Neural networks

Janos Torok

May 14, 2020

Page 1

Neural networks

Hidden
Input
Output » Machine learning

P> Pattern recognition

» Handwriting

» Speech recognition

» Input pattern
» Qutput pattern
> Adaptive weights

» Approximating non-linear
functions

Page 2

Neural networks

Input vector /
Output vector O(/)
Transition matrix Wj; € [—1,1]

Learning using a cost function

vVvYyyvy

Test goodness

Page 3

Neural networks: Learning

» Supervised learning

» Data training
» Fitness function, energy:

E=T(I)-o0(),

where T (/) is the target vector for input /
» Minimize E for available set of {/,/(O)} pairs
» Deep learning: many layers of neurons in the neural network

» Test goodness:

» Use only part of {/,/(O)} pairs for learning, the rest is for
testing.

> Used for: pattern recognition, classification, etc.

Page 4

Neural networks: Learning

» Unsupervised learning: No fitness function

» Reinforcement learning: e.g. Q-learning
» Penalize wrong answers and reward good ones
» Used for playing games

» Random forest (pool of decision trees):
» Generate a random synthetic data
» Teach the decision tree to recognize real data (e.g. label them

differently)

» Data points closer in the decision tree are related
» Cluster the data accordingly

Page 5

Deep learning

> Literature: Introduction to deep learning: https://wuw.cs.
princeton.edu/courses/archive/springl6/cos495/

Page 6

https://www.cs.princeton.edu/courses/archive/spring16/cos495/
https://www.cs.princeton.edu/courses/archive/spring16/cos495/

Deep learning: Classification, linear

Linear classification wlx =0

wlix >0

T
- o wix <0
Class 1
[[]
®
u ° Class 0

Page 7

Deep learning: Classification, linear

Attempt

* Given training data {(x;, v;): 1 < i < n}i.i.d. from distribution D

* Hypothesis v = sign(f;, (x)) = sign(w’x)
cy=+1ifwTx >0
cy=—1ifwTx <0

* Let’s assume that we can optimize to find w

Page 8

Deep learning: Kernel model

Make non-linear model linear
Features: part of the model

Nonlinear model

build r
hypothesis YV =W o(x)

Linear model

Page 9

Deep learning: Feed forward

Example: Polynomial kernel SVM

y = sign(wT¢p(x) + b)

Fixed ¢(x)

Page 10

Deep learning: Feed forward

Motivation: representation learning

* Why don’t we also learn ¢(x)?

Page 11

e
hadwenit==
‘1' Learn ¢ (x) - Learn w
—
.

y=wlopX)

Deep learning: Feed forward

Page 12

Feedforward networks

* View each dimension of ¢ (x) as something to be learned

L 4

L 4

@

y=wlok)

Deep learning: Feed forward

Feedforward networks

* Linear functions ¢;(x) = 6] x don’t work: need some nonlinearity

L 3

y=wlp(x)
@
@

¢ (x)

@-
@®-
@
L 4
@

Page 13

Deep learning: Feed forward

Feedforward networks

» Typically, set ¢; (x) = (8 x) where r(-) is some nonlinear function

L 4

y=wlg(x)

L 4
@

$(x)

90006

Page 14

Deep learning: Feed forward

Feedforward deep networks

* What if we go deeper?

@

@
@

hl

- 90000

Page 15

h2

00000

hL

E DA

Deep learning: Feed forward

Motivation: abstract neuron model

* Neuron activated when the correlation
between the input and a pattern &
exceeds some threshold b

* y = threshold(8”x — b))
ory =1(0"x — b)

* (-) called activation function

Xa

Page 16

<

Deep learning: Activation function

15

0.5

-0.5

-1.5

Page 17

y=wa‘

y=step(wTx)

y=1/(1+exp(x))

wTx

0.5

1.5

Fully connected neural networks

b=0.013

h_out =0.0310

b=0.025

output =0.5070 >

1b=0.026

output =0.5073 _)

h_out =0.0400

input output

hidden

Ideas from Piotr Skalski, Pataki Balint Armin

Page 18

Fully connected neural networks

» Model:

v

Weight w,-;
Bias b!

Inputs (x;) or for hidden layer /: AJ’-_1

>
| 4
> Weighted sum of input and bias: z/ = > AJ/le,-J’- + b!
>

Activation function (nonlinear) g: Al = g(z!)

Ay Wi

F(Ns)

Page 19

Yang et el, 2000.

