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Ising-model

I Spins
I Interact with external field hi
I Interact with neighbors with coeff. Jij

I The Hamiltonian:

H(σ) = −
∑
〈i j〉

Jijσiσj − µ
∑
i

hiσi

I Order parameter magnetization

M =
∑
i

σi
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2D Ising-model

I 2 dimensions
I Homogeneous interaction: Jij = J

I No external field (for the time being) h = 0
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Importance sampling

I Given a Hamiltonian H(q,p)

I We ask for the time average of a dynamics quantity at
temperature T

Ā =

∫
A(q,p)Peq(q,p,T )dqdp

I In the canonical ensemble

Peq(q,p,T ) =
1
Z
e−βH(q,p)

I If A depends only on the energy (often the case):

Ā =

∫
A(E )ω(E )Peq(E ,T )dE

Importance sampling is needed!
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Importance sampling

I ω(E )Peq(E ,T ) has a very sharp peak (for large N)
I System spends most of its time in equilibrium
I Importance sampling:

Generate configurations with the equilibrium probability
I if configurations are chosen accordingly, the for K

measurements:

Ā ' 1
K

K∑
i=1

Ai

How to generate equilibrium configurations?
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Metropolis algorithm

(Metropoli-Rosenbluth-Rosenbluth-Teller-Teller=MR2T2 algorithm)

I Sequence of configurations using a Markov chain
I Configuration is generated from the previous one
I Transition probability: equilibrium probability
I Detailed balance:

P(x)W (x → x ′) = P(x ′)W (x ′ → x)

I Rewritten:
W (x → x ′)

W (x ′ → x)
=

P(x ′)

P(x)
= e−β∆E

I Only the ration of transition probabilities are fixed
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Metropolis algorithm

(Metropoli-Rosenbluth-Rosenbluth-Teller-Teller=MR2T2 algorithm)

W (x → x ′)

W (x ′ → x)
=

P(x ′)

P(x)
= e−β∆E

I Metropolis:

W (x → x ′) =

{
e−β∆E if∆E > 0
1 otherwise

I Symmetric:

W (x → x ′) =
e−β∆E

1 + e−β∆E
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Metropolis algorithm

Recipes:
I Choose an elementary step x → x ′

I Calculate ∆E

I Calculate W (x → x ′)

I Generate random number r ∈ [0, 1]

I If r <W (x → x ′) then new state is x ′; otherwise it remains x
I Increase time
I Measure what you want
I Restart

Movie1 Movie2
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Metropolis algorithm, proposal probability

Transition probability:

W (x → x ′) = g(x → x ′)A(x → x ′)

I g(x → x ′): proposal probability
I Generally uniform
I If different interactions are present then it must be

incorporated
I A(x → x ′): acceptance probability

I Metropolis
I Symmetric
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Metropolis, proof

State flow
Let E > E ′:
I x → x ′

P(x)g(x → x ′)A(x → x ′) = P(x)

I x ′ → x

P(x ′)g(x ′ → x)A(x ′ → x) = P(x ′)e−β∆E

I In equilibrium they are equal:

P(x)

P(x ′)
= eβ∆E

I What we wanted.
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Do we need optimization?

I Correlation length ξ
I Characteristic time τchar

I Dynamical exponent z

τchar ∝ ξz

I For 2d Ising model z ' 2.17
I Simulation time:

tCPU ∼ Ld+z

We need more effective algorithms!

Movie1 Movie2
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Parallelization

I Observe that we have only local interaction
I For the update of a site we need the values of the four

neighbors
I Nodes in a checkerboard structure can be updated in parallel
I can also be used for weak long range interactions
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Cluster algorithm

I Flip more spins together. How?
I Transition probability:

W (x → x ′) = g(x → x ′)A(x → x ′)

I g(x → x ′): proposal probability
I A(x → x ′): acceptance probability

I We used g(x → x ′) = 1
I Can we have instead A(x → x ′) ≡ 1?

