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Algorithmically defined models

I Self-Organized Criticality
I Bak-Tang-Wiesenfeld model
I Forest fire model
I Bak-Sneppen model of evolution

I Traffic models
I 1d driven systems
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Self-Organized Criticality

I Critical state: inflection point in the critical isotherm
I Power law functions of correlation length, relaxation time
I Control parameter, generally temperature
I Critical point as an attractor?
I Why? Power law: We see many cases

I 1/f noise (music, ocean, earthquakes, flames)
I Lack of scales (market, earthquakes)

I Underlying mechanism?
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Bak-Tang-Wiesenfeld model

I Originally a sandpile model
I Better explained as a Lazy

Bureaucrat model:
I Bureaucrats are sitting in a

large office in a square lattice
arrangement

I Occasionally the boss comes
with a dossier and places it on
a random table

I The bureaucrats do nothing
until they have less than 4
dossiers on their table

I Once a bureaucrat has 4 or more dossiers on its table starts to
panic and distributes its dossiers to its 4 neighbors

I The ones sitting at the windows give also 1 dossier to its
neighbors and throw the rest out of the window.
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Bak-Tang-Wiesenfeld model

I Originally a sandpile model
I Better explained as a Lazy

Bureaucrat model:
I Best application: Spring block

model of earthquakes:
I Masses sitting on a frictional

plane in a grid are connected
with springs to eachother and
to the top plate

I Top plate moves slowly, increasing the stress on the top
springs slowly and randomly

I If force is large enough masses move which increases the stress
on the neighboring masses
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Bak-Sneppen model of evolution
I N species all depends on two other (ring geometry)
I Each species are characterized by a single fitness
I In each turn the species with the lowest fitness dies out and

with it its two neighbors irrespective of their fitness
I These 3 species are replaced by new ones with random fitness
I Inital and update fitness is uniform between [0, 1]
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Bak-Sneppen model of evolution: Results

I Steady state with avalanches
I Avalanches start with a fitness f > fc ' 0.66
I Avalanche size distribution power law
I Distance correlation power law
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Bak-Sneppen model of evolution an application: Granular
shear

I Fitness → Effective friction coefficient
I Speciment with lowest fitness dies out → block is sheared at

weakest position (shear band)
I Neighbors, related species die out and replaced by new species
→ structure gets random aroung the shear band.
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Traffic models
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Nagel–Schreckenberg model

I Periodic 1d lattice (ring) Autobahn
I discretized in space and time
I Cars occupying a lattice moving with velocities

v = 0, 1, 2, 3, 4, 5
I Remark, if max speed is 126 km/h, then lattice length is 7 m,

a very good guess for a car in a traffic jam
I It uses parallel update: at each timestep all cars move v sites

forward
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Nagel–Schreckenberg model

I Algorithm:
1. Acceleration: All cars not at

the maximum velocity
increase their velocity by 1

2. Slowing down: Speed is
reduced to distance ahead (1
sec rule)

3. Randomization: With
probability p speed is reduced
by 1

4. Car motion: Each car moves
forward the number of cells
equal to their velocity.
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Emergence of traffic jams
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Nagel–Schreckenberg model

I Transition from free-flow to jammed state
I Jammed state is a phase-separated phase
I Without randomization a sharp transition

I Had been used in NRW to predict traffic jams
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Three-phase traffic theory
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Disease spreding, SIR model

I S: susceptible (can be infected with prob. β if meets an
infected)

I I: Infected (may infect susceptible, but may recover with prob.
ν).