Feed forward

> Example
input layer hidden layer output layer 1 1 1
put lay Y put lay: ZI]—w(\mlxo+w(|,1lx1+w(|)z|x2+b[,'
I1] (1]
a' =g(%")
zl” = w‘ lxo + wI le + wlllzlxz + b[1|

|11] =g (2}11)

= wl2lgltl 4+ pl2] Z(,’ = (‘, 0Qo + u“ La; + b],"‘
a[Z] = g(z[zl) “]) | =g (7.(‘, \)

21 = ity 4 pl1l
altl = g(z117)

> We have an output, how to change weights and biases to
achieve the desired output?

» Error L

Page 20

Backpropagation

oL
AW = —Oéa—W

> W is a large three dimensional matrix
» Chain rule!

Geoffrey Hinton

Emeritus Prof. Comp Sci, U.Toronto & Engineering Fellow, Google
Verified email at cs_toronto.edu - Homepage

machine learning neural networks artificial intelligence cognitive science
computer science

TITLE CITED BY YEAR

o . . *
Learning internal representations by error-propagation 63004 1986
DE Rumelhart, GE Hinton, RJ Williams

Parallel Distributed Processing: Explorations in the Microstructure of ..

Page 21

Backpropagation

» Chain rule
a; = g(Z,) = g(wlja’j + b7)
OL JLda; 8z OL ,

ow;; N da; 0z; Ow; - 8a,~g (zi)a;

8L _ 3L3a18z1
8_a'i o Zaalazlaal Zaal

lel el

Z/ wi;

Page 22

Backpropagation: Example

» From HMKCode

» Note that there is no activation function (it would just add
one more step in the chain rule)

nput Layer Hidden Layer Output Layer

Wy B
_— prediction
- o

Page 23

Backpropagation: Example
> A: prediction — actual

nwput Layer Hiddewn Layer Output Layer

-
— preslietion
g

— &

‘we=wg—al(h,. a)

‘we=w.—al(h,. a)
upated weights — "Wy = Wy—a (i, . Awg)
\ Cwy=wy—a (i, Aw,)
‘Wy=w,—al(l,. Aw,)

‘wy=w,—al(l, . Aw,)

o =
Page 24

Backpropagation: Example

» Summarized in matrix form

» No wonder why graphic cards are so useful for this!

g R 7 L P o et

w, W w, W3 W, Ws al Aw, alAw,
1 3]= 1 a]_aﬂ[]-[Ws w] =" ':] _[5 5]
wy, wul lw, w, Wy Wy aiL,Aw; ailAw,

Page 25

Backpropagation: Formula
» Last error is in dA’. Originally it is
L=Y-A
» Algorithm:

dZ' = dA! x g'(Z))

dA’—'lza/f,L__1 = (wWHTdz
oL 1
I Y% L gl al-INT
awW' = - dz!(A'=HT, (1)

where m is the number of components of the layer /
» Z!is the result of the sum at layer /
» Al is the result after applying the nonlinear activation function

» x is an elementwise product of two vectors

Page 26

Page 27

How many layers?

» Neural network with at least one hidden layer is a universal
approximator (can represent any function).

3 hidden neurons

6 hidden neurons

20 hidden neurons

Do Deep Nets Really Need to be Deep? Jimmy Ba, Rich Caruana,

<O «F>»

it
a
it
v
it

DA

Deep learning: Overfitting: Need a lot of data

1
t
0
-1
1
—6— Training
—6— Test
@
Z 05
IS
Figure from Machine Learning
and Pattern Recognition, Bishop
0

Page 28

Deep learning: Features example

Deep neural
networks learn
hierarchical feature
representations

hidden layer 1 hidden layer 2 hidden Tayer 3

Page 29

Convolution operator: examples

Operation Filter
000
Identity 010
000
10 -1
(U
=10 1
0 10
Edge detection 1 -4 1
o 1
-1 -1 -1
-1 8 -1
-1 -1 -1
0 -1 o
Sharpen -1 5 -1
0 -1 0
Box blur

o=
—_—
(I
"

(nomalizes)

Gaussian blur
(approximation)

==
(SRR
SR
- b

Page 30

Page 31

Deep learning: Convolutional Neural Network

pooled Fully-connected 1
feature maps pooled feature maps feature maps
feature maps

Outputs
Input Convolutional Pooling 1 Convolutional
layer 1

Pooling 2
layer 2

u]
@
ul

Deep learning: Convolutional Neural Network

\ [+ 5
\ input feature maps feature maj
i2x 32 B x 28 14 14
\
\
\

feature extraction

classification
Page 32

Game models:

» Rock-paper-scissors
» Prisoner's dilemma

» Chicken, hawk-dove game

Page 33

Rock-paper-scissors

Page 34

» No winning strategy on (truly) random opponent
» E.g bacteria and antibiotics in mice
» Grass-rabbit-fox

» Popular in games

Prisoner’'s Dilemma

Two people playing the game

Two options: Cooperate, Defect

>
>
» Cooperate: Confess the crime
» Defect: deny the crime

>

Result: years in prison

‘ Cooperate Defect

Cooperate -1, -1 -3,0
Defect 0,-3 =-2,-2

Page 35

Prisoner’'s Dilemma

» Payoff matrix

» Reward for actions based on other player’s actions

Cooperate Defect
Cooperate 2,2 0, 3
Defect 3,0 1,1

Cooperate Defect
Cooperate 1,1 0,2
Defect 0,2 0,0

Page 36

Prisoner’'s Dilemma

» Each player with a preferred strategy that collectively results in
an inferior outcome

» Dominating strategy regardless of the opponent’s action

» Nash equilibrium, from which no individual player benefits
from deviating

Cooperate Defect
Cooperate 2,2 0,3
Defect 3,0 1,1

Cooperate Defect
Cooperate 1,1 0, 2
Defect 0,2 0,0

Page 37

Prisoner’'s Dilemma

> One game — defect
» Fixed number of games — defect

Page 38

Chicken game, Hawk-Dove game

503,205 (mmmm_/ <

¥s £o0 %10 40

Page 39

Chicken game, Hawk-Dove game

» No preferred strategy

» The best strategy is to anti-coordinate with your opponent

‘ Cooperate Defect
Cooperate 0,0 -1, 2
Defect 2,-1 -5,-5

v

Example: Cold war

v

Solution: anti-correlated pure strategy

» Probabilistic, or mixed strategy (play Hawk with p’)
L A 1Y 1%
P| P :
xI ;,'T.' x
0 1 0 1 0 P

Page 40

Chicken game, Hawk-Dove game difference to Prisoner’s
dilemma

‘ Cooperate Defect

Cooperate Reward S, T
Defect T,S Punish
Hawk-Dove Prisoner’s dilemma
C D C D
c|122 1,3 Cl|22 03
D|31 00 D|30 L1

» Prisoner's dilemma:
Temptation(T)>Reward(R)>Punish(P)>Sucker(S)

» Chicken game:
Temptation(T)>Reward(R)>Sucker(S)>Punish(P)

Page 41

Stag game

Prisoner's dilemma Hawk-Dove Stag game
C D | C D | C D
cl22 03 Cl22 1,3 C|33 02
D|3,0 11 D|31 0,0 D20 11

» Prisoner's dilemma:
Temptation(T)>Reward(R)>Punish(P)>Sucker(S)

» Chicken game:
Temptation(T)>Reward(R)>Sucker(S)>Punish(P)

> Stag game:
Reward(R)>Temptation(T)>Punish(P)>Sucker(S)

Page 42

Prisoner’s dilemma: multiple agents

Page 43

» Against all others

> Against itself

» Against a fully random agent
» Number of agents: 14, 62

Prisoner’s dilemma: multiple agents: Strategies

Page 44

>
>

v

Strategies for repeated games in Axelrod’s tournament (1980):
AlID: choosing D always (unconditional defector, the bad guy,
AlIC: choosing C always (,the good guy” or sucker)

Random: chooses D or C with probabilities q or (1-q)

TFT (Tit-for tat): chooses C first, then she
repeats/reciprocates the previous strategy of the co-player
Generous TFT: TFT, but chooses C (instead of D) with a
probability g

WSLS (win-stay-lose-shift): first C or D, then she changes it if
her payoff is smaller than an aspiration level (Ux<a)
Stochastic reactive strategies: Chooses C or D with
probabilities dependent on the previous decision of the
co-player

Stochastic reactive strategies with longer memory: Etc.
Go-by-Majority cooperates on the first round, then takes
majority strategy.

...and many more

Multiple agents: Winning strategy

The winner is: Tit-for-tat!
Human law
Note that Common good was not included

Why not “always defect”(AD), which is the Nash equilibrium of
the

vvvyyypy

v

Prisoners’ dilemma for any finite number of plays?

v

Nash equilibrium means that AS is the best strategy against
AD

> AS is not dominant strategy
> It is not the best strategy for all strategies

Page 45

Multiple agents: Best strategy

» Large pool of players (movie):

» It can be shown that for a repeated PD game there is no best
strategy for all possible strategies

» But for a good strategy it has to be

> Nice (do not defect first)

» Punish others for being nasty
» Forgive fast

> Be efficient against yourself

Page 46

