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Growing networks

» Simulate real life

» Use minimal elements

» Do not incorporate effect what one wants to recover

» Example: simulate social network (modular)
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Growth models

» Barabasi-Albert model: Simple growth mechanism, preferential
attachment, model for Internet

» More complicated systems?

» Two versions of a simple model for social networks
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Social networks

» Human relation
» Very complicated dynamics
» Not really a growth model, more a dynamics steady state

» Observations:
» Weighted network
» Large clustering coefficient (friend of friends usually know each
other)
> Not scale free
Small world
Granovetter: Strength of the weak ties

vy
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Granovetter: Strength of the weak ties

» Human groups are strongly connected

» There are weak connections connecting the groups
» These weak connections mean sproadic meeting

» Important for information flow

» Example: Find a job
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Kumpula model

» N nodes (originally unconnected)

» (a) Randomly meet someone (low probability) global
attachment

» (b) Two friends of someone get to know each other, cyclic
closure

» (c) An already present triangle gets strengthened
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Kumpula model

» N nodes (originally unconnected)
» (a) (with prob. p,) random link to an unconnected node. Link
weight wy
» (with prob. py) i selects friend j with prob. proportional to the
link weight. j selects friend k similarly. Both links are
strengthened by J. Two cases:
» (b) There is no link between i and k: create a link with pa
with weight wy
» (c) There is a link between i and k: strengthen by &
» (d) (with prob. py) clear the links of a node (enforce steady
state, there are more realistic versions)
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Kumpula

model: results (0 =0, 0.1, 0.5, 1.0)



http://yohm.github.io/p5js_simulations/wsn/

Kumpula model: results

FIG. 3: Ry—4 (O) and {n,) (A) as a function of 4. Results
are averaged over 10 realizations of N = 5 x 10* networks.
Error bars are measured standard deviations.
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Kumpula model: results
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FIG. 3: Ry—4 (O) and {n,} (A) as a function of §. Results
are averaged over 10 realizations of N = 5 x 10" networks.
Error bars are measured standard deviations.
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Kumpula model: results

» Very simple assumptions
» Emergence of community structure (depending on parameters)

» Good to test effects of elementary processes on global
structure

» Not apt for recovering well defined structures
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Multiplex networks: Social networks
Communication channel
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Social context




Axelrod model of dissemination of culture

Each individual is endowed with a certain culture
They have cultural needs and preferencies therein
An individual's culture is characterised by a list of F features

Each feature has g different traits

vVvyyvyVvyy

Assumptions
» people are more likely to interact with others who share many
of their cultural attributes
» these interactions tend to increase the number of cultural
attributes they share (thus making them more likely to interact
again).

Axelrod 1997
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Axelrod model of dissemination of culture
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> Model

>
>

>

MOVIE

One agent k (active) is selected at random.

One of agent k's neighbours, denoted agent r (passive), is
selected at random.

nk number of features in which agents k and r matches
Agents k and r interact with probability equal to their cultural
similarity ng,/f

The interaction consist of k copying one of the unmatched
features of agent r

In this way, agent k approaches agent r's cultural interests



Multi layer model of social networks

» Peaple have F social features with I:I
q values each

» Ego first selects feature (s)he wants @ ---@

to do some social action l J

» (S)he can do it only with people
with matching the specific feature @ ----@
» Random connection, rare i K J
» Triangles: common
» Link selection proportional to ’
weight
» Link establishment with some
probability and strengthening i j
participating links !
» Link aging N
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Link aging

> Steady state
> Relationships fade with time
» Communication is an instantaneous strengthening

something

© 1500 Time (days)
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Multilayer social model: egocentric networks

N ?ﬁﬂ 4
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Multilayer social model: Phase diagram
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http://yohm.github.io/p5js_simulations/wsn_homophily/
http://yohm.github.io/p5js_simulations/wsn_homophily/

Link prediction
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> If next link can be predicted, we can guess dynamics

» If process is known, we can rebuild the network (e.g.
preferential attachment)

» Correct missing links in ICT data

» Important for companies



Triadic closure

» Triadic closure: friends of friends get friends.
» Cyclic closure: firends at distance d get friends
» Focal closure: tie formation is related to social focus (interest,

work, etc.)
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Triadic closure in twitter

» Twitter data
» Middle size celebrity (10*—5 - 10* followers)
» Closure: New follower had link to an existing follower
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Link prediction

» Given a social network structure can we predict, which links
will be formed in the future?

