
Neural networks

János Török

May 14, 2020

Page 1

Neural networks

I Input pattern
I Output pattern
I Adaptive weights
I Approximating non-linear

functions

I Machine learning
I Pattern recognition
I Handwriting
I Speech recognition

Page 2

Neural networks

I Input vector I
I Output vector O(I)

I Transition matrix Wij ∈ [−1, 1]

I Learning using a cost function
I Test goodness

Page 3

Neural networks: Learning

I Supervised learning
I Data training
I Fitness function, energy:

E = T (I)− O(I),

where T (I) is the target vector for input I
I Minimize E for available set of {I , I (O)} pairs
I Deep learning: many layers of neurons in the neural network

I Test goodness:
I Use only part of {I , I (O)} pairs for learning, the rest is for

testing.

I Used for: pattern recognition, classification, etc.

Page 4

Neural networks: Learning

I Unsupervised learning: No fitness function
I Reinforcement learning: e.g. Q-learning

I Penalize wrong answers and reward good ones
I Used for playing games

I Random forest (pool of decision trees):
I Generate a random synthetic data
I Teach the decision tree to recognize real data (e.g. label them

differently)
I Data points closer in the decision tree are related
I Cluster the data accordingly

Page 5

Deep learning

I Literature: Introduction to deep learning: https://www.cs.
princeton.edu/courses/archive/spring16/cos495/

Page 6

https://www.cs.princeton.edu/courses/archive/spring16/cos495/
https://www.cs.princeton.edu/courses/archive/spring16/cos495/

Deep learning: Classification, linear

Page 7

Deep learning: Classification, linear

Page 8

Deep learning: Kernel model

Make non-linear model linear

Page 9

Deep learning: Feed forward

Page 10

Deep learning: Feed forward

Page 11

Deep learning: Feed forward

Page 12

Deep learning: Feed forward

Page 13

Deep learning: Feed forward

Page 14

Deep learning: Feed forward

Page 15

Deep learning: Feed forward

Page 16

Deep learning: Activation function

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

y

wTx

y=wTx
y=step(wTx)

y=1/(1+exp(x))

Page 17

Fully connected neural networks

Ideas from Piotr Skalski, Pataki Bálint Ármin

Page 18

Fully connected neural networks

I Model:
I Inputs (xj) or for hidden layer l : Al−1

j

I Weight w l
ij

I Bias bli
I Weighted sum of input and bias: z li =

∑
j A

l−1
j w l

ij + bli
I Activation function (nonlinear) g : Al

i = g(z li)

Yang et el, 2000.

Page 19

Feed forward

I Example

I We have an output, how to change weights and biases to
achieve the desired output?

I Error L

Page 20

Backpropagation

I

∆W = −α ∂L

∂W

I W is a large three dimensional matrix
I Chain rule!

Page 21

Backpropagation

I Chain rule

Page 22

Backpropagation: Example

I From HMKCode
I Note that there is no activation function (it would just add

one more step in the chain rule)

Page 23

Backpropagation: Example
I ∆: prediction − actual

Page 24

Backpropagation: Example

I Summarized in matrix form
I No wonder why graphic cards are so useful for this!

Page 25

Backpropagation: Formula

I Last error is in dAl . Originally it is

L = Y − Al

I Algorithm:

dZl = dAl ∗ g ′(Zl)

dAl−1 =
∂L

∂Al−1 = (Wl)TdZl

dWl =
∂L
∂Wl

=
1
m
dZl(Al−1)T , (1)

where m is the number of components of the layer l
I Zl is the result of the sum at layer l
I Al is the result after applying the nonlinear activation function
I ∗ is an elementwise product of two vectors

Page 26

How many layers?

I Neural network with at least one hidden layer is a universal
approximator (can represent any function).