I R: Recovered (Immune to the disease)
I Other versions:

I SI: agents do not recover (e.g. information spreading)
I SIS: recovered people can get disease again
I SIRS: recovered agents may become susceptible (e.g.

influenza)
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Disease spreding, SIR model

I S: susceptible
I I: Infected
I R: Recovered
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SIR model, connected graph
Governing equations:

Ṡ = −βIS
İ = βIS − νI
Ṙ = νI
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SIR model, connected graph

Governing equations:

Ṡ = −βIS
İ = βIS − νI
Ṙ = νI

I Early stage S ' 1

I ' I0 exp[(β − ν)t]

I R = β/ν epidemic threshold
I R > 1 outbreak
I R < 1 localized
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SIR model vs. reality
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Algorithm for the SIR model

1. List of initially infected nodes is I
2. Get a random (infected) node u from the list I
3. For all neighbors w of u do 4.
4. If w is susceptible change it to infected with probability β, and

enqueue it into list I
5. With probability ν change state of u to recovered otherwise

put it back to I

6. If I is not empty go back to 2.
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SIR on space and network

Brockmann-Helbing
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Predator prey model

I N(t) number of predators
I E (t) number of prey
I Model (Lotka 1925, Volterra 1926):

Ė (t) = βEE (t)− [µEN(t)]E (t)

Ė (t) = [βNE (t)]N(t)− µNN(t) (1)

I Solution Ė = Ṅ = 0:

N = E = 0
N = βE/µE , E = νN/βN (2)
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Predator prey model
I Solution Ė = Ṅ = 0:

N = E = 0
N = βE/µE , E = νN/βN (3)

I Numerical solution:
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Predator prey model
I Numerical solution:

I Reality:
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Other agent based models

I Agents are nodes
I Interactions through links
I Any network:

I Lattices
I Random networks
I Scale-free
I Fully connected graphs

I Examples:
I Opinion models
I Game models
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Opinion models

I Agents have opinion xi
I binary ±1 (yes/no)
I discrete (parties)
I continuous (views)
I vector (different aspects)

I Interaction with other agents
I pairwise
I global (with mean)
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Ising-model at T = 0
I Result depends on the lattice type (surface tension)
I Phase transition
I For larger systems probability to reach order goes to zero in

d > 2 (surface gets more important)
I Fully connected goes to order (no surface)
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Voter model
I Agents take opinion of random neighbor

1 1
| |

1 – 1 – 0 → 1 – 0 – 0
| |
1 1

I d = 1, 2 final state is consensus
I d > 2 final state is not consensus, but a finite system reaches

consensus after a time τ(N) ∼ N
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Variants

I Majority rule (with two neighbors (3 nodes) towards majority)
I Presence of zealots, i. e. agents that do not change their

opinion
I Presence of contrarians
I Three opinion states with interactions only between

neighboring states
I Noise (with some probability p agents change their state)
I Biased opinion in case of a tie
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Bounded confidence model: Deffuant model

I Agents have opinion xi
I if |xi (t)− xj(t)| < ε then

I xi (t + 1) = xi (t)− µ[xi (t)− xj(t)]
I xj(t + 1) = xj(t) + µ[xi (t)− xj(t)]

I µ compromise parameter µ = 1/2 complete compromise
I ε tolerance parameter
I Methods:

I Monte-Carlo simulation
I Master equation:

∂P(x , t)

∂t
=

∫
|x1−x2|<ε

dx1dx2P(x1, t)P(x2, t)×

×
[
δ

(
x − x1 + x2

2

)
− δ(x − x1)

]
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Deffuant model: Opinion groups (fully connected graph)
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Deffuant model: Bifurcation diagram

∆ = 2/ε, µ = 1/2
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Global: Hegselmann-Krause model

I Choose node i

I Test for all neighbors, which have opinion within the tolerance
level

I Average their opinion
I Adapt to it
I Similar behavior
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Hegselmann-Krause model
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Flocking Model
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Flocking model

I Birds move with constant velocity (v0)
I Align themselfs to neighbors
I Some noise due to inaccurate averaging
I Differential equation

θi (t + ∆t) = 〈θ(t)〉|ri−rj |<R + ξ

I Upgrade position:

ri (t + ∆t) = ri (t) + v0e(θi (t))∆t

where e(θ) is a unit vector in the direction of θ.
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Flocking model

I Birds move with constant velocity (v0)
I Align themselfs to neighbors
I Some noise due to inaccurate averaging
I Phase diagram 1d:
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Flocking model

I Birds move with constant velocity (v0)
I Align themselfs to neighbors
I Some noise due to inaccurate averaging
I Non-physicist model:
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