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Self-Organized Criticality

I Critical state: inflection point in the critical isotherm
I Power law functions of correlation length, relaxation time
I Control parameter, generally temperature
I Critical point as an attractor?
I Why? Power law: We see many cases

I 1/f noise (music, ocean, earthquakes, flames)
I Lack of scales (market, earthquakes)

I Underlying mechanism?
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Bak-Tang-Wiesenfeld model

I Originally a sandpile model
I Better explained as a Lazy

Bureaucrat model:
I Bureaucrats are sitting in a

large office in a square lattice
arrangement

I Occasionally the boss comes
with a dossier and places it on
a random table

I The bureaucrats do nothing
until they have less than 4
dossiers on their table

I Once a bureaucrat has 4 or more dossiers on its table starts to
panic and distributes its dossiers to its 4 neighbors

I The ones sitting at the windows give also 1 dossier to its
neighbors and throw the rest out of the window.
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Bak-Tang-Wiesenfeld model

I Originally a sandpile model
I Better explained as a Lazy

Bureaucrat model:
I Best application: Spring block

model of earthquakes:
I Masses sitting on a frictional

plane in a grid are connected
with springs to eachother and
to the top plate

I Top plate moves slowly, increasing the stress on the top
springs slowly and randomly

I If force is large enough masses move which increases the stress
on the neighboring masses
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Bak-Sneppen model of evolution
I N species all depends on two other (ring geometry)
I Each species are characterized by a single fitness
I In each turn the species with the lowest fitness dies out and

with it its two neighbors irrespective of their fitness
I These 3 species are replaced by new ones with random fitness
I Inital and update fitness is uniform between [0, 1]
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Bak-Sneppen model of evolution: Results

I Steady state with avalanches
I Avalanches start with a fitness f > fc ' 0.66
I Avalanche size distribution power law
I Distance correlation power law
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Bak-Sneppen model of evolution an application: Granular
shear

I Fitness → Effective friction coefficient
I Specimen with lowest fitness dies out → block is sheared at

weakest position (shear band)
I Neighbors, related species die out and replaced by new species
→ structure gets random around the shear band.
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Traffic models
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Nagel–Schreckenberg model

I Periodic 1d lattice (ring) Autobahn
I discretized in space and time
I Cars occupying a lattice moving with velocities

v = 0, 1, 2, 3, 4, 5
I Remark, if max speed is 126 km/h, then lattice length is 7 m,

a very good guess for a car in a traffic jam
I It uses parallel update: at each timestep all cars move v sites

forward
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Nagel–Schreckenberg model

I Algorithm:
1. Acceleration: All cars not at

the maximum velocity
increase their velocity by 1

2. Slowing down: Speed is
reduced to distance ahead (1
sec rule)

3. Randomization: With
probability p speed is reduced
by 1

4. Car motion: Each car moves
forward the number of cells
equal to their velocity.
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Emergence of traffic jams
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Nagel–Schreckenberg model

I Transition from free-flow to jammed state
I Jammed state is a phase-separated phase
I Without randomization a sharp transition

I Had been used in NRW to predict traffic jams
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Three-phase traffic theory
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Disease spreading, SIR model

I S: susceptible (can be infected with prob. β if meets an
infected)

I I: Infected (may infect susceptible, but may recover with prob.
ν).

I R: Recovered (Immune to the disease)
I Other versions:

I SI: agents do not recover (e.g. information spreading)
I SIS: recovered people can get disease again
I SIRS: recovered agents may become susceptible (e.g.

influenza)
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Disease spreading, SIR model

I S: susceptible
I I: Infected
I R: Recovered
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SIR model, connected graph
Governing equations:

Ṡ = −βIS
İ = βIS − νI
Ṙ = νI
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SIR model, connected graph

Governing equations:

Ṡ = −βIS
İ = βIS − νI
Ṙ = νI

I Early stage S ' 1

I ' I0 exp[(β − ν)t]

I R = β/ν epidemic threshold
I R > 1 outbreak
I R < 1 localized
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SIR model vs. reality
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Algorithm for the SIR model

1. List of initially infected nodes is I
2. Get a random (infected) node u from the list I
3. For all neighbors w of u do 4.
4. If w is susceptible change it to infected with probability β, and

enqueue it into list I
5. With probability ν change state of u to recovered otherwise

put it back to I

6. If I is not empty go back to 2.
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SIR on space and network

Brockmann-Helbing
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Predator prey model

I N(t) number of predators
I E (t) number of prey
I Model (Lotka 1925, Volterra 1926):

