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Literature

 Numerics: Computational Quantum Physics course at
ETH Zurich SS 2008, by P. de Forcrand & M. Troyer

- lecture notes online

 Quantum Scattering Theory: Any introductory Quantum
Mechanics book, e.g., Griffiths



1-dimensional Quantum Mechanics, brief reminder

ian wave packet, a=2, k; =4

state of particle: U (z)
complex valued wavefunction

position probability density: W ()|
expectation value of position:

(z) = /d:v U ()2 — /dx\If(x)*:U\If(az)
position operator: = = x- TW(x) = a2V (x)
momentum: p=—ihd, (p)= /dfri[f(x)*ﬁllf(a:)
Hamiltonian = operator of total energy: 77 _— P TV

2m
time evolution, Schrodinger equation: 1hoy U = HU

2
1ho U (x) = —zh—m(?i\lf(x,t) + V(z)U(x,t)




1-dimensional qguantum mechanics: eigenstates of
Hamiltonian, time-independent Schrodinger equation

2
ihoV(z) = —;—mﬁi\ﬂ(x, t)+ V(x)V(x,t)

time evolution, Schrodinger equation: 1hoy U = HWU

A

try it on eigenfunction i
ofytiwe opejzrgatoruH: Hiy(z) = EY(x) — VY(z,t)=e E/htw(w)

This W is a stationary state, position distribution |W(x,t)|? independent of time

Example:
. Some trajectories of a particle
bound states in in a box according to
a square well Newton's laws of
: classical mechanics (A), and
a according to the

Schroédinger equation of
qguantum mechanics (B-F). In
\v (B-F), the horizontal axis is

E I position, and the vertical axis
A\ is the real part (blue) and
imaginary part (red) of the
wavefunction. The states
(B,C,D) are energy eigenstates
, but (E,F) are not.



https://en.wikipedia.org/wiki/Newton%27s_laws
https://en.wikipedia.org/wiki/Classical_mechanics
https://en.wikipedia.org/wiki/Schr%C3%B6dinger_equation
https://en.wikipedia.org/wiki/Quantum_mechanics
https://en.wikipedia.org/wiki/Wavefunction
https://en.wikipedia.org/wiki/Energy_eigenstate


Bound states in 1D have real-valued wavefunctions with
compact support

I g(a) + ™02 () = Bub(a) W(et) 5 o partice
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Freely propagating particle: plane wave, wavepacket

\IJ(ZE t) _ eikaz—iE/ht

Wavefunction not normalized for
probability but for particle current

(a)

State of actual particle: wavepacket





Real space - momentum space: Fourier transform

\

—

-----

iiiiiiiiiiiiii

MWW

2 4 [} 3 I 12 14 16 1% 1 2 3 4 * 6 1
s ition wavenumbser



Scattering states in 1D: incoming, reflected, transmitted
plane wave + something in the middle

h? 5 .

I — F scattering state:

2m % (@) + V(2)9() Y(z) - a solution of Schrodinger eqn,
= eigenstate of H

- with no incoming wave from right (D=0)

— Away from scattering region (1,3):
superposition of plane waves
with wavenumber k

ko — \/QWE/EQ

— In scattering region (2):
depends on potential

¢1 (CE‘) _ Aeikom + Be—ik:g:c @/13(33’) _ Ceik;om 4+ De—ik;om

Solution over all x: fit solutions at a and -a:
reflection & transmission amplitudes:

¥1(-a) $a(a) = ¢s(a) B C
r=—; t=—

1(—a) = ¢5(—a) y(a) = ¥(a) A A
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reflection & transmission probabilities: R = |r|?| T = |t|?



Example: scattering from Square barrier

Exactly solvable textbook problem (Griffiths Quantum Mechanics 2.6.,
or wikipedia, plane waves+fitting)

V(X)
Solution simple in scattering region as well:

¢2(LI§') — Feikla: + Ge—ikzlx

k‘l — \/Zm(E — V())/hz
]fo — \/2WLE/E2

1 () ¢2($) V3(x)

¢1($) — Aeikom + Be—ikoiL‘ wg(.ﬂf) — Ceikox _|_ De—ikox

Solution over all x; fit solutions at a and -a:

reflection & transmission amplitudes:
p1(—a) h2(a) = s3(a) B ,_C

P1(—a) = ¢5(—a) y(a) = ¥s(a) A A
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reflection & transmission probabilities: R = |r|?| T = |t|?



Transmission by tunneling and resonances
in square barrier

Tunneling across barrier in 1.0 | ]
classically forbidden regime:

classical | quantum
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Transmission resonances:
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What is fundamental in quantum mechanics,
what is only for square well?
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Formulas also hold for transmission across square well,
transmission resonances

As before, with VO<O. D
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Transmission across square well E(A?)
is always classically allowed:
252
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4E(E—-Vp) What about a transmission resonance

No transmission for E=0 at O energy?



What happens to transmission resonances in smooth

- T resonances, as E is tuned

2h2 2

2ma2

E,=Vo+

2 3 4 5 6
energy E

- T resonances at E=0, as VO is tuned?
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Numerov: finite-difference method to solve

Schrodinger equation (like Runge-Kutta)

o O2() + V() () = By (o)

discretize position: T =T =z,

Taylor expand :
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Use a trick to get rid of all odd order derivatives:
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Numerov method, summarized

_h_zaw(x) +V(z)y(z) = EY()

om *
dimensionless variables:

P (x) + k(z)Y(x) =0
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locally accurate to 5" order




To calculate with Numerov method, need initial
conditions: 2 neighboring values, to iterate

If potential is finite range, V(x) = O for |x|>a
— use plane wave/decaying form

U(-a) =1

(bound state at -E):

Y(—a — Ax) = exp(Aa;\/ZmE/h)

scattering state at +E:

V(—a — Az) = exp(+iAz/2mE/h)



Scattering problem by Numerov algorithm

Yr(x) = Aexp(—iqr) + Bexp(iqx) Yr(z) = Cexp(—iqr)

e Set ' =1 and use the two points a and a + Az as starting points for a Numerov
integration.

e Integrate the Schrodinger equation numerically — backwards in space, from a to
0 — using the Numerov algorithm.

e Match the numerical solution of the Schrodinger equation for @ < 0 to the free
propagation ansatz (3.11) to determine A and B.
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| BI*/|Al*
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Exercises for today

e Calculate scattering from a square potential barrier by
integration of Schrodinger equation using Numerov

- Plot transmission as a function of energy, for
a barrier height 2 eV, size 1nm

 Compare with analytical curves

e Calculate scattering from a Gaussian potential barrier by
the same method

- Plot transmission as before, with a barrier height 2eV, size
1nm

- What happened to the transmission resonances?



Homework: what happens to transmission resonances in
smooth potentials?

potential V
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Homework exercises

e Calculate scattering from a square potential well by integration of
Schrodinger equation using Numerov

- Plot transmission as a function of energy, for
a well depth 2 eV, size 2a=1nm.

e Also plot analytical curves

- Plot transmission as a function of well depth (4 eV— 0 eV ),
at energy 0.1 eV, well size a=0.5 nm

* Change the shape of the potential well to Gaussian. What
happens to the resonances in the two cases above?

- Plot transmission as a function of energy, for
a well depth 2 eV, size a=0.5nm

- Plot transmission as a function of well depth (4 eV— 0 eV ),
at energy 0.1 eV, well size a=0.5nm
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