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Hierarchy
I Greek: hierarhia (ιεραρχία) "rule of a high priest" from

hierarkhes (ιεραρχηζ) "leader of the sacred rites"
I Used first for the word in the 5th–6th centuries for both

celestial hierarchy and the ecclesiastical hierarchy by
Pseudo-Dionysius the Areopagite

I In English 19th century
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Catholic Church

I Misconception:

I Actual hierarchy:
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Army
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Army

I This may be the flow of commands but does not represent
interactions and flow of info.
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Hierarchy of needs
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Nested hierarchy: Evolution
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Social hierarchy
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Social hierarchy

Page 9



Animal hierarchy: Sorry :-)
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Animal hierarchy
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Benefit of hierarchy

I Evolutionary benefit:
I Selects the fittest and gives highest chance to reproduce
I Increases efficiency to solve tasks for the group
I Positive feedback loop: Getting better access to resources

strengthens position
I Complex tasks need organization of work (c.f. flight of a

swarm, attacking a big animal, etc.)
I The drive of lower rank to become upper rank gives a vivid

dynamics, which accelerates natural selection.

I Dominance vs. prestige
I Power vs. status
I Status hierarchy vs. decision hierarchy
I Hierarchies are ubiquitous in human society
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Hierarchy

I Is hierarchy a widespread feature of complex systems
organization?

I What types of hierarchies do exist?
I Are hierarchies the result of selection pressures or, conversely,

do they arise as a by-product of structural constraints?
I How to detect hierarchy?
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Types of hierarchy

I Order hierarchy

A B C D A B C D

I Nested hierarchy

A

B

C D E

FG

H

I

J
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I Flow hierarchy
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Direction of hierarchy in real systems

I Pigeon flocks (Nagy,
. . . Vicsek Nature, 2013)

I 10 birds with GPS
recorder

I Free flight and homing
I Correlation in pairwise

velocity offset by τ
I Time delay of maximal

correlation indicates who
is following who

Page 15



Pigeon flocks

I Single flock flight
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Pigeon hierarchy: homing efficiency?

I Multiple flock flight
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Pigeon hierarchy: homing efficiency?

I Is there any correlation between homing efficiency and
leadership?
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Pigeon hierarchy: homing efficiency or speed?

I Is there any correlation between homing efficiency/speed and
leadership?
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Clustering and hierarchy

Clustering and hierarchy

Many empirical networks are 

 Scale free

 Highly clustered.

A simple deterministic model showing these:

Easy to calculate:

Degree distribution:

Max degree in generation 𝑖: 
𝑘𝑖
max = 4𝑖 + 𝑘𝑖−1

max 𝑘𝑖
max ≈ 4𝑖

𝑁𝑖 = 5𝑖 Assuming power law degree

 𝑘𝑛max
∞

𝑘−𝛾𝑑𝑘~
1

𝑁𝑛
 4𝑛 −(𝛾−1)~5−𝑛

𝛾 = 1+ ln 5 / ln 4
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Clustering and hierarchy

How does clustering depend on the degree?

Let us consider the central node only.

# of ∆s 𝑛∆(𝑖) = 𝑘𝑖
max and then 𝐶 central, 𝑖 =

𝑘𝑖
max

𝑘𝑖
max(𝑘𝑖

max−1)/2
=

2

𝑘𝑖
max−1

, 

indicating that 𝐶(𝑘)~1/𝑘.

𝐶(𝑘)~1/𝑘 may be an indicator of hierarchical (nested) structure.

