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Parallelization

I Why?
I The speed of one core processor is limited
I Larger system sizes
I Multi-core processors
I On multi-core system inter-processor data change is fast

I Why not?
I Computing power is lost
I Much more code development
I Very often ensemble average is needed
I Inter-computer communication is terribly slow

RAM → ∼15GB/s, Ethernet 125MB/s, Infiniband ∼1GB/s
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Parallelization: How?

I Code asks for more instances (e.g. run a loop in parallel)
I Fork, multi-threading
I Used in desktop applications
I Punished on clusters
I Shared memory

I Operating system (or even multiple machines) launches the
code multiple times which can communicate
I Now de facto standard: MPI (Message passing interface)
I Communication is standardized, environment can be

inhomogeneus
I GPU:

I High number of cores
I Non-standard processors
I Non-standard libraries
I Limited memory
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Parallelization (Bird flocking model)
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Parallelization

I Molecular dynamics
I Short range interactions: Box must be duplicated, Verlet in

parallel
I Long range: Parallel fast Fourier transformation

I Contact dynamics
I Short range interactions: Box must be duplicated, Iteration in

parallel
I Event Driven Dynamics

I List must be global, no way!
I Kinetic Monte Carlo

I List must be global, no way!
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Efficiency of parallelization

I Large systems are needed
I Boundary must be minimal
I System size can be increased simulation time not really
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Efficiency of parallelization

I Calculate time spent in a branch
I Calculate σT =

√
〈T 2〉 − 〈T 〉2/〈T 〉

I Move line if necessary (σT > σ∗T )
I Lower in tree (up in Fig), larger the mass of the border
I Only rarely, data transfer is expensive
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Optimization
I General problem of finding the ground state
I Phase-space:
I Arbitrary number of dimensions
I Methods:

I Steepest Descent
I Stimulated Annealing
I Genetic algorithm
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Optimization

I General problem of finding the ground state
I Phase-space:
I Arbitrary number of dimensions
I Methods:

I Steepest Descent
I Stimulated Annealing
I Genetic algorithm

I Implementation
I C: GSL
I python: scipy.optimize
I Both are very flexible and can be used with numerical or

analytical derivatives
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Gradient based optimization

I Given f (x), with x = {x1, x2, . . . xn}
I Gradient ∇f (x) ≡ g(x) = {∂1f , ∂2f , . . . ∂nf }
I Second order partial derivatives: square symmetric matrix

called the Hessian matrix:

∇2f (x) ≡ H(x) ≡

∂1∂1f . . . ∂1∂nf
...

. . .
...

∂1∂nf . . . ∂n∂nf
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General Gradient Algorithm

1. Test for convergence
2. Compute a search direction
3. Compute a step length
4. Update x
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Steepest descent algorithm

1. Start from x0

2. Compute g(xk) ≡ ∇f (xk). If ||g(xk)|| ≤ εg then stop,
otherwise, compute normalized search direction
pk = −g(xk)/||g(xk)||

3. Compute αk such that f (xk + αpk) is minimized
4. New point: xk+1 = xk + αpk

5. Test for |f (xk+1 − f (xk))| ≤ εa + εr |f (xk)| and stop if fulfilled
in two successive iterations, otherwise go to 2.
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Conjugate Gradient Method
1. Start from x0

2. Compute g(xk) ≡ ∇f (xk). If ||g(xk)|| ≤ εg then stop,
otherwise Go to 6

3. p0 = −g0

4. Compute g(xk) ≡ ∇f (xk). If ||g(xk)|| ≤ εg then stop,
otherwise continue

5. Compute the new conjugate gradient direction
pk = −gk + βkpk−1, where

β =

(
||gk ||
||gk−1||

)2

6. Compute αk such that f (xk + αpk) is minimized
7. New point: xk+1 = xk + αpk

8. Test for |f (xk+1 − f (xk))| ≤ εa + εr |f (xk)| and stop if fulfilled
in two successive iterations, otherwise go to 4.
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Conjugate Gradient Algorithm
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Modified Newton’s method

Second order method
1. Start from x0

2. Compute g(xk) ≡ ∇f (xk). If ||g(xk)|| ≤ εg then stop,
otherwise, continue

3. Compute H(xk) ≡ ∇2f (xk) and the search direction
pk = −H−1gk

4. Compute αk such that f (xk + αpk) is minimized
5. New point: xk+1 = xk + αpk

6. Go to 2.
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Glassy behavior, frustration
I Model glass: spin glass:

H = −1
2

∑
〈i ,j〉

JijSiSj

I where Jij are random quenched variables with 0 mean (e.g.
±J with probability half)

Rugged energy landscape.
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Spin glass: Aging
I Heat up the sample where it equilibrates fast
I Quench it below Tc

I Wait tw
I Measure a parameter q(tw , tw + t)
I Often q is a covariance (X observable):

q(s, t) = E (XtXs)− E (Xt)E (Xs)
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Spin glass: Trap model (Bouchaud)
I The evolution of the particle

system is represented by a
Markov process in a random
energy landscape

I The process will spend most
time into deep valleys of lowest
energy where it will be trapped

I The time spent in these valleys
is random and aging will appear
when the mean time spent in
these valleys diverges

I Order parameter: the
magnetization and the two
point spin correlation between
spins at the same site in two
different replicas

Page 18



Rugged energy landscape

I Typical example NP-complete problems:
I Traveling salesman
I Graph partitioning
I Spin glass

I No full optimization is possible (do we need it?)
I Very good minimas can be obtained by stochastic optimization

I Simulated annealing
I Maximum likelyhood
I Genetic algorithm
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Optimization

I General optimization
I Parameters of the system x (input)

I for networks: adjacency matrix, degree distribution
I for pattern recognition: data, or processed data (e.g Fourier

spectrum, etc.)
I Optimized property: y = f (x), we search for f (.) which gives

the desired y
I any measurable quantity
I classification of data (e.g. y = 1 for cat, y = 2 for dog, etc.)

