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Algorithmically defined models

» Self-Organized Criticality

» Bak-Tang-Wiesenfeld model
» Forest fire model
» Bak-Sneppen model of evolution

» Traffic models

» 1d driven systems
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Self-Organized Criticality

Critical state: inflection point in the critical isotherm
Power law functions of correlation length, relaxation time

>
>
» Control parameter, generally temperature
» Critical point as an attractor?

>

Why? Power law: We see many cases

» 1/f noise (music, ocean, earthquakes, flames)
» Lack of scales (market, earthquakes)

» Underlying mechanism?
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Bak-Tang-Wiesenfeld model

» Originally a sandpile model

» Better explained as a Lazy
Bureaucrat model:

> Bureaucrats are sitting in a
large office in a square lattice
arrangement

» QOccasionally the boss comes
with a dossier and places it on
a random table

» The bureaucrats do nothing
until they have less than 4
dossiers on their table

» Once a bureaucrat has 4 or more dossiers on its table starts to
panic and distributes its dossiers to its 4 neighbors

» The ones sitting at the windows give also 1 dossier to its
neighbors and throw the rest out of the window.
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Bak-Tang-Wiesenfeld model

» Originally a sandpile model
> Better explained as a LaZy SPRING-SLIDER BLOCK MODEL
Bureaucrat model:

» Best application: Spring block
model of earthquakes:

» Masses sitting on a frictional :
plane ina grid are connected FISED PLATE
with springs to eachother and
to the top plate

> Top plate moves slowly, increasing the stress on the top
springs slowly and randomly

> If force is large enough masses move which increases the stress
on the neighboring masses
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Bak-Sneppen model of evolution

» N species all depends on two other (ring geometry)
» Each species are characterized by a single fitness

» In each turn the species with the lowest fitness dies out and
with it its two neighbors irrespective of their fitness

» These 3 species are replaced by new ones with random fitness
» Inital and update fitness is uniform between [0, 1]

; |
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Bak-Sneppen model of evolution: Results

» Steady state with avalanches
» Avalanches start with a fitness f > f. ~ 0.66
» Avalanche size distribution power law

» Distance correlation power law

P(B)
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Bak-Sneppen model of evolution an application: Granular
shear

» Fitness — Effective friction coefficient
» Speciment with lowest fitness dies out — block is sheared at
weakest position (shear band)

» Neighbors, related species die out and replaced by new species
— structure gets random aroung the shear band.
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Traffic models




Nagel-Schreckenberg model

v
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Periodic 1d lattice (ring) Autobahn

discretized in space and time

Cars occupying a lattice moving with velocities
v=0,1,2,3,45

Remark, if max speed is 126 km/h, then lattice length is 7 m,
a very good guess for a car in a traffic jam

It uses parallel update: at each timestep all cars move v sites
forward
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Nagel-Schreckenberg model

Configuration at time £:

F N R
> Algorithm:

1. Acceleration: All cars not at 2 Acce'era_mn (¥mas = 2): _
the maximum velocity !_:Lf .rj ‘ ENES
increase their velocity by 1 =

2. Slowing down: Speed is b) Broking:
reduced to distance ahead (1 o , S
sec rule) = |l | |ala

3. Randomization: With -
PfObabi“ty P speed is reduced c) Randomization (p=1/3):
by 1 f o 2

4. Car motion: Each car moves = e ‘
forward the number of cells
equal to their velocity. d) Driving (= configuration at time ¢+ 1):

s’ l N
|4+ -e|fee| r—
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Emergence of traffic jams

Simulation
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Nagel-Schreckenberg model

» Transition from free-flow to jammed state
» Jammed state is a phase-separated phase

» Without randomization a sharp transition

» Had been used in NRW to predict traffic jams
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autobahn.NRW
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Three-phase traffic theory

Three traffic phases A Metastable homogeneous
. iynchmni?l:d flow
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Disease spreding, SIR model

» S: susceptible (can be infected with prob. § if meets an
infected)

» |: Infected (may infect susceptible, but may recover with prob.
V).

