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Boundary conditions

I Real boundary conditions
I Closed (nothing)
I Walls (with temperature)
I Substrate (often too expensive)

I Computer based boundary conditions
I Periodic boundary conditions
I Absorbing (whatever leaves is gone)
I Reflecting (everything is reflected back)
I Walls (some potential)
I Substrate (fixed basis)
I Wall with temperature
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Boundary conditions: Examples

I Periodic boundary conditions
I Walls (some potential)
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Boundary conditions: Examples

Periodic boundary conditions

Substrate (fixed basis)
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Periodic boundary conditions
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Periodic boundary conditions → contacts
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Periodic boundary conditions

I Infinitely many neighboring cells if long range interactions
I Possibility of self interaction (must be charge neutral)

I General solution: long range interactions are handled in
k-space

I Linear momentum is conserved
I Angular momentum is not conserved
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Periodic boundary conditions

Distance
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Periodic boundary conditions deformed box

I Box is tilted, positions of particles artificially moved
I Homogeneous shear
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Periodic boundary conditions deformed box

Distance

I Order matters
I Tilted: by Dxy , Dxz , Dyz
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Particle based simulation

I Molecular dynamics
I Event Driven Dynamics
I Contact Dynamics
I Kinetic Monte Carlo
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Molecular dynamics

MD: Molecular dynamics
DEM: Discrete element method
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Application of molecular dynamics

I Molecular systems (classic potentials, temperature)
I Biophysics
I Structural biology
I Glasses
I Amorphous materials
I Liquids

I Granular materials (hard core, dissipative)
I Stones, seeds, pills
I Railbed

I Pedestrians
I Astrological systems (conservative, large scale)
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Molecular dynamics

Simulate nature
I Solve Newton’s equation of motion

mi r̈i = fi = fexti +
∑
j

f intij , i , j = 1, 2 . . .N
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Program

I Have an algorithm to calculate forces
I Get list of interacting particles
I Determine accelerations and velocities; step particles
I Set temperature
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Forces

Internal forces
I Pair potential:

f intij = −f intji = −∇V (rij)

I Many body potentials (molecular bonds)

f intijk = F(ri , rj , rk)

I e.g. 3-body Stillinger-Weber potential:

I Friction forces (next slide...)
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Friction forces

I Moving:

I Stationary:
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Friction forces

I Position is not enough to set friction forces
I No movement → no friction forces
I Solution:

We need history:
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Contact history: spring dashpot model

I Position is not enough to set friction forces
I Normal force:

Fn = knδnij −meffγn∆vn

I Tangential force:

Ft = kt∆st + meffγt∆vt

∆st = nt
∫ t

tc

{
∆vt(t ′) + [ωi (t

′)ri − ωj(t
′)rj ]

}
dt ′

I Limit ∆st to satisfy |Ft | ≤ µFn
I k stiffness, γ damping (critical)
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Program

I Have an algorithm to calculate forces
I Get list of interacting particles
I Determine accelerations and velocities; step particles
I Set temperature
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Find pairs

Now we know how to calculate forces. How to get pairs?
I All pairs: ∼ N2 calculations. Only if there is no other way!
I Short range interactions: box method
I Long range interactions: k-space
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Cell list (Bucketing algorithm)
Finite interaction length L

I Grid with size L

I Grid of array with particle indexes in box
I Maximum number of neighbors or dynamic array
I If there is vmax then L′ = L + vmax∆t, then reset array every

∆t timesteps
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k-space solution

I Long reange interactions (e.g. Coulomb) cannot be cut off
I Often more periodic images are needed
I k-space (Fourier-transformation in 3d!)

I Solution of linear problems by Green’s-function
I Coulomb problem: in Fourier space → multiplication with

1/k2!
I Generally it is done by Ewalds summation
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Ewald summation
I The total electrostatic potential energy

W =
1

8πε0

∑
i 6=j

qiqj
|ri − rj |

I Factor 2 is for double counting all contacts
I For infinite system the expression does not converge
I Ewald’s idea:

1
r

=
erf(√ηr/2)

r
+

1− erf(√ηr/2)

r

I The first term goes to a constant for small r but has long
range interactions

I The second term has a singular behavior at r → 0 but vanishes
exponentially

I erfc(x) = 1− erf(x)
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Ewald summation
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I Thus the calculation of the electrostatic energy is

W =
1

8πε0

∑
i 6=j

qiqjerf(
√
η|ri − rj |/2)

|ri − rj |
+

+
∑
i 6=j

qiqjerfc(
√
η|ri − rj |/2)

|ri − rj |
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Ewald summation

I Thus the calculation of the electrostatic energy is

W =
1

8πε0

∑
i 6=j

qiqjerf(
√
η|ri − rj |/2)

|ri − rj |
+

+
∑
i 6=j

qiqjerfc(
√
η|ri − rj |/2)

|ri − rj |


I For an appropriate choice of η, the second term converges fast
I The first term is evaluated in the Fourier space