Ravasz Barabási 2003
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Clustering and hierarchy

𝐶(𝑘)~1/𝑘 can be 
observed in many 
empirical networks

Movie actors Synonyms  

WWW Internet (AS level)

However, the 1/𝑘
dependence is neither 
necessary nor sufficient 
condition. It comes 
from the broad degree 
distribution

Ravasz Barabási 2003 Soffer Vazquez 2005
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Quantifying hierarchy

I Take all pair of nodes (i , j)

I Measure minimal path length, using links as undirected du
I Measure minimal path length, using links as directed dd , note

that dd can be infinite
I There can be three categories:

I dd = du for F fraction of pairs
I dd > du for S fraction of pairs
I dd =∞ for U = 1−F − S fraction of pairs
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Random scale-free graph
I Take all pair of nodes (i , j)
I Measure minimal path length, using links as undirected du
I Measure minimal path length, using links as directed dd , note

that dd can be infinite
I There can be three categories:

I dd = du for F fraction of pairs
I dd > du for S fraction of pairs
I dd =∞ for U = 1−F − S fraction of pairs

I Degree exponent γ: f (k) ∝ 1/kγ
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Correlation between degree exponent and F
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Random scale-free graph as null model
I Start with a configuration model with given degree distribution
I Maximally hierarchical : Connect nodes with decreasing k

I Maximal anti-hierarchical : Node with the highest degree is
connected to the lowest degree, observing that the network
should remain connected

I Random: What the word says

Maximally hierarchical Random Maximal anti-hierarchical
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Direction of hierarchy
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Direction of hierarchy: Main measures
I Treeness: T
I Feedforwardness: F
I Orderability: O

Deviation from perfect hierarchy
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Directed Acyclic Graphs (DAG)

I Directed graph
I Contains no cycles (no path returns to the same node)
I Obtaining a DAG from any directed graph
I Replace each cycle with a single node

I Node can be weighted αi sum of the nodes in the cycle (node
weighted condensed graph)
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Orderability

I Fraction of nodes not part of a cycle
I O = 4/7 for the following example:

I Other def: fraction of nodes with weight 1 in the node
weighted condensed graph

I O = 4/8 for the following example:
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Feedforwardness
I M: set of maximal nodes, without incoming links in DAG
I µ: set of minimal nodes, without outgoing links in DAG
I πi ∈ Π: (set of) path(s) going from a maximal node to a

minimal one
I Calculate the ratio of the length of the path and the sum of

node strength along it:

F (πi ) =

∑
vi∈πi 1∑
vi∈πi αi

I For the sample F (πi ) = 4/7
I Feedforwardness F average for all paths for all layers. (Path is

always starting from a maximal node)
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Layers

I Start from DAG
I Remove all nodes with no outgoing nodes. They are layer one
I Continue. This is normal (backward) layering
I Forward layering is by removing nodes with no incoming links

I Feedforwardness is defined on the backward layering (good
question why?)

I O and F are not independent
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Treeness

I Calculate uncertainty of paths both forwards and backwards
I endpoint α has an uncertainty of 5, β has 1

I endpoint β has an uncertainty of 5, α has 1
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Treeness

I Calculate uncertainty of paths both forwards and backwards
I Forward entropy: For each starting node
I Calculate the number of probability of starting towards a given

neighbor (1/kouti )
I Calculate the the uncertainty from the from the chosen

neighbor node.
I Multiply the two, this is P(πk |vi )
I Sum up the entropy normalized by the number of starting

points

Hf = − 1
|M|

∑
πk ,vi

P(πk |vi ) logP(πk |vi )

I Do it also for backwards
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Calculating measures: an example

I DAG condensation and layers:
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Calculating measures: an example
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Hierarchy measures: The TOF space
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Hierarchy measures: The TOF space

Random network results
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The TOF space: examples
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Other methods

I Example: email network
1. number of emails
2. average response time
3. response score
4. number of cliques
5. raw clique score
6. weighted clique score
7. degree centrality
8. clustering coefficient
9. mean of shortest path length from a specific vertex to all

vertices in the graph
10. betweenness centrality
11. Hubs-and-Authorities importance

I Give score
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Other methods

I Example: email network
I Give score

1. Rank users from most important to least important
2. Group users which have similar social scores and clique

connectivity
3. Determine n different levels (or echelons) of social hierarchy

within which to place all the users. This is a clustering step,
and n can be bounded.
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The Enron email network example

Page 42