Page 13



Cluster algorithm
I Flip more spins together. How?
I The solution – based on an old relationship between the

percolation and the Potts model – is that we consider the spin
configuration as a correlated site percolation problem

I Ising cluster: a percolating cluster of parallel spins
I Ising droplets: a percolating subset of an Ising cluster

pB = 1− exp(−2βJ)
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Swendsen-Wang algorithm

I Take an Ising configuration
I With probability pB = 1− exp(−2βJ) make connection

between parallel spins
I Identify the droplets by Hoshen-Kopelman algorithm
I Flip each droplet with probability: 1/2 (h = 0)
I Repeat it over
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Wolff algorithm

1. Add a random spin to a list of active spins
2. Take a spin from the active list
3. Add each parallel neighboring (not yet visited) spin with

probability pB = 1− exp(−2βJ) to the list of active spins
4. If list of active spins is not empty go to 2.
5. Flip all active spins
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Wolff algorithm proof

I Detailed balance:

Peq(x)W (x → x ′) = Peq(x ′)W (x ′ → x)

I Metropolis:

W (x → x ′) = min
{
1,

Peq(x)

Peq(x ′)

}
I Split W into acceptance A and proposal g probability

A(x → x ′) = min
{
1,

Peq(x)g(x ′ → x)

Peq(x ′)g(x → x ′)

}
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Wolff algorithm proof

movie

I On the boundary: nsame spins parallel and ndiff antiparallel.

A(x → x ′) = min

{
1,

eβJ(ndiff−nsame)

eβJ(nsame−ndiff)

(1− pB)ndiff

(1− pB)nsame

}

= min
{
1,

e−2βJnsame

e−2βJndiff
(1− pB)ndiff

(1− pB)nsame

}
I It gives: pB = 1− exp(−2βJ).
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Comparison magnetization
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Comparison magnetization
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Comparison magnetization
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Comparison magnetization
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Comparison magnetization
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Other ensembles

Microcanonical ensemble
I Daemon with bag with tolerance (both directions)

I Pick a move, and calculate energy change
I If energy change does not fit into bag reject it
I Otherwise add energy change to bag

I In case of conservation the dynamic exponent z is larger!
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Other ensembles

Conserved order parameter: Kawasaki dynamics
I Elementary step:

I Exchange up-down spin pairs (can be anywhere)
simultaneously

I Apply Metropolis to net energy change!
I Diffusive dynamics is more physical: pick neighboring spins

I In case of conservation the dynamic exponent z is larger!
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Calculation of the entropy, free energy, etc.
I Equilibrium statistical physics: From F we can calculate

everything
I In simulations F and S cannot be measured directly
I F = E − TS so one of them is enough (E and T are known)
I Solution:

Calculate the specific heat!

C = kBT
2〈(∆E )2〉

I The energy fluctuations are measurable
I Since

C = T
∂S

∂T

We have

S(T ) = S(T0) +

∫ T

T0

C (T ′)

T ′
dT ′
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Calculation of the entropy, free energy, etc.

I In many cases derivative of the entropy is needed so S(T0) is
not important in

S(T ) = S(T0) +

∫ T

T0

C (T ′)

T ′
dT ′

I From third law of thermodynamics: S(T = 0) = 0.
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Finite size effects
Magnetization 2d lattice Ising model

I Determine critical temperature
I Determine critical exponents
I System size dependence???
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Finite size scaling

I Correlation length
ξ ∝ |T − Tc |−ν

I Cannot be infinite!
I There will be a critical point for the finite system
I If L is finite ξ cannot be larger than L

L ∝ |T (L)− Tc |−ν

I The position and the width of the transition

|T (L)− Tc | ∝ L−1/ν

I 3 parameters to fit ν, Tc , and a constant
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Finite size scaling

I Binder Cumulant method (find something which does not
scale with L)

I Find something which scales with ν
I The standard deviation of the order parameter:

σ(L) ∝ L−1/ν

I Two steps, both with two parameter fits:

σ(L) ∝ L−1/ν

|T (L)− Tc | ∝ L−1/ν
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Three parameter fit: Ising model

I Theory: ν = 1, Tc ' 2.27

Page 31



Finite size scaling: Ising model
I Theory: ν = 1, Tc ' 2.27
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Fitting