Ė (t) = βEE (t)− [µEN(t)]E (t)

Ė (t) = [βNE (t)]N(t)− µNN(t) (1)

I Solution Ė = Ṅ = 0:

N = E = 0
N = βE/µE , E = νN/βN (2)
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Predator prey model
I Solution Ė = Ṅ = 0:

N = E = 0
N = βE/µE , E = νN/βN (3)

I Numerical solution:
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Predator prey model
I Numerical solution:

I Reality:
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Other agent based models

I Agents are nodes
I Interactions through links
I Any network:

I Lattices
I Random networks
I Scale-free
I Fully connected graphs

I Examples:
I Opinion models (not this time)
I Minority models
I Game models
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Flocking Model
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Flocking model

I Birds move with constant velocity (v0)
I Align themselves to neighbors
I Some noise due to inaccurate averaging
I Differential equation

θi (t + ∆t) = 〈θ(t)〉|ri−rj |<R + ξ

I Upgrade position:

ri (t + ∆t) = ri (t) + v0e(θi (t))∆t

where e(θ) is a unit vector in the direction of θ.
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Flocking model

I Birds move with constant velocity (v0)
I Align themselves to neighbors
I Some noise due to inaccurate averaging
I Phase diagram 1d:
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Flocking model

I Birds move with constant velocity (v0)
I Align themselves to neighbors
I Some noise due to inaccurate averaging
I Non-physicist model:
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Minority models
"It is not worth an intelligent man’s time to be in the majority. By
definition, there are already enough people to do that."
Godfrey Harold Hardy
"Csak a döglött hal úszik az árral" - "Only dead fish swim with the
tide"
I El Farol Bar problem
I Irish Music Thursdays
I Music is unenjoyable if more than 60 people go
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Minority models

I El Farol Bar problem
I Irish Music Thursdays
I Music is unenjoyable if more than 60 people go
I After a transient attendance fluctuates around 60%
I In late stages regularities (cycles) are arbitraged away
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Memory
I Intentionalism: I know that he know that I know what he . . .
I Intelligent animals: 2 levels
I Children: 2 levels
I Strong authists: 1 level
I Humans 5-7 levels
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El Farol problem, strategy

I Attendance was: 44 78 56 15 23 67 84 34 45 76
I Should I stay or should I go now?
I N agents with strategies
I Agents change their strategy with respect to performance
I Similar problems:

I Traffic decisions
I Animals food/water
I Shopping times
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Minority model

I N players (odd for simplicity)
I Action of player i at time t is ai (t) = {+1,−1}
I Total action: A(t) =∼i ai (t)

I Payoff: pi (t) = −ai (t)g [A(t)], g(a) is an odd function, e.g.
sign(x)

I Information: W (t + 1) = g [A(t)] = sign[A(t)]

I Memory: limited to the last m values of W
I Strategy: A table from the 2m possible inputs to the

corresponding output
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Minority model: strategy

I Memory: limited to the last m values of W
I Strategy: A table from the 2m possible inputs to the

corresponding output

input output
−1 −1 −1 −1
−1 −1 +1 +1
−1 +1 −1 +1
−1 +1 +1 −1
+1 −1 −1 +1
+1 −1 +1 −1
+1 +1 −1 +1
+1 +1 +1 −1
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Random strategy
I Having N agents, the probability of having n +1 follows a

binomial distribution

P(n) =

(
N

n

)
pn(1− p)N−n

I Average: 〈n〉 = pN, 〈n〉(p = 1/2) = N/2
I Variance: σ2 = Np(1− p), σ2(p = 1/2) = N/2
I Minority game:
I Average: 〈A(t)〉 = 0
I Variance: σ2/N is function of α = 2m/N with

lim
α→∞

σ2/N = 1/4

So the strategy with infinite memory becomes random
I At low values of α the variance increases as a power law
σ2/N ∼ α−1
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Minority model: variance
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Minority model: order parameter

I Can we predict the sign of A(t)?
I α < αc : No, we have not enough information, agents are

random
I α > αc : Yes, strong dependence, in market this can be

exploited (arbitrage)

I Order parameter: information

H =
1
2m
∑
ν

〈W (t + 1)|W (t) = ν〉

Page 38



Minority model: variance
I Can we predict the sign of A(t)?