» Recommendation systems: If costumer A has chosen items
x,y,z what shall we recommend?

» How to uncover a criminal network from sparse data?

> How to reconstruct the network if only partial information is
awailable?
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Supervised learning

» Artificial neural network
» Use data to teach and test
» Useful for companies, can always be updated with new data

» Black box, does not help to recover important features
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Measures

» Given two nodes

» Define a measure

» The links with the highest measure will have the largest
probability to appear

P Let us visit the zoo of measures!
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Common neighbors

» Local
» Graph distance
» Common neighbors (CN)
» Jaccard (JC)
» Adamic-Adar (AA)
> Preferential attachment (PA)

» Global

» Katz score
» Hitting time
» PageRank
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Graph distance

» Length of the shortest path

» Negated, (or inverse) to give higher
score for better guesses

» Generally not very reliable, as it
starts with value of 2 and the value
of 3 is already around average value

» Cannot distinguish between the
second neighbors
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Common neighbors

» Number of common neighbors
CN = [I(x) N T(y)|

> In spite of its simplicity surprisingly
accurate

» Use this if you have no better idea
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Jaccard’s coefficient

» Number of common neighbors
normalized by the number of total
neighbors

I r

oy M nro)
r)ur(y)l

» Normalization does not necessarily

improve results especially if k is
large

» In most cases it is worse than
common neighbors
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Adamic/Adar

» Consider all common neighbors

» Weight common neighbors with low
degree higher

» The idea behind this is that a low
degree node, which connects both
are more likely to get connected

1
AA= Y ——
zel (x)N(y) |Og ’r(z)’

» Generally the best performance
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Preferential attachment

» Neighborhood size as feature value

» Rich gets richer

PA= T - T(y)]

» Far the worst

PA=5-6=30
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Katz/g
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» Consider all possible path between
x and y

» Sum them with penalty for longer
path

KS = Z lel

pEpath(x,y)

where |p| is the length of the path
> 5 < 1, but generally
B~ 0O(1072 — 107%)
» Very small 8 is similar to common
neighbors because then only paths
of length contribute

KS =3-0.13+4.01%+
+5-0.1° + 0(0.1°)
(1)



Katzg
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v

Consider all possible path between x and y

Sum them with penalty for longer path
KS = Z 5|p\
pEpath(x,y)

where |p| is the length of the path
Generally excellent performance
An O(N3) method

It is equivalent to calculating

(I —BA) L~

where A is the adjacency matrix, | the identity matrix



Hitting time

> Start a random walker at x
» Measure the expected time it needs to reach y
» |t is the hitting time

HT = —H,,

» From mediocre to worst performance
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Commute time

» Symmetrized hitting time
HT = —H., — H, «

» Much better, acceptable performance
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Normalized commute time

» Problem with hitting time that high degree nodes with high
stationary probability (7) get the walker fast irrespective of the
starting point

» Normalize with it
HT = —Hyx 7y, — Hy x7x

» Worse than unnormalized
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Rooted page rank

Random walker starting from x

With probability 1 — o to goes on randomly

>

>

» With probability « it is reset to x

» Depending on o may achieve very good performance
>

Equivalent to
RPR =(1-p3)(/ — BA-D™1)™1

where D;; = k; a diagonal matrix with the degrees
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SimRank
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» Two objects are similar if they are similar to two similar objects
» Check all neighboring pairs and average similarity
» Similarity is defined in a recursive way

ifx=y

1
simRank(x, y) = imRan
(x,y) { 2 aer(x) z|:rb(i3(\%|)rs(y)l\:ta k(2,b) otherwise

» Acceptable performance



Reduced Adjacency matrix
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v

Approximate the Adjacency matrix with a lower rank matrix
Choose a norm and k

Identify the rank-k matrix the norm of which is closest to the
norm of A

Calculate everything on this low rank matrix

Especially common neighbors works nicely



random predictor
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} graph-distance predictor
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Link predictor comparison: Common neighbors

common-neighbors predictor
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Link predictor comparison: Table