Linear regression

y = α + βx

β̂ =

∑
(xi − x̄)(yi − ȳ)∑

(xi − x̄)2
=

xy − x̄ ȳ

x2 − x̄2

α̂ = ȳ − β̂x̄

ρ =
xy√
x̄ ȳ

(1)
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Fitting

Houbble original fit:
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Fitting

Houbble change in time:
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Binning and fitting

"a"
f(x)
"b"

exp(35.586946)*x**−3.993403
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I Linear binning (∆c):

ci = xmin + i∆c

I Logarithmic binning (∆c):

ci = c0 exp(i∆c)
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Fitting
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Variants
I Potts model:

I Spin is two dimensional unit vector with q possible values at
angles

θn =
2πn
q

I Hamiltonian (vector, or clock model):

Hc = Jc
∑
〈ij〉

cos(θi − θj)

I Hamiltonian (standard):

Hp = −Jp
∑
〈ij〉

δ(si , sj)

I Results in two dimensions (J>0):
I First order phase transition for q > 4
I Second order phase transition for q <= 4

Page 38



Variants
I Classical XY model

I Spin is two dimensional unit vector with θi angle

si = (cos θi , sin θj)

I Hamiltonian:
HXY =

∑
〈ij〉

Jijsisj

I Results in two dimensions (J>0):
I Nearest neighbor interaction: No phase transition
I Long range interaction (Jij ∼ |ri − rj |−α)

I No phase transition
I Kosterlitz-Thoughless transition: Correlation finctuion decays

exponentially or as a power law
I Second order phase transition in 3d
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Variants

I Classical Hamilton model
I Spin is three dimensional unit vector with θi angle
I Hamiltonian:

HH =
∑
〈ij〉

Jijsisj

I Similar results to XY model

Page 40



Standard opinion models

I Would vote for democrats/republicans
I Can be represented by a spin
I One takes the opinion of the neighborhood majority
I Plus some noise
I This the Ising model
I More opinions than this is the Potts model with Hamming

distance instead of cos
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Voter model

I Spins/agents on a lattice (can be network)
I Spin can have q different values
I Interaction: copy one of the neighbors opinion
I Similar as Ising-model at temperatures slightly below the

transition
I Note, that in social science nearest neighbors are the 8

surrounding sites
I Only domain boundaries are active
I Steady state a homogeneous system
I Convergence is slow T (N) ∼ N logN in d = 2 and T (N) ∼ N

in d > 2
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Majority model

I Spins/agents on a lattice (can be network)
I Spin can have q different values
I Interaction: Select r neighbors (from 8 neighbors)
I If there is a majority opinion copy that
I Similar to Voter model
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Schelling model
I Schelling model of segregation:

1. Segregated neighborhoods reflect ethnic preferences of
individuals

2. Individual preferences reflect ethnic segregation.
3. Is the answer “the chicken and the egg”?
4. Or are both sides wrong?
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Schelling model
I Two equal-sized ethnic groups randomly distributed on a

regular lattice
I Each agent has 8 neighbors 15% of cells are vacant
I If dissatisfied, agents pick the closest vacant slot that is

satisfactory
I Dissatisfaction means that the fraction of alike neighbors is

less than a parameter T
I Nobel prize in 2005
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Schelling model

I In principle Ising model with conserved
magnetization

I Only surface is important for the
dynamics.

I Tolerance parameter sets minimal surface
curvature (acts as surface tension)

I Surface curvature defines also
volume/surface ratio which diverges easily
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Practice
I Standard Potts-model on a triangular lattice, with periodic

boundary conditions

Hp = −Jp
∑
〈ij〉

δ(si , sj)

I On a triangular lattice the site i , j has the following six
neighbors:
I (i + 1, j), (i − 1, j)
I If i is even: (i − 1, j ± 1), (i , j ± 1)
I If i is odd: (i , j ± 1), (i + 1, j ± 1)

I Measure the global magnetization and its fluctuation
I Calculate the susceptibility χ(β) = β

(
〈M2〉 − 〈M〉2

)
I Determine the critical point Tc(L)

I Use small systems L = 5, 10, 20, Use first q = 2 and Jp = 1
I (Bonus) Do finite size scaling and determine Tc
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Triangular lattice

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,12,0 2,32,2

3,33,23,13,0
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