W1 =
4π
L3

∑
i 6=j

qiqj

(∑
k

e−ik·rij
1
k2

e−k
2/4η2

)
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Program

I Have an algorithm to calculate forces
I Get list of interacting particles
I Determine accelerations and velocities; step particles
I Set temperature
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Euler method

I Second order differential equation:

ÿ = f (ẏ(t), y(t), t)

I First velocity (v = ẏ)

vn+1 = vn + ∆t fn +O(∆t2)

I Then position

yn+1 = yn + ∆t vn +O(∆t3)

I Do not use it!
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Implicit Euler method (backward)

I Second order differential equation:

ÿ = f (ẏ(t), y(t), t)

I First velocity (v = ẏ)

vn+1 = vn + ∆t fn +O(∆t2)

I Then position

yn+1 = yn + ∆t vn+1 +O(∆t3)

I Surprisingly good!
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Euler

Euler
Iplicit Euler
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Verlet method

I Second order differential equation:

ÿ = f (y(t), t)

I From central difference

yn+1 = 2yn − yn−1 + ∆t2 fn +O(∆t4)

I Leapfrog

yn+1 = yn + ∆t vn+ 1
2

vn+ 1
2

= vn+ 1
2

+ ∆t fn

I None of them is used
I Velocity dependent forces are difficult to add
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Velocity Verlet method

I The one actually used in all codes:

yn+1 = yn + ∆t vn +
1
2

∆t2fn

vn+1 = vn +
1
2

∆t(fn + fn+1)

I Implementation
1. vn+1/2 = vn + 1

2 fn∆t
2. yn+1 = yn + ∆t vn+1/2
3. Calculate forces
4. vn+1 = vn+1/2 + 1

2 fn+1∆t
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Energy comparison

Euler
Verlet

Velocity Verlet
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Error

Method Error Cumulative error
Euler: ∆t3 ∆t
Runge-Kutta: ∆t5 ∆t4

Verlet: ∆t4 ∆t2

Leapfrog: ∆t4 ∆t2
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Symplectic integrator

I Energy (slightly modified) is conserved
I Time reversibility

I Verlet
I Leapfrog

I Most molecular dynamics methods use Verlet!
I Forces are calculated once per turn
I Microcanonical (NVE) modelling can be only done with these
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Multiple time scale integration

I Different force range
I Short range change fast
I Long range change slowly

I Recalculate long range forces only in every nth times-step
I Forces are calculated once per turn

I Typical examples:
I Intramolecular forces: strong, high frequency
I Intermolecular forces (e.g. Lennard-Jones, Coulomb) slow

I Similar technic: coupling to fields
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Molecular dynamics

Program:
I Have an algorithm to calculate forces
I Get list of interacting particles
I Determine accelerations and velocities; step particles
I Set temperature
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Temperature

Definition:
I Encyclopedia Britannica, Wikipedia:

"A temperature is a numerical measure of hot or cold."
I Manifestation of thermal energy
I Thermodynamics:

Second law of thermodynamics & Carnot engine

δQ = TdS

ηmax = ηCarnot = 1− TC/TH

I Statistical physics:

β ≡ 1
kB

(
∂S

∂E

)
V ,N

=
1

kBT
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Definition of temperature

Temperature is a measure of the random submicroscopic motions
and vibrations of the particle constituents of matter.

The average kinetic energy per particle degrees of freedom is

Ē =
1
2
kBT

Molecular dynamics conserves only the total energy!

Task: Control kinetic energy!
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Setting temperature

I Experiment
I Environment
I Mixing → uniform temperature

I Simulation
I Control the kinetic energy (velocities)
I Mixing → Maxwell-Boltzmann distribution

Page 40



Nosé-Hoover thermostat

I Original Hamiltonian

H0 =
∑
i

p2i
2mi

+ U(q)

I Heatbath in the Hamiltonian:

Hn =
∑
i

p′2i
2mi

+ U(q′) +
p2s
2Q

+ gkBT log(s)

I Extra degree of freedom s.
I Q "mass" related to s → controls the speed of convergence
I g = 3N the number degrees of freedom
I p′ and q′ are virtual coordinates
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Nosé-Hoover thermostat
I Virtual coordinates, vs. original ones:

p = p′/s
q = q′

t =

∫
1
s
dt ′

I Solution of the new Hamiltonian:

ξ = ṡ/s = ps/Q

q̇′ =
p′

m

ṗ′i = −∂U
∂q′i
− ξp′i

ξ̇ =
1
Q

(∑
i

ṗ′
2
i

mi
− gkBT

)
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Molecular dynamics

I Create sample
I Crystal
I Random deposition
I Distorted crystal
I Simulation

I Temperate sample
I Make test
I Collect data

I Data size: e.g. N = 104, t = 106 small simulation:
I 1 hour on 1 core PC
I 3 doubles/atom → 24 bytes/atom/timesteps
I Result 2.4 1011 bytes = 240 Gigabytes
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