Do Deep Nets Really Need to be Deep? Jimmy Ba, Rich Caruana,

Page 27

Deep learning: Overfitting: Need a lot of data

Page 28

Deep learning: Features example

Page 29

Convolution operator: examples

Page 30

Deep learning: Convolutional Neural Network

Page 31

Deep learning: Convolutional Neural Network

Page 32

Game models:

I Rock-paper-scissors
I Prisoner’s dilemma
I Chicken, hawk-dove game

Page 33

Rock-paper-scissors

I No winning strategy on (truly) random opponent
I E.g bacteria and antibiotics in mice
I Grass-rabbit-fox
I Popular in games

Page 34

Prisoner’s Dilemma

I Two people playing the game
I Two options: Cooperate, Defect
I Cooperate: Confess the crime
I Defect: deny the crime
I Result: years in prison

Cooperate Defect
Cooperate -1, -1 -3, 0
Defect 0, -3 -2, -2

Page 35

Prisoner’s Dilemma

I Payoff matrix
I Reward for actions based on other player’s actions

Cooperate Defect
Cooperate 2, 2 0, 3
Defect 3, 0 1, 1

Cooperate Defect
Cooperate 1, 1 0, 2
Defect 0, 2 0, 0

Page 36

Prisoner’s Dilemma

I Each player with a preferred strategy that collectively results in
an inferior outcome

I Dominating strategy regardless of the opponent’s action
I Nash equilibrium, from which no individual player benefits

from deviating

Cooperate Defect
Cooperate 2, 2 0, 3
Defect 3, 0 1, 1

Cooperate Defect
Cooperate 1, 1 0, 2
Defect 0, 2 0, 0

Page 37

Prisoner’s Dilemma

I One game → defect
I Fixed number of games → defect

Page 38

Chicken game, Hawk-Dove game

Page 39

Chicken game, Hawk-Dove game
I No preferred strategy
I The best strategy is to anti-coordinate with your opponent

Cooperate Defect
Cooperate 0, 0 -1, 2
Defect 2, -1 -5, -5

I Example: Cold war
I Solution: anti-correlated pure strategy
I Probabilistic, or mixed strategy (play Hawk with p′)

Page 40

Chicken game, Hawk-Dove game difference to Prisoner’s
dilemma

Cooperate Defect
Cooperate Reward S, T
Defect T, S Punish

Hawk-Dove Prisoner’s dilemma
C D

C 2, 2 1, 3
D 3, 1 0, 0

C D
C 2, 2 0, 3
D 3, 0 1,1

I Prisoner’s dilemma:
Temptation(T)>Reward(R)>Punish(P)>Sucker(S)

I Chicken game:
Temptation(T)>Reward(R)>Sucker(S)>Punish(P)

Page 41

Stag game

Prisoner’s dilemma Hawk-Dove Stag game
C D

C 2, 2 0, 3
D 3, 0 1,1

C D
C 2, 2 1, 3
D 3, 1 0, 0

C D
C 3, 3 0, 2
D 2, 0 1,1

I Prisoner’s dilemma:
Temptation(T)>Reward(R)>Punish(P)>Sucker(S)

I Chicken game:
Temptation(T)>Reward(R)>Sucker(S)>Punish(P)

I Stag game:
Reward(R)>Temptation(T)>Punish(P)>Sucker(S)

Page 42

Prisoner’s dilemma: multiple agents

I Against all others
I Against itself
I Against a fully random agent
I Number of agents: 14, 62

Page 43

Prisoner’s dilemma: multiple agents: Strategies
I Strategies for repeated games in Axelrod’s tournament (1980):
I AllD: choosing D always (unconditional defector, the bad guy,

. . .)
I AllC: choosing C always („the good guy” or sucker)
I Random: chooses D or C with probabilities q or (1-q)
I TFT (Tit-for tat): chooses C first, then she

repeats/reciprocates the previous strategy of the co-player
I Generous TFT: TFT, but chooses C (instead of D) with a

probability q
I WSLS (win-stay-lose-shift): first C or D, then she changes it if

her payoff is smaller than an aspiration level (Ux<a)
I Stochastic reactive strategies: Chooses C or D with

probabilities dependent on the previous decision of the
co-player

I Stochastic reactive strategies with longer memory: Etc.
I Go-by-Majority cooperates on the first round, then takes

majority strategy.
I . . . and many morePage 44

Multiple agents: Winning strategy

I The winner is: Tit-for-tat!
I Human law
I Note that Common good was not included
I Why not “always defect”(AD), which is the Nash equilibrium of

the
I Prisoners’ dilemma for any finite number of plays?
I Nash equilibrium means that AS is the best strategy against

AD
I AS is not dominant strategy
I It is not the best strategy for all strategies

Page 45

Multiple agents: Best strategy

I Large pool of players (movie):
I It can be shown that for a repeated PD game there is no best

strategy for all possible strategies
I But for a good strategy it has to be

I Nice (do not defect first)
I Punish others for being nasty
I Forgive fast
I Be efficient against yourself

Page 46

