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Percolation on networks (graphs)

I Network is defined by nodes and links
I Percolation gives us connected components
I Link removal percolation gives information about robustness,

and structure
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Percolation and attack on random networks
I Failure: equivalent to percolation: remove nodes at random
I Attack: remove most connected nodes
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Error vs. attacks
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Percolation and attack on random networks
I Failure: equivalent to percolation: remove nodes at random
I Attack: remove most connected nodes
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Robustness
I Link/node removal percolation
I Here: random, and largest first
I There is also weakest first
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Link removal percolation on networks
I Granovetter hypothesis: The strength of the weak ties
I Human communities have strong connections
I These communities are connected with weak ties
I Test the structures with Link removal percolation
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Link removal percolation on networks
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Robustness
I Design networks to be optimal for both types of failures
I f rand

c random percolation threshold
I f targ

c strongest first percolation threshold
I f tot

c = f rand
c + f targ

c against both (Arrghhhhhh.???)
I Scale free with exponent here λ
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Robustness

I Composition of two power laws, with λ = 2.5 for k > a, and α
for k < a.

I Fast decay for small degrees and power law afterwards
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Robustness
I Composition of two power laws, with λ = 2.5 for k > a, and α

for k < a.
I Fast decay for small degrees and power law afterwards
I Solid line two Dirac deltas:
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Robustness
I Composition of two power laws, with λ = 2.5 for k > a, and
I Fast decay for small degrees and power law afterwards
I Solid line two Dirac deltas:
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Robustness against attacks

I Malicious attacks target central nodes, hubs
I Solution: central nodes should be connected
I Assortative mixing is preferred (high degree nodes are

connected between each other)
I (Barabasi-Albert is thus a bad example)
I Robustness measure:

R =
1
N

N∑
Q=1

s(Q)

I s(Q) fraction of nodes in the largest connected cluster after
removing Q = qN nodes

I Optimize for R
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Onion structures

I Robustness measure:

R =
1
N

N∑
Q=1

s(Q)

I s(Q) fraction of nodes in the largest connected cluster after
removing Q = qN nodes

I Optimize R by only rewiring and keeping degree distribution
constant

I Onion structures are the best
I Assortative
I Layers with similar degree nodes
I Inter-layer connections
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Onion structures
I Assortative
I Layers with similar degree nodes
I Inter-layer connections
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Château de Vincennes
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Optimization: costs
I Internet Autonomous system topology
I Providers can connect to the top tier or be a customer
I They are responsible for directing the Internet traffic
I Simple protocols define the routing (mainly greedy)
I Many optimizes the structure
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Flight route optimization
I Suppose weight of a link is defined as

wij = dij/tij

where dij is the distance, and tij is the traffic between two
cities

I When more paths are possible the most economical is used:

Cij = min
p∈P

∑
l∈p

wl

I Keep total traffic constant
I Function to be optimized is the average cost to pay to travel

from any node to any other

L =
2

N(N − 1)

∑
i<j

Cij
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Flight route optimization

I Check a small circle:
I Let us assume d1 = d(A,B) = d(B,C ) > d(A.C ) = d ′

I Cost function (T is the average traffic between two cities):

L1 =
2d + d ′

T

I Cut connection (B,C ). The new cost function

L2 =
d + d ′

2T
< L1

I The optimal path is a tree!
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Tree model
I If it is known that the network is a tree task is easier:

Lt =
∑
e∈T

be
de
te

where be is the link betweenness centrality
I The optimal traffic

te =
T
√
bede∑

e

√
bede

I The optimal traffic tree can then be obtained by minimizing

L =
∑
e∈T

√
bede

I More generally
L =

∑
e∈T

bµe d
ν
e

where µ and ν control the relative importance of distance
against topology as measured by centrality
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Optimal traffic on networks
I Exponential degree distribution
I Power law betweenness distribution
I Hierarchical organizations
I µ = ν = 0.5

