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Machine learning Algorithm

» Cheat-sheet by Hui Li
https://whatsthebigdata.com/2017/05/02/
types-of-machine-learning-algorithms-and-when-to-use-tl

Machine Learning Algorithms Cheat-sheet
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Neural networks

Hidden
Input
Output » Machine learning

> Pattern recognition

» Handwriting

» Speech recognition

» Input pattern
» Output pattern
> Adaptive wights

» Approximating non-linear
functions
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Neural network

» Most used concept for pattern recognition

A mostly complete chart of
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Neural networks

Input vector /
Output vector O(/)
Transition matrix W € [—1,1]

Learning using a cost function
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Test goodness
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Neural networks: Learning

» Supervised learning
» Data training:

> Superwised learning
» Fitness function, energy:

E=T()-o0(),

where T(/) is the target vector for input /
> Minimize E for available set of {/,/(O)} pairs
» Deep learning: many layers of neurons in the neural network

> Test goodness:

» Use only part of {/,/(0)} pairs for learning, the rest is for
testing.

» Used for: pattern recognition, classification, etc.
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Neural networks: Learning

» Reinforcement learning
» Cost function is a long time performance on an agent making
decisions based on the neural network.

» Test goodness:
» Compare with other agents which can be algorithmical or
based on neural networks

» Used for: control problems, Al, complex optimization
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Genetic algorithm example
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Neural networks: Learning

» Unsupervised learning:
» Deep belief network Reconstruct input based on hidden layers
» Hebbian learning weight is increased for neurons that fire
together
» Principal component analysis
» Singular value decomposition

» Supervised learning: cost function
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Deep learning

> Literature: Introduction to deep learning: https://wuw.cs.
princeton.edu/courses/archive/springl6/cos495/
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Deep learning: how to

» Classification

» Perceptron

» Support Vector Machine
» Train the machine

» Regularization
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Deep learning: Classification

» Least square
» Maximum likelihood

» Clustering
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Deep learning: Classification, log likelihood

MLE: conditional log-likelihood

* Given training data {(x;, y;): 1 < i < n}i.i.d. from distribution D
* Let {Py(v|x): 6 € O} be a family of distributions indexed by 6

By, = argmaxgee X.;log(Po(vilx;))

I(Pg,xi,yi) = —log(Pg (yi|x))
L(Py) = —X;log(Py(yilx;))
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Deep learning: Classification, least square
Example: [, loss

¢ Given training data {(x;, y;): 1 < i < n}i.i.d. from distribution D

- Find f () that minimizes L(f) = = Y7, (fg (x)) — v1)?

* Define Py (y|x) = Normal(y; f5 (x),a?)

* 1og(Po(vi|x)) = —5 (fo(x;) — ¥;)>—log(a) — 5 log(2m)
* Oy = argmineeo%Z?:ﬂfe (x) — ¥)?
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Deep learning: Classification, explicit category

——m_m
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Deep learning: Classification, linear

Linear classification wix =0

wlix >0

. R wlx <0
Class 1
[ [
°
u ™ Class 0
°
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Deep learning: Classification, linear

Attempt

* Given training data {(x;, v;): 1 < i < n}i.i.d. from distribution D

* Hypothesis v = sign(f;, (x)) = sign(w’x)
cy=+1ifwTx >0
cy=—1ifwlx <0

* Let’s assume that we can optimize to find w
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Deep learning: Classification, linear
SVM: simplified objective

* Optimization simplified to
1 ’
iz I

yitwTx; + b) > 1,Vi

* How to find the optimum w*?
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Deep learning: Classification, linear
SVM: optimization

* Optimization (Quadratic Programming):

1 2
min 5 [Iwll

yiw x; + b) = 1,Vi

* Solved by Lagrange multiplier method:

1 2
Low,b,@) =3 wl| =D ailywx +b) — 1]

L
where « is the Lagrange multiplier
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Deep learning: Kernel model

Make non-linear model leinar
Features: part of the model

Nonlinear model

build r
hypothesis Y =W $(x)

Linear model
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Deep learning: Kernel model

Make non-linear model leinar
Polynomial kernels
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vx,x' € R?, K(x,x') = (x12] + zoxh +¢)* =

Figure from Foundations of Machine Learning, by M. Mohri, A. Rostamizadeh, and A. Talwalkar
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Deep learning: Overfitting

—6— Training
—&— Test
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Figure from Machine Learning
and Pattern Recognition, Bishop



Deep learning: Feed forward
Features

Color Histogram

Extract build p
features — . hypothesis ¥V =W (x)
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Deep learning: Feed forward

Features: part of the model

Nonlinear model

build T
hypothesis YV =W o(x)

Linear model
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Deep learning: Feed forward

Example: Polynomial kernel SVM

y = sign(wl¢p(x) + b)

Fixed ¢(x)
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Deep learning: Feed forward

Motivation: representation learning

* Why don’t we also learn ¢p(x)?

oy W -
Tv y  Learn $(x) Learn w
-
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Deep learning: Feed forward

Feedforward networks

* View each dimension of ¢(x) as something to be learned

@

y=wlg()

L 4
@
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Deep learning: Feed forward

Feedforward networks

* Linear functions ¢; (x) = 6] x don’t work: need some nonlinearity

@

y=wlo(x)
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@

P (x)
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Deep learning: Feed forward

Feedforward networks

» Typically, set ¢;(x) = (8] x) where r(-) is some nonlinear function

@ @

@

O y=wlg(x)
@ @

@ @

x é(x)
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Deep learning: Feed forward

Feedforward deep networks

* What if we go deeper?
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Deep learning: Feed forward

Motivation: abstract neuron model

* Neuron activated when the correlation
between the input and a pattern &
exceeds some threshold b

* y = threshold(87x — b) Xz
ory =1(0"x —b)

* 7(+) called activation function

Xa
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Deep learning: Activation function
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y=1/(1+exp(x))

y=wa‘
y=step(wTx)

-1.5 -1 -0.5 0 0.5 1
wTx
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Deep learning: Backpropagation
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Deep learning: Features example

Deep neural
networks learn
hierarchical feature
representations

SeRigce
https://playground.tensorflow.org/
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