
Computer simulations in Physics
Optimization

Janos Török

Department of Theoretical Physics

April 27, 2023

Page 1



Optimization
I General problem of finding the ground state
I Phase-space:
I Arbitrary number of dimensions
I Methods:

I Steepest Descent
I Stimulated Annealing
I Genetic algorithm

Page 2



Optimization

I General problem of finding the ground state
I Phase-space:
I Arbitrary number of dimensions
I Methods:

I Steepest Descent
I Stimulated Annealing
I Genetic algorithm

I Implementation
I C: GSL
I python: scipy.optimize
I Both are very flexible and can be used with numerical or

analytical derivatives

Page 3



Gradient based optimization

I Given f (x), with x = {x1, x2, . . . xn}
I Gradient ∇f (x) ≡ g(x) = {∂1f , ∂2f , . . . ∂nf }
I Second order partial derivatives: square symmetric matrix

called the Hessian matrix:

∇2f (x) ≡ H(x) ≡

∂1∂1f . . . ∂1∂nf
...

. . .
...

∂1∂nf . . . ∂n∂nf



Page 4



General Gradient Algorithm

1. Test for convergence
2. Compute a search direction
3. Compute a step length
4. Update x

Page 5



Steepest descent algorithm

1. Start from x0

2. Compute g(xk) ≡ ∇f (xk). If ||g(xk)|| ≤ εg then stop,
otherwise, compute normalized search direction
pk = −g(xk)/||g(xk)||

3. Compute αk such that f (xk + αpk) is minimized
4. New point: xk+1 = xk + αpk
5. Test for |f (xk+1 − f (xk))| ≤ εa + εr |f (xk)| and stop if fulfilled

in two successive iterations, otherwise go to 2.

Page 6



Conjugate Gradient Method

I The iteration
xn+1 = xk − γn∇f (xk),

I We can select γ such that if the function is quadratic in all
directions it goes immediately into the minimum

I Idea: almost all minima are quadratic close to the minimum

γn =
|(xn − xn−1)

T [∇f (xn)−∇f (xn−1)]|
||∇f (xn)−∇f (xn−1)||2

Page 7



Conjugate Gradient Method
1. Start from x0

2. Compute g(xk) ≡ ∇f (xk). If ||g(xk)|| ≤ εg then stop,
otherwise Go to 6

3. p0 = −g0

4. Compute g(xk) ≡ ∇f (xk). If ||g(xk)|| ≤ εg then stop,
otherwise continue

5. Compute the new conjugate gradient direction
pk = −gk + βkpk−1, where

β =

(
||gk ||
||gk−1||

)2

6. Compute αk such that f (xk + αpk) is minimized
7. New point: xk+1 = xk + αpk
8. Test for |f (xk+1 − f (xk))| ≤ εa + εr |f (xk)| and stop if fulfilled

in two successive iterations, otherwise go to 4.
Page 8



Conjugate Gradient Algorithm

Page 9



Modified Newton’s method

Second order method
1. Start from x0

2. Compute g(xk) ≡ ∇f (xk). If ||g(xk)|| ≤ εg then stop,
otherwise, continue

3. Compute H(xk) ≡ ∇2f (xk) and the search direction
pk = −H−1gk

4. Compute αk such that f (xk + αpk) is minimized
5. New point: xk+1 = xk + αpk
6. Go to 2.

Page 10



Glassy behavior, frustration
I Model glass: spin glass:

H = −1
2

∑
〈i ,j〉

JijSiSj

I where Jij are random quenched variables with 0 mean (e.g.
±J with probability half)

Rugged energy landscape.

Page 11



Energy landscape
Ising vs. spin glass (X Axis: binary representation of number)

Page 12



Spin glass: Aging
I Heat up the sample where it equilibrates fast
I Quench it below Tc

I Wait tw
I Measure a parameter q(tw , tw + t)
I Often q is a covariance (X observable):

q(s, t) = E (XtXs)− E (Xt)E (Xs)

Page 13



Spin glass: Trap model (Bouchaud)
I The evolution of the particle

system is represented by a
Markov process in a random
energy landscape

I The process will spend most
time into deep valleys of lowest
energy where it will be trapped

I The time spent in these valleys
is random and aging will appear
when the mean time spent in
these valleys diverges

I Order parameter: the
magnetization and the two point
spin correlation between spins at
the same site in two different
replicas

Page 14



Rugged energy landscape

I Typical example NP-complete problems:
I Travelling salesman
I Graph partitioning
I Spin glass

I No full optimization is possible (do we need it?)
I Very good minimas can be obtained by stochastic optimization

I Simulated annealing
I Genetic algorithm

Page 15



Optimization

I General optimization
I Parameters of the system x (input)

I for networks: adjacency matrix, degree distribution
I for pattern recognition: data, or processed data (e.g Fourier

spectrum, etc.)
I Optimized property: y = f (x), we search for f (.) which gives

the desired y
I any measurable quantity
I classification of data (e.g. y = 1 for cat, y = 2 for dog, etc.)

