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Literature

● Numerics:  Computational Quantum Physics course at 
ETH Zurich SS 2008, by P. de Forcrand & M. Troyer
– lecture notes online

● Quantum Scattering Theory: Any introductory Quantum 
Mechanics book, e.g., Griffiths



1-dimensional Quantum Mechanics, brief reminder

state of particle:
complex valued wavefunction

position probability density:

expectation value of position: 

position operator:

momentum: 

Hamiltonian = operator of total energy: 

time evolution, Schrodinger equation:




1-dimensional quantum mechanics: eigenstates of 
Hamiltonian, time-independent Schrodinger equation

time evolution, Schrodinger equation:

try it on eigenfunction 
of the operator H:

This Ψ is a stationary state, position distribution |Ψ(x,t)|2 independent of time

Some trajectories of a particle 
in a box according to 
Newton's laws of 
classical mechanics (A), and 
according to the 
Schrödinger equation of 
quantum mechanics (B–F). In 
(B–F), the horizontal axis is 
position, and the vertical axis 
is the real part (blue) and 
imaginary part (red) of the 
wavefunction. The states 
(B,C,D) are energy eigenstates
, but (E,F) are not.

Example: 
bound states in 
a square well

https://en.wikipedia.org/wiki/Newton%27s_laws
https://en.wikipedia.org/wiki/Classical_mechanics
https://en.wikipedia.org/wiki/Schr%C3%B6dinger_equation
https://en.wikipedia.org/wiki/Quantum_mechanics
https://en.wikipedia.org/wiki/Wavefunction
https://en.wikipedia.org/wiki/Energy_eigenstate



  

Bound states in 1D have real-valued wavefunctions, 
decrease fast enough as x→ infty

http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/hosc5.html

particle 
does not 
escape



Freely propagating particle: plane wave, wavepacket

Wavefunction not normalized for 
probability but for particle current

State of actual particle: wavepacket




  

Real space – momentum space: Fourier transform



  

Scattering states in 1D: incoming, reflected, transmitted 
plane wave + something in the middle 

scattering state: 
- a solution of Schrodinger eqn,
     = eigenstate of H 
- with no incoming wave from right (D=0)

→  Away from scattering region (1,3):
superposition of plane waves 

 with wavenumber k0

→ In scattering region (2):
depends on potential
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Solution over all x: fit solutions at a and -a:
reflection & transmission amplitudes:

reflection & transmission probabilities:



  

Example: scattering from Square barrier

Exactly solvable textbook problem (Griffiths Quantum Mechanics 2.6., 
or wikipedia, plane waves+fitting)

Solution simple in scattering region as well:
V(x)

V 0

aa x
A
B

C

1 2 3

Solution over all x: fit solutions at a and -a:
reflection & transmission amplitudes:

reflection & transmission probabilities:



  

Transmission by tunneling and resonances 
in square barrier

Transmission resonances:
  perfect transmission if 2a = n λ2 / 2

Tunneling across barrier in 
  classically forbidden regime:

Transmission across barrier in 
  classically allowed regime:



  

What is fundamental in quantum mechanics, 
what is only for square barrier?



  

Formulas also hold for transmission across square well,
transmission resonances

As before, with V0<0. 

Transmission across square well
is always classically allowed:

No transmission for E→0
What about a transmission resonance 
at 0 energy?



  

What happens to transmission resonances in smooth 
potentials?

- T resonances at E=0, as V0 is tuned?

- T resonances, as E is tuned

- T resonances, as E is tuned?

- T resonances at E=0, 
as V0 is tuned?



  

Numerov: finite-difference method to solve 
Schrodinger equation (like Runge-Kutta)

discretize position:

Taylor expand ψ: 

Use a trick to get rid of all odd order derivatives:

Approximate 4th derivative as a finite difference:



  

Numerov method, summarized

dimensionless variables:

locally accurate to 5th order

here, k(x) is short for 



  

To calculate with Numerov method, need initial 
conditions: 2 neighboring values, to iterate

(bound state at -E):

scattering state at +E:

If potential is finite range, V(x) = 0 for |x|>a 
    → use plane wave/decaying form



  

Scattering problem by Numerov algorithm



  

Choosing the right dimensionless variables is important 
before numerical work

commonly used Atomic Units:

Better for us to measure energy in eV:

shorthand k(x) in Numerov 
becomes: 



  

Exercises for today

● Calculate scattering from a square potential barrier by 
integration of Schrodinger equation using Numerov
– Plot transmission as a function of energy, for 

a barrier height 2 eV, size 1nm 
● Compare with analytical curves 

● Calculate scattering from a Gaussian potential barrier by 
the same method
– Plot transmission as before, with a barrier height 2eV, size 

1nm
– What happened to the transmission resonances?



  

Homework: what happens to transmission resonances in 
smooth potentials?

- T resonances at E=0, as V0 is tuned?

- T resonances, as E is tuned

- T resonances, as E is tuned?

- T resonances at E=0, 
as V0 is tuned?



  

Homework exercises

● Calculate scattering from a square potential well by integration of 
Schrodinger equation using Numerov 
– Plot transmission as a function of energy, for 

a well depth 2 eV, size 2a=1nm. 
● Also plot analytical curves 

– Plot transmission as a function of well depth (4 eV→ 0 eV ), 
at energy 0.1 eV, well size a=0.5 nm 

● Change the shape of the potential well to Gaussian. What 
happens to the resonances in the two cases above?
– Plot transmission as a function of energy, for 

a well depth 2 eV, size a=0.5nm 
– Plot transmission as a function of well depth (4 eV→ 0 eV ), 

at energy 0.1 eV, well size a=0.5nm 
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