Predictor astro-ph  cond-mat gr-qc hep-ph hep-th
probability that a random prediction is correct 0.475% 0.147% 0.341% 0.207% 0.153%
graph distance (all distance-2 pairs) 9.4 25.1 213 12.0 29.0
common neighbors 18.0 40.8 27.1 26.9 46.9
preferential attachment 4.7 6.0 7.5 152 T4
Adamic/Adar 168 54 30.1 332 50.2
Jaccard 164 420 19.8 276 415
SimRank y=08 4.5 39.0 227 26.0 41.5
hitting time 6.4 237 24.9 3.8 133
hitting time—normed by stationary distribution 53 237 1.0 113 212
commute time 52 15.4 330 17.0 232
il -d by stati distribution 53 16.0 1.0 11.3 16.2
rooted PageRank a =001 10.8 27.8 330 187 29.1
a =005 13.8 39.6 352 245 411
a=0. 16.6 40.8 27.1 275 42.3
a 171 420 249 29.8 46.5
a 16.8 40.8 242 30.6 46.5
Katz (weighted) B =005 3.0 21.3 19.8 2.4 129
B 13.4 54 30.1 24.0 519
B 14.5 53.8 30.1 325 515
Katz (unweighted) B =005 109 414 374 187 47.7
B 168 d1.4 374 241 494
B 167 414 374 248 494
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Recommendation
» Company based on data

» Social
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Recommendation: on action
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Frequently Bought Together

% Price for both: $158.15
=
e

tem: Introduction to Data Mining by Pang-Ning Tan Hargcover $120.16

One of these tems ships sooner than the other. Show detais

@ Data Science for Business: What you need to know about data mining and data-analytic thinking by Foster Provost Paperback $37.99

Customers Who Bought This Item Also Bought

Data Science for Business: ~ Data Mining: Practical

Data Mining: Concepts and

What you need Machine Leaming Tools...  Techniques, Third
» Foster Provost » lan H. Witen > Jiawei Han
Frdedrdrfr 102 52 Frirey 28
1 Best Seller QY Paperback Hardcover

Mining $40.65 Prime $60.22 Prime
Paperback

$37.99 VPrime

» Samprit Chatterjee
AT o

Hardcover

$92.39 Prime

SAS Statistics by Example  Applied Logistic

Ron Cody
ARy 10
Perfect Paperback
$44.37 Prime

$62.33 Prime
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An Introduction to
Statistical Leaming
ot sames
e 56

n
Wethemateal  Satsicl
ardeover

$72.79 Prime

R
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Recommendation: on surfing

Introduction to Data Mining

$120.16 FREE Shipping. Temporarily out of stock. Order now and we'l deliver when available. We'll e-mail you w

What Other ltems Do Customers Buy After Viewing This Item?
“=#%5  Data Science for Business: What you need to know about data mining and data-analytic thinking Paperback
bk + Foster Provost
Wrrdrirr 102
$37.99 Prime

Introduction to Data Mining Paperback
Pang-ning Tan

Wrridrsror 4

Data Mining: Concepts and Techniques, Third Edition (The Morgan Kaufmann Series in Data Management Sy
» Jiawei Han

Wiy 28

$60.22 ~Prime

Data Mining: Practical Machine Leaming Tools and Techniques, Third Edition {The Morgan Kaufmann Series |
» lan H. Witten

sy 52

$40 65 ~/Prime
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Recommendation: Problems

» A good recommender

>

>

Show programming titles to a software engineer and baby toys
to a new mother.

Don't recommend items user already knows or would find
anyway.

» Expand user's taste without offending or annoying him/her. ..
» Challenges
» Huge amounts of data, tens of millions of customers and

vVvVyyvyy
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millions of distinct catalog items.

Results are required to be returned in real time.
New customers have limited information.

Old customers can have a glut of information.
Customer data is volatile.



Similarity: User/Item

User-based filtering
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Item-based filtering



Recommendation: similarity measures

Similarity based methods

User similarity
Tua =Ty + K E Suv(rva - fv)
UEUu

Here 73, is the average rating of user u, s,,,, is the user similarity matrix
and k = 1/ Y., |Syv| the normalization factor.

Item similarity

. 2per, SasTus

Twa = ~— 1
Zﬂeru [Sas]

Here s, is the item similarity and [, is the set of items evaluated by u.

Definition of similarity: Oy, = T'y N T,

cos __ Tz Ty Z(\/EO.“; (7'ua — fu)(rm — fv)

Szy sy =
Tel||T
‘ IH y| . \/Zaeouu (Tua - Fu)Z\/ZaEOM(Tm - fv)Q

Can be defined
similarly for sqp
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User based recommendation

» Put users into clusters
» Recommend on actions in clusters
» Slow and bad performance

» Machine learning with model is generally the best and the
fastest

predictiontime (sec.) 31 1 3

MAE 0.6688 0.6736 0.6382
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