I Loss function, L(f ), the quantity to be minimized
(Energy/Hamiltonian)
I Least square: L(f ) = [y − f (x)]2

I Hamming distance: L(f ) =

{
1 if f (x) = y

0 otherwise

Page 16



Simulated annealing

I Loss function: e.g. energy E

I Minimize energy like in a physical system
I Vary parameter set w in an egodic way (all possible values

must be reachable)
I Observe detailed balance:

p(i → j) =

{
1 if Ej < Ei

exp[β(Ei − Ej)] otherwise

I where β ' 1/T
I Slowly decrease T

Page 17



Simulated annealing

I Cool down the system slowly
I Speed is crucial and many experiments are needed
I No guarantee that we find something meaningful
I Warm up and down if needed, if the system quenched into a

local minimum
I One needs a Hamiltonian (or a fitness function) and an

elementary move
I Spin glass: Metropolis

Page 18



Hill climb

Page 19



Travelling salesman

I N cities on the 2d space
I Distance between the cities is the Euclidean distance (birds

flight)
I The traveller must visit all cities once
I The trajectory is circular so the traveller must return to the

starting city
I The optimized quantity is the travelled distance

Page 20



Travelling salesman
I Minimal travelling path for visiting a number of cities
I Elementary move: swap two cities (T ∼ alcohol)

Page 21



Genetic algorithm

I Learn from nature

Page 22



Genetic algorithm
I Learn from nature
I Let the fittest to survive

I Fitness function, e.g. energy, length, etc.
I Combine different strategies
I State is represented by a vector (genetic code or genotype)

I Phasespace, city order, neural network parameters, etc.
I Offsprings have two parents with shared genetic code
I Mutations
I Those who are not fit enough die out

I Keep the number of agents fixed

Page 23



Genetic algorithm terminology
I Chromosome: Carrier of the genetic representation
I Gene: Smallest units in the chromosome with individual

meaning
I Fitness: The measure of the success of an individual with a

given chromosome
I Population: Set of chromosomes from which the parents are

selected. Its size should be larger than the length of the
chromosome

I Parents: Pair of chromosomes, wich produce offsprings
I Selection principle: The way parents are selected (random,

elitistic)
I Crossover: Recombination of the genes of the parents by

mixing
I Crossover rate: The rate by which crossover takes place

(∼90%)
I Mutatation: Random change of genes
I Mutation rate: The rate by which mutation takes place (∼1%)
I Generation: The pool after one sweep.Page 24



Genetic algorithm schema

1. Start with a randomly generated population
2. Calculate the fitnesses
3. Selection

I Random
I Best fitness (keep top 50% and generate new 50%)
I Roulette (Monte-Carlo) selection

4. Crossover: offsprings must be viable (Sometimes difficult)

Page 25



Genetic algorithm: Reproduction

I Two parents and two children

Page 26



Genetic algorithm schema

1. Start with a randomly generated population
2. Calculate the fitnesses
3. Selection

I Random
I Best fitness (keep top 50% and generate new 50%)
I Roulette (Monte-Carlo) selection

4. Crossover: offsprings must be viable (Sometimes difficult)
I One-point
I Two-point
I Uniform

5. Mutation: small rate

Page 27



Genetic algorithm example

Page 28



Genetic algorithm for Travelling Salesman

I Natural storage: order of the towns, e.g. (1, 7, 4, 2, 3, 5, 6) not
suitable for crossover.

I Good encoding can be cut at any point.
I Solution: ordinal representation
I In representation i means take element i from the rest of the

list of cities.
Jean-Yves Potvin: Genetic algorithms for the traveling salesman problem,
Université de Montréal

Page 29



Ordinal representation: Example

I The city numbers are gradually taken from the standard list of
cities

I The code is the actual number in the maimed list
I Any number sequence with values ([1,N][1,N−1] · · · [1, 2]1) is

valid

City order Maimed list Ordinal
1 5 2 4 6 3 1 2 3 4 5 6 1
1 5 2 4 6 3 2 3 4 5 6 1 4
1 5 2 4 6 3 2 3 4 6 1 4 1
1 5 2 4 6 3 3 4 6 1 4 1 2
1 5 2 4 6 3 3 6 1 4 1 2 2
1 5 2 4 6 3 3 1 4 1 2 2 1

Page 30



Ant colony optimization

I Once again learn from nature:

Page 31



Ant colony optimization
I Once again learn from nature:

I Ants explore
I Deposit pheromone
I Pheromone dissipates with time
I Shorter paths with more usage will prevail

Page 32



Ant colony optimization: algorithm
1. N ants
2. Initialize pheromone concentration h which is between all city

paires by small random values
3. Ants explore the cities:

I Ants may only go to unvisited cities
I Probability to go from city i to j is proportional to

pi ∼ hαij /d
β
ij ,

where dij is the distance between cities i and j , α, β are
parameters

4. Ants deposit pheromone on their travelled paths. The amount
of deposited pheromone is 1/dij

5. Pheromone decay: multiply all elements of the h matrix with
parameter γ < 1

6. Repeat from 3
https://github.com/Akavall/AntColonyOptimization

Page 33



Ant colony optimization: assessment

I Advantages
I Inherent parallelization
I Generally rapid solution
I Very good for dynamic optimization

I Disadvantages
I Individual behaviour is stochastic and not representative
I Theory is kind of impossible
I Steady state is incertain

Page 34


