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Problems with molecluar dynamics
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» All particles are soft (force as function of overlap)
» Collision must be smooth (~ 50 timesteps), which sets dt

» Problem with gases, free path is 100—1000 times the particle
radius

» Timescale problems with temporal fluctuations
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Event driven dynamics

» Hard core interactions
> Interactions short in time compared to flight

» (MD needs ~ 20 — 50 timesteps per collision, overlap of
10-3d)

» Integrable path — do it

wall collision pair collision
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Event driven algorithm

» No gravity (Can be also solved for gravity)
Particles: r;(t), vi(t), wi(t), R;
» Calculate collision time: Let djj = |rj — rj| = R — R;, Then

v

|dj|?

T = —
T (vi—vy)dj

Order collision times, get the smallest 7. = minj;(7;)
Go to time t + 7¢ ri(t + 7¢)

Calculate velocities after collision v;(t + 7.) (may be hard...)

vvyyy

Restart loop

v

Next time Calculate collision time only with J, j

v

Dynamic list, change only newly calculate collision times

Page 4



Inelastic collapse
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Coefficient of restitution r = vy (tc+)/va(tc—)
Energy is lost in an exponential way (Ping Pong)
Infinite collisions in finite time

Solution — r = 1 if collisions occur more frequently than a
parameter teont, the contact duration

Contact — small vibration :-(well. . .)




Contact dynamics

» Perfectly rigid particles
» Non-smooth dynamics

» Constraints
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» Molecular dynamics

» Normal force: overlap (smooth)

» Shear force: history
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Contact dynamics

» Implicit forces

1
vi(t + At) = vi(t) + ;F,-(t + At)At

xi(t + At) = x;(t) + vi(t + At)At

such as constraints are fulfilled
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Contact dynamics

» Implicit forces

1
vi(t + At) = vi(t) + —Fi(t + At)At

1

xi(t + At) = x;(t) + vi(t + At)At

such as constraints are fulfilled

» if gap would be negative increase force
» if there would be a shear displacement increse shear force
» if shear force is larger than allowed restrict it to that value
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Contact dynamics, force calculation

» Two particles with gap g

i VR AL+ gh > 0
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Particle chain

RiT Ry Ria

» One iteration step:

R = 5 (R +RiY)

b =

» Discretized one-dimensional diffusion equation
» Model of rigid particles — elastic

» Elasticity depends on the number of iterations
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lterative solver

> Updates:
» Parallel: calculate all contacts with old values then change to
new at once — serious instabilities
» Serial: update contacts one-by-one in random order
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Molecular versus Contact dynamics
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Kinetic Monte Carlo

> Particle sits in a potential well for ages ...
» What to do?
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Kinetic Monte Carlo

» Long lasting steady state positions
» Slow thermally activated processes
» Infrequent-event system

Solution:

» Consider only jumps between neighboring energy wells
» Probability of jump P ~ exp(—BEp)
» Rate of jump i — j, kj = Ep.

Cartoon by Larry Gonick
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Kinetic Monte Carlo

Page 15

vVvVvvyVvYvVvyVvYVYyYVYyYy

All possible moves i

Rates for moves k;

Calculate the cumulative function K =) . k;

Get a uniform random number u (between 0 and 1)
Execute the event i for which Z i1 ki > uK > Z' ! ki
Get new uniform random number v’ (between 0 and 1)
Update time to t = t + At, At = —log(u')/k;
Recalculate rates, which have changed

Restart loop



Kinetic Monte Carlo

> Rates

» Physics

» Molecular dynamics
» Must include all rates!
> Used for:

» Surface diffusion
» Surface growth
» Syntering

» Domain evolution

Example....
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Methods

» Molecular Dynamics
» General
» Event Driven Dynamics
» Hard objects, at low density
» Contact Dynamics
> Rigid particles
» Kinetic Monte Carlo
» Infrequent events, bonded particles
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Parallelization

> Why?

» The speed of one core processor is limited

> Larger system sizes

» Multi-core processors

» On multi-core system inter-processor data change is fast
> Why not?

» Computing power is lost

» Much more code development

» Very often ensemble average is needed

» Inter-computer communication is terribly slow

RAM — ~15GB/s, Ethernet 125MB/s, Infiniband ~1GB/s
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Parallelization: How?

» Code asks for more instances (e.g. run a loop in parallel)
» Fork, multi-threading
» Used in desktop applications
» Punished on clusters
» Shared memory

» Operating system (or even multiple machines) launches the
code multiple times which can communicate
» Now de facto standard: MPI (Message passing interface)
» Communication is standardized, environment can be
inhomogeneus

> GPU:
» High number of cores
» Non-standard processors
» Non-standard libraries
» Limited memory
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Parallelization (Bird flocking model)
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Parallelization

Extra steps needed:
» Molecular dynamics

» Short range interactions: Box must be duplicated, Verlet in
parallel
» Long range: Parallel fast Fourier transformation

» Contact dynamics

» Short range interactions: Box must be duplicated, Iteration in
parallel

» Event Driven Dynamics

» List must be global, no way!
» Kinetic Monte Carlo

» List must be global, no way!
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Efficiency of parallelization

> Large systems are needed
» Boundary must be minimal

» System size can be increased simulation time not really
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Efficiency of parallelization

(a) (b)
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» Calculate time spent in a branch

> Calculate o7 = /(T2) — (T)2/(T)

» Move line if necessary (o1 > o%)

» Lower in tree (up in Fig), larger the mass of the border
| 2

Only rarely, data transfer is expensive
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