Page 21



Optimal traffic on networks
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Spreading on networks

I One of the most important problems on networks
I Also one of the real success
I This lecture:

I Advanced mean-field calculations
I Cascade models
I Spreading in temporal networks
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Epidemic models: notations
I States:

I S: susceptible
I I: Infected
I R: Recovered (immune)
I E: Exposed (infected but not yet infecting)

I Rates: β, µ, η, γ
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SIR reality vs. model

I Perfect mixing
I Everybody can meet everybody
I Ebola
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SIR reality vs. model

I Perfect mixing
I Everybody can meet everybody
I Covid-19, South Korea
I Susceptible approximated
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SIS model: mean field

I Perfect mixing
I Everybody can meet everybody
I The different type meet with probability proportional to their

density
I Density of types:

ρα = Nα/N

I The mean field SIR equations:

dρI

dt
= βρIρS − µρI

dρS

dt
= −βρIρS + χρI

where χ = µ for SIS and χ = 0 for SIR.

Page 27



Epidemic threshold

I Linearization: ρI � 1, ρS ' 1

dρI

dt
' (β − µ)ρI

ρI (t) ' ρI (0) exp[(β − µ)t]

I Two regimes:
I β < µ: Disease dies out
I β > µ: Disease spreads

I Reproduction number: R0 = β/µ

I The epidemic threshold for perfectly mixing population is
R0 = 1 above which the epidemic spreads.
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SIR/SIS

I Above the epidemic threshold
I In SIS dynamics equilibrium
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SIS: Individual based mean field (IBMF)
I Markov chain approach
I Two state Xi = 1 for I and Xi = 0 for S .
I E [Xi (t)] expected value of Xi

I aij element of the adjacency matrix
I The Master equation:

dE [Xi (t)]

dt
= E

−µXi (t) + (1− Xi (t))β
∑
j

aijXj(t)


I Introducing λ = β/µ ant rescaling the time by 1/µ
I For static network:

dρIi (t)

dt
= −ρIi (t) + λ

∑
j

aijρ
I
j (t)− λ

∑
j

aijE [Xi (t)Xj(t)]

Pastor-Satorras et el., Epidemic processes in complex networks (2015)
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SIS: Individual based mean field (IBMF)
I Markov chain approach
I The Master equation for static network:

dρIi (t)

dt
= −ρIi (t) + λ

∑
j

aijρ
I
j (t)− λ

∑
j

aijE [Xi (t)Xj(t)]

I No explicit solution due to the two term correlations
E [Xi (t)Xj(t)].

I Joint probability distribution cannot be calculated
I Assumption: neighboring nodes are statistically independent:

E [Xi (t)Xj(t)] ≡ E [Xi (t)]E [Xj(t)] = ρIi (t)ρIj (t)

I The Master equation for the SIS model thus reads:

dρIi (t)

dt
= −ρIi (t) + λ[1− ρIi (t)]

∑
j

aijρ
I
j (t)
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SIS: Individual based mean field (IBMF)

I The Master equation for static network SIS model in the
independent neighbors limit:

dρIi (t)

dt
= −ρIi (t) + λ[1− ρIi (t)]

∑
j

aijρ
I
j (t)

I Loss term: probability that node i is infected times the rate of
recovery (hidden in the rescaled time)

I Gain term: probability that node i is susceptible, times the
total probability that any of its nearest neighbors is infected,
times the effective transmission rate λ = β/µ
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SIS: Individual based mean field (IBMF)
I The Master equation for static network SIS model in the

independent neighbors limit:

dρIi (t)

dt
= −ρIi (t) + λ[1− ρIi (t)]

∑
j

aijρ
I
j (t)

I Linear stability analysis

dρIi (t)

dt
' −ρIi (t) + λ

∑
j

aijρ
I
j (t) =

∑
j

Jijρ
I
j (t)

with Jij = −δij + λaij
I An endemic state occurs when Λ1 the largest eigenvalue of J is

positive.
I The epidemic threshold is thus:

λ > λIBMF
c ≡ 1

Λ1
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SIS: Individual based mean field (IBMF)

I For networks with power law degree distribution P(k) ∼ k−γ

I Largest eigenvalue:

Λ1 = min(
√
kmax, 〈k2〉/〈k〉)

I The epidemic threshold:

λIBMF
c =

{
1√
kmax

if γ ≥ 5/2
〈k〉
〈k2〉 if 2 < γ < 5/2

I In both cases limN→∞ λ
IBMF
c = 0

I Numerically the threshold is at the maximum of

χ = N
〈ρI 2〉 − 〈ρI 〉2

〈ρI 〉
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SIS: Individual based mean field (IBMF)
I The epidemic threshold:

λIBMF
c =

{
1√
kmax

if γ ≥ 5/2
〈k〉
〈k2〉 if 2 < γ < 5/2

Page 35



SIS: Degree based mean field (DBMF)

I All nodes with the same degree are statistically equivalent.
I Number of equations kmax

I Conditional probabilities: P(k ′|k) probability that a node with
degree k is connected to a node of degree k ′

I P(k ′|k) is the same for all k degree nodes.
I In the case of uncorrelated networks:

P(k ′|k) =
k ′P(k ′)

〈k〉
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SIS: Degree based mean field (DBMF)

I ρIk(t) is the probability that a node of degree k is infected at
time t

I Master equation:

dρIk(t)

dt
= −ρIk(t) + λk[1− ρIk(t)]

∑
k ′

P(k ′|k)ρIk ′(t)

I Note that the factor k in the gain term is for the number of
links the node of degree k has with that chance to get infected

I Linearized version

dρIk(t)

dt
' −ρIk(t) + λk

∑
k ′

P(k ′|k)ρIk ′(t) =
∑
k ′

Jkk ′ρIk ′(t)

I With
Jkk ′ = −δkk ′ + λkP(k ′|k)
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SIS: Degree based mean field (DBMF)

I Linearized version

dρIk(t)

dt
' −ρIk(t) + λk

∑
k ′

P(k ′|k)ρIk ′(t) =
∑
k ′

Jkk ′ρIk ′(t)

I With
Jkk ′ = −δkk ′ + λkP(k ′|k)

I There is an epidemic state if

λ > λDBMF
c =

1
Λ1

where again Λ1 is the largest eigenvalue of J
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SIS: Degree based mean field (DBMF)

I The epidemic threshold, for uncorrelated networks with

P(k ′|k) =
k ′P(k ′)

〈k〉

I Probability to find an infected node following a randomly
chosen edge

Θ =
∑
k ′

P(k ′|k) =
k ′P(k ′)

〈k〉
ρIk ′(t)

The Master equation of the Degree based mean field is

dρIk(t)

dt
= −ρIk(t) + λk[1− ρIk(t)]Θ

I The two latter equations can be solved in self-consistently.
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SIS: Degree based mean field (DBMF)
I The self-consistent solution allows for an epidemic state only if

λ > λDBMF
c =

〈k〉
〈k2〉

I For power law degree distribution with exponent 2 < γ ≤ 3
The threshold is 0 in the infinite limit.
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SIS: Comparison
I IBMF

λIBMF
c =

{
1√
kmax

if γ ≥ 5/2
〈k〉
〈k2〉 if 2 < γ < 5/2

I DBMF
λ > λDBMF

c =
〈k〉
〈k2〉
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SIS: Epidemic threshold

I It seems that in the infinite system there is no epidemic
threshold

I Numerical simulations show also this picture
I Note that in the SIS model there is a dynamic steady state

with a fraction of infected nodes
I In scale-free networks only part of the system will be infected,

the hubs and the immediate neighborhood.
I Concepts of:

I Epidemic state: Homogeneously infected
I Active state: Small finite active part

I Thankfully real systems are never infinite
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SIS: More realistic models
I Degree-degree correlations:

I Assortativity
I Pearson correlation coefficient r
I Largest eigenvalue

Λ1 =
〈k2〉
〈k〉

(
1 + r

(
〈k〉
〈k2〉

f

)
+ · · ·

)
I Clustering may increase the threshold

I Weak clustering c(k) ∼ 1/k threshold remains 0
I Strong clustering c(k) ∼ 1/k−α, if α < 1 threshold increases

I Community structure slows down the spreading
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Immunization

I Often the task is to stop the spreading
I Sometimes one can immunize part of the society
I Can we stop the spreading?
I Example:

I Of course, if every newborn baby is vaccinated, the population
is safe. This is the way, how smallpox (Variola) was defeated.

I Estimated death in 20 th century: 300 Million
I Estimated infected in 1967: 15 Million
I 1979: WHO declared smallpox eradicated
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Immunization

I Epidemic threshold (complete graph/fully mixed state):

R0 =
β

µ


> 1 outbreak
= 1 threshold
< 1 localized

I The density of the immune vertices is g , then:

β′ = β(1− g)

I The threshold for networks

β(1− g)

µ
=
〈k〉
〈k2〉

I For infinitely large scale free network with γ ≤ 3 we get gc = 1
I For random immunization everybody must be vaccinated
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Immunization

I Epidemic threshold for networks

β(1− g)

µ
=
〈k〉
〈k2〉

I Targeted immunization: immunize high degree nodes
I This decreases the variance faster than the average

〈k〉g
〈k2〉g

>
β(1− g)

µ

which defines the critical value of g

Page 46



Immunization
I Targeted immunization: immunize high degree nodes

〈k〉g
〈k2〉g

>
β(1− g)

µ

which defines the critical value of g

Pastor-Satorras, Vespignani, 2001Page 47



Innovation spreading
I Rogers (1962)

I Mahajan, Muller and Bass (1990)
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Threshold model

I Sometimes the spreading is due to load from the neighbors
I E.g. if too many of my neighbors are infected I will also get

infected
I Innovation spreading: many of my friends have iPhone I will

also get one.
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Threshold model

I Networks with average degree 〈k〉 = z

I Nodes have threshold φi
I If the number of active nodes in the neighborhood reach φi

then the node becomes active (too many friends have some
product I will also buy it)

I Start from a small seed
I If thresholds are sufficiently low cascades may propagate

through the whole system (size ∼ O(N))

Watts, A simple model of global cascades on random networks (2002)
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Threshold model

I In large uncorrelated random networks there are hardly any
triangles

I Vulnerable nodes are the ones where the threshold is less than
φi < 1/ki , one neighbor is enough to get infected

I Global cascade is possible if these nodes percolate
I This is the cascade condition

z >
∑
k

k(k − 1)P(k)P(φ≤1/k)

I k(k − 1) increases with k

I P(φ≤1/k) decreases with k

I Two or 0 solutions
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Threshold model: Phase diagram

I Points simulation
I Dashed line calculated threshold
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Threshold model: Phase diagram
I Top line: first order phase transition of cascades
I Bottom line: second order phase transition of network

percolation limit
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Threshold model: Phase diagram
I φ With normal distribution and σ variance
I Scale free graph

I
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Fall of a social network site
I Users leave due to exogenous effects (advertisements, news,

etc.)
I Users leave if some part of their friends leave.
I This depends on the embeddedness of the user
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Fall of a social network site: Model
I Users leave due to exogenous effects (advertisements, news,

etc.):
I Here rate of leave increases with time as was the popularity of

the alternative site
I Users with low degree are more susceptible to global effects

I Users leave if their friends leave.
I Threshold model with threshold above 45%
I Leave is not immediate one needs time (τ) to recognize friend

is inactive
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