I α < αc : No, we have not enough information, agents are
random

I α > αc : Yes, strong dependence, in market this can be
exploited (arbitrage)
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Game models:

I Rock-paper-scissors
I Prisoner’s dilemma
I Chicken, hawk-dove game
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Rock-paper-scissors

I No winning strategy on (truly) random opponent
I E.g bacterian and antibiotics in mice
I Grass-rabbit-fox
I Popular in games
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Prisoner’s Dilemma

I Two people playing the game
I Two options: Cooperate, Defect
I Cooperate: Confess the crime
I Defect: deny the crime
I Result: years in prison

Cooperate Defect
Cooperate -1, -1 -3, 0
Defect 0, -3 -2, -2
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Prisoner’s Dilemma

I Payoff matrix
I Reward for actions based on other player’s actions

Cooperate Defect
Cooperate 2, 2 0, 3
Defect 3, 0 1, 1

Cooperate Defect
Cooperate 1, 1 0, 2
Defect 0, 2 0, 0
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Prisoner’s Dilemma

I Each player with a preferred strategy that collectively results in
an inferior outcome

I Dominating strategy regardless of the opponent’s action
I Nash equilibrium, from which no individual player benefits

from deviating

Cooperate Defect
Cooperate 2, 2 0, 3
Defect 3, 0 1, 1

Cooperate Defect
Cooperate 1, 1 0, 2
Defect 0, 2 0, 0
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Prisoner’s Dilemma

I One game → defect
I Fixed number of games → defect
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Chicken game, Hawk-Dove game
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Chicken game, Hawk-Dove game
I No preferred strategy
I The best strategy is to anti-coordinate with your opponent

Cooperate Defect
Cooperate 0, 0 -1, 2
Defect 2, -1 -5, -5

I Example: Cold war
I Solution: anti-correlated pure strategy
I Probabilistic, or mixed strategy (play Hawk with p′)
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Chicken game, Hawk-Dove game difference to Prisoner’s
dilemma

Cooperate Defect
Cooperate Reward S, T
Defect T, S Punish

Hawk-Dove Prisoner’s dilemma
C D

C 2, 2 1, 3
D 3, 1 0, 0

C D
C 2, 2 0, 3
D 3, 0 1,1

I Prisoner’s dilemma:
Temptation(T)>Reward(R)>Punish(P)>Sucker(S)

I Chicken game:
Temptation(T)>Reward(R)>Sucker(S)>Punish(P)
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Stag game

Prisoner’s dilemma Hawk-Dove Stag game
C D

C 2, 2 0, 3
D 3, 0 1,1

C D
C 2, 2 1, 3
D 3, 1 0, 0

C D
C 3, 3 0, 2
D 2, 0 1,1

I Prisoner’s dilemma:
Temptation(T)>Reward(R)>Punish(P)>Sucker(S)

I Chicken game:
Temptation(T)>Reward(R)>Sucker(S)>Punish(P)

I Stag game:
Reward(R)>Temptation(T)>Punish(P)>Sucker(S)
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Prisoner’s dilemma: multiple agents

I Against all others
I Against itself
I Against a fully random agent
I Number of agents: 14, 62
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Prisoner’s dilemma: multiple agents: Strategies
I Strategies for repeated games in Axelrod’s tournament ( 1980):
I AllD: choosing D always (unconditional defector, the bad guy,

. . . )
I AllC: choosing C always („the good guy” or sucker)
I Random: chooses D or C with probabilities q or (1-q)
I TFT (Tit-for tat): chooses C first, then she

repeates/reciprocates the previous strategy of the co-player
I Generous TFT: TFT, but chooses C (instead of D) with a

probability q
I WSLS (win-stay-lose-shift): first C or D, then she changes it if

her payoff is smaller than an aspiration level (Ux<a)
I Stochastic reactive strategies: Chooses C or D with

probabilities dependent on the previous decision of the
co-player

I Stochastic reactive strategies with longer memory: Etc.
I Go-by-Majority cooperates on the first round, then takes

majority strategy.
I . . . and many morePage 51



Multiple agents: Winning strategy

I The winner is: Tit-for-tat!
I Human law
I Note that Common good was not included
I Why not “always defect”(AD), which is the Nash equilibrium of

the
I Prisoners’ dilemma for any finite number of plays?
I Nash equilibrium means that AS is the best strategy against

AD
I AS is not dominant strategy
I It is not the best strategy for all strategies

Page 52



Multiple agents: Best strategy

I Large pool of players (movie):
I It can be shown that for a repeated PD game there is no best

strategy for all possible strategies
I But for a good strategy it has to be

I Nice (do not defect first)
I Punish others for being nasty
I Forgive fast
I Be efficient against yourself
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