» R: Recovered (Immune to the disease)

» Other versions:

> Sl: agents do not recover (e.g. information spreading)

> SIS: recovered people can get disease again

> SIRS: recovered agents may become susceptible (e.g.
influenza)
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Disease spreding, SIR model

> S: susceptible
» |: Infected
» R: Recovered
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SIR model, connected graph
Governing equations:
S=-pIS
| = 8IS — vl
R=uvl
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SIR model, connected graph

Governing equations:

S=-pIS
| =BIS — vl
R =uvl

» Early stage S ~ 1

I ~ lyexp[(B — v)t]

» R = /v epidemic threshold

» R > 1 outbreak
» R <1 localized
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SIR model vs. reality
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Algorithm for the SIR model

il A
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List of initially infected nodes is /
Get a random (infected) node u from the list /
For all neighbors w of u do 4.

If w is susceptible change it to infected with probability 3, and
enqueue it into list /

With probability v change state of u to recovered otherwise
put it back to /

. If I is not empty go back to 2.
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Predator prey model

» N(t) number of predators
» E(t) number of prey
» Model (Lotka 1925, Volterra 1926):

E(t) = BeE(t) — [eN(t)IE(t)
E(t) = [ NE(B)IN(t) — pnN(t)

» Solution E = N = 0:

N=E=0
N =Be/ne, E=vn/Bn

Page 23



Predator prey model
» Solution E = N = 0:
N=E=0
N =pBe/pe, E=vn/Bn (3)

» Numerical solution:
Population
A

Predator

Time

Page 24



Predator prey model

» Numerical solution:

Population

Prey

Predator

Time
> Reality:
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Other agent based models

> Agents are nodes

» Interactions through links
» Any network:

> |attices

» Random networks

» Scale-free

» Fully connected graphs
» Examples:

» Opinion models

» Game models
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Opinion models

» Agents have opinion x;

» binary +1 (yes/no)

> discrete (parties)

> continuous (views)

> vector (different aspects)
» Interaction with other agents

P pairwise

» global (with mean)
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Ising-model at T =0

» Result depends on the lattice type (surface tension)

» Phase transition

» For larger systems probability to reach order goes to zero in
d > 2 (surface gets more important)

» Fully connected goes to order (no surface)

+ + + ——-
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Voter model

> Agents take opinion of random neighbor

1 1
| |

1 -1-0 - 1-20-20
| |
1 1

» d = 1,2 final state is consensus
» d > 2 final state is not consensus, but a finite system reaches
consensus after a time 7(N) ~ N
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Variants

Page 30

Majority rule (with two neighbors (3 nodes) towards majority)
Presence of zealots, i. e. agents that do not change their
opinion

Presence of contrarians

Three opinion states with interactions only between
neighboring states

Noise (with some probability p agents change their state)

Biased opinion in case of a tie



Bounded confidence model: Deffuant model

> Agents have opinion x;
> if [xi(t) — xj(t)| < € then
> (e +1) = xi(t) — ulxi(t) = x(t)]
> xj(t+1) = x(t) + plxi(t) — x(t)]
» 1 compromise parameter = 1/2 complete compromise
» ¢ tolerance parameter

» Methods:
» Monte-Carlo simulation
» Master equation:

P
M :/ XmdXQP(Xl,t)P(XQ,t)X
[x1—x2|<e

ot
x [5 (x— Xl;”) —5(x—x1)]
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Deffuant model: Opinion groups (fully connected graph)
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Deffuant model: Bifurcation diagram

10
major
central
B |y Tem— minor
X0
-10 L
0 2

A=2/c, n=1/2
Page 33



Global: Hegselmann-Krause model

» Choose node i

» Test for all neighbors, which have opinion within the tolerance
level

» Average their opinion
> Adapt to it

» Similar behavior
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Hegselmann-Krause model
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Flocking Model




Flocking model

» Birds move with constant velocity (vp)
> Align themselfs to neighbors
» Some noise due to inaccurate averaging

» Differential equation

(¢ + A) = (B(E))jr + €
» Upgrade position:

ri(t + At) = ri(t) + voe(b;(t))At

where e(6) is a unit vector in the direction of 6.
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Flocking model

» Birds move with constant velocity (vp)
> Align themselfs to neighbors

» Some noise due to inaccurate averaging
» Phase diagram 1d:
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Flocking model

» Birds move with constant velocity (vp)

> Align themselfs to neighbors

» Some noise due to inaccurate averaging

» Non-physicist model:

A
Separation: steer to Alignment: steer
avoid crowding local towards the average
flockmates heading of local

flockmates
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B
A 1
N

Cohesion: steer to move
toward the average
position of local
flockmates