I Loss function, L(f ), the quantity to be minimized
(Energy/Hamiltonian)
I Least square: L(f ) = [y − f (x)]2

I Hamming distance: L(f ) =

{
1 if f (x) = y

0 otherwise
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Linear regression

I Assume linear form for the loss function:

fw(x) = wTx

I The problem must not be linear, e.g. polinomial fit w contains
the coefficients of the polynomial (i indexes data points):

yi = w0 + w1xi + w2x
2
i + · · ·+ wmx

m
i + εi

y1
y2
...
yn

 =


1 x1 x2

1 . . . xm1
1 x2 x2

2 . . . xm2
...

...
...

. . .
...

1 xn x2
n . . . xmn



w1
w2
...
wn

+


ε1
ε2
...
εn


I If X is a square matrix than w = X−1y
I Otherwise w = (XTX )−1XTy
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Linear regression

I If X is a square matrix than w = X−1y
I Otherwise w = (XTX )−1XTy
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Linear regression: Over fitting

t = sin(2πx) + ξ

Page 23



Linear regression: Over fitting
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Simulated annealing

I Loss function: e.g. energy E

I Minimize energy like in a physical system
I Vary parameter set w in an egodic way (all possible values

must be reachable)
I Observe detailed balance:

p(i → j) =

{
1 if Ej < Ei

exp[β(Ei − Ej)] otherwise

I where β ' 1/T
I Slowly decrease T

Page 25



Simulated annealing

I Cool down the system slowly
I Speed is crucial and many experiments are needed
I No guarantee that we find something meaningful
I Warm up and down if needed, if the system quenched into a

local minimum
I One needs a Hamiltonian (or a fitness function) and an

elementary move
I Spin glass: Metropolis

I Traveling salesman
I Minimal travelling path for visiting a number of cities
I Elementary move: swap two cities (T ∼ alcohol)

Page 26



Hill climb
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Travelling salesman
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Maximum likelihood

I Unknown parameter which maximizes the likelihood to obtain
the given data

I We know the probability distribution f (xi , θ) of random
variables Xi

I Likelihood:

L(θ) = f (x1, θ)f (x2, θ) · · · f (xn, θ)

I Generally maximize log L(θ)

I Can be solved in many cases
I Probability distributions must be known in advance
I Parameters obtained through equations.
I Main usage: model parameter estimation
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Maximum likelihood, example

I Two dice, one normal 6 side, the other has probabilities of
p(1, 2, 3, 4, 5, 6) = (1/12, 1/6, 1/6, 1/6, 1/6, 1/4)

I We have rolled 10 times and the result is
1, 2, 6, 5, 6, 5, 3, 6, 4, 2.

I What is the likelihood that we chose the fake dice?
I pnorm = 1

610 = 1.65 · 10−8

I pfake =
1

66·43·12 = 2.79 · 10−8
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Genetic algorithm
I Learn from nature
I Let the fittest to survive

I Fitness function, e.g. energy, length, etc.
I Combine different strategies
I State is represented by a vector (genetic code or genotype)

I Phasespace, city order, neural network parameters, etc.
I Offsprings have two parents with shared genetic code
I Mutations
I Those who are not fit enough die out

I Keep the number of agents fixed
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Genetic algorithm: Reproduction

I Two parents and two children
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Genetic algorithm terminology
I Chromosome: Carrier of the genetic representation
I Gene: Smallest units in the chromosome with individual

meaning
I Parents: Pair of chromosomes, wich produce offsprings
I Population: Set of chromosomes from which the parents are

selected. Its size should be larger than the length of the
chromosome

I Selection principle: The way parents are selected (random,
elitistic)

I Crossover: Recombination of the genes of the parents by
mixing

I Crossover rate: The rate by which crossover takes place
(∼90%)

I Mutatation: Random change of genes
I Mutation rate: The rate by which mutation takes place (∼1%)
I Generation: The pool after one sweep.
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Genetic algorithm schema

1. Start with a randomly generated population
2. Calculate the fitnesses
3. Selection

I Random
I Best fitness (keep top 50% and generate new 50%)
I Roulette (Monte-Carlo) selection

4. Crossover: offsprings must be viable (Sometimes difficult)
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Genetic algorithm schema

1. Start with a randomly generated population
2. Calculate the fitnesses
3. Selection

I Random
I Best fitness (keep top 50% and generate new 50%)
I Roulette (Monte-Carlo) selection

4. Crossover: offsprings must be viable (Sometimes difficult)
I One-point
I Two-point
I Uniform
I Mutation: small rate
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Genetic algorithm example
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Practice

Genetic algorithm
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Network optimization example
I Optimize transmission energy consumption (Jin et al. 2003)
I Sensors scattered in space
I One data collector
I Intermetiate collectors can be installed
I Energy consumption

E (k, d) = Eelec + d2Eamp,

where Eelec is the base electric need of a radio station, Eamp is
the energy need of an amplifier and d is the distance to
transmit to.
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Network optimization example 2.

I Coding: bit
I 1: direct connection to data collector (it is a cluster head)
I 0: connection to nearest cluster head
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Network optimization example 3.

I Coding: bit
I 1: direct connection to data collector (it is a cluster head)
I 0: connection to nearest cluster head

I Crossover:
I Mutation: change a bit

Page 40



Network optimization example results
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