node in the queue:
2.1 Remove the two nodes of highest priority (lowest probability)

from the queue
2.2 Create a new internal node with these two nodes as children

and with probability equal to the sum of the two nodes’
probabilities.

2.3 Add the new node to the queue.

3. The remaining node is the root node and the tree is complete.
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Huffman coding, vs. infomap

I Can a coding be more efficient than Huffman coding?
I If we know more about the data yes!
I Answer: Two level coding (Of course it would be stupid for

text)
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Sample random path and Huffman coding
Path length: 314 bits
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Sample random path and Huffman coding
Path length: 243 bits
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Infomap: Algorithm

I Start with Huffman coding
I Optimize coding to minimize the map equation:

L = qyH(Q) +
nc∑
i=1

pi�H(P i ),

where H(Q) is the frequency-weighted average length of
codewords for inter group jumps, H(P i ) is frequency-weighted
average length of codewords for group i .

I Implementation: Start with all nodes as different communities
I Merge them if L decreases
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Infomap

I One of the most popular
I Fast for large networks
I Reliability is comparable to more complex methods
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Girvan-Newman method

I Hierarchical method
I Global decisive procedure
I Based on centrality
I Cut the edge with highest centrality
I Recalculate centrality after each cut
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Centrality

Business as usual

(A) Betweenness
centrality

(B) Closeness
centrality

(C) Eigenvector
centrality

(D) Degree centrality
(E) Harmonic

Centrality
(F) Katz centrality
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Betweenness Centrality

I Fraction of shortest path going through the node

g(v)
∑

s 6=v 6=t

σst(v)

σst

I σst number of shortest path from s to t

I σst number of shortest path from s to t which pass through v

Page 41



Closeness Centrality

I Reciprocal of the average distance to x

C (x) =
1∑

y d(y , x)
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Eigenvector Centrality

I Iterative equation, for xv the centrality of node v :

xv =
1
λ

∑
t∈nn(v)

xt =
1
λ

∑
t∈G

Avtxt

I This is a eigenvalue equation for x and λ

Ax = λx

I We use the largest eigenvalue for λ
I It is related to the Page rank
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Page rank

I Do what surfers do
I Random walk on pages, but sometimes (bored), with

probability q a new (random) restart position
I Dumping factor d = 1− q (general choice d = 0.85).
I Self-consistent, equation:

PR(i) =
q

N
− (1− q)

∑
j

Aij
PR(j)

kout,j

I Solution: iteration
I Result: Favours sites which are linked by many (reliable

sources)
I The second part of PR is a result of random walk
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Page rank example
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Page rank
I Self-consistent, equation:

PR(i) =
1− d

N
− d

∑
j

Aij
PR(j)

kout,j

I Matrix notation

R(t + 1) = dMR(t) +
1− d

N
1

I where

Mij =

{
1/koutj if Aji = 1
0 otherwise

I With Kij = δijk
out
i

M = (K−1A)T

I Solution is given by

R = (I− dM)−1 1− d

N
1
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Degree Centrality

I Ci = ki

Page 47



Harmonic Centrality

I Closeness centrality

Cc(x) =
1∑

y d(y , x)

I Harmonic centrality

Ch(x) =
∑
y 6=x

1
d(y , x)

I with 1/d(x , y) ≡ 0 if there are no links between x and y
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Katz Centrality

I A
(l)
ij indicates that nodes i and J are connected with a walk of

length l .

Ck(i) =
∞∑
k=1

∞∑
j=1

αkA
(l)
ij

I Vector form

Ck =

[(
I− αAT

)−1
− I
]
1
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Girvan-Newman method

I Top down hierarchical method
I Algorithm

1. Calculate all betweenness for all edges
2. Edge(s) with the highest betweenness are removed
3. Go back to step 1
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Girvan-Newman method: example
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Girvan-Newman method: where to cut

I Girvan-Newman: Modularity
I Community structure almost always hierarchical

I Kinship: family, grandparents, cousins, etc.
I Social contacts: e.g. School, year, class, friends in the class
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Girvan-Newman example: Zakhary
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