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Clustering, modularity, community detection

Page 2



Patterns in comlpex network

Page 3

Natural networks are not homogeneous
There are natural groups

These groups are more densely connected internally then
externally

Nodes in groups are more similar
Exact mathematical definition is lacking
These groups are called communities

Clustering: group similar items together
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Egocentric network on iwiw
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Clustering example: Correlation between 50 symptoms
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Clustering example: Correlation between 50 symptoms

Community detection
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Zachary karate club

Page 9



Cluster, Community definition:

» Group which is more connected to itself than to the rest
» Group of items which are more similar to each other than to
the rest of the system.

Communities, Partioning:

» Strict partitioning clustering: each object belongs to exactly
one cluster

» Overlapping clustering: each objact may belong to more
clusters

» Hierarchical clustering: objects that belong to a child cluster
also belong to the parent cluster

» Outliers: which do not conform to an expected pattern
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Communities, Partitioning

>
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Strict partitioning clustering: each object belongs to exactly
one cluster

Overlapping clustering: each objact may belong to more
clusters

Hierarchical clustering: objects that belong to a child cluster
also belong to the parent cluster

Outliers: which do not conform to an expected pattern




Communities, Partitioning, definitions:

> Local:
» (Strong) Each node has more neighbors inside than outside
» (Weak) Total degree within the community is larger than the
total degree out of it.
» Modularity by local definition (above)
» Clique-percolation

» Global: The community structure found is optimal in a global
sense

» Modularity
» k-means clustering
» Agglomerative hierarchical clustering

Page 12



Communities, Partitioning, definitions:

v

Hundreds of different algorithms, definitions

v

Starting point: adjacency matrix Ajj, the strength of the link
between nodes i and j

v

Nodes as vectors (e.g. rows of adjacency matrix)

v

Metric between nodes: ||a — b||:

Euclidean distance: ||a — b||> = /> _,(ai — bi)?
Maximum distance: ||a — b||oo = max; |a; — b;|
Cosine similarity: ||a — bl|. = W

Hamming distance: number of different coordinates

v

vV vy
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Modularity
Global method

> eji percentage of edges in module (cluster) i
probability edge is in module i

» 2a; percentage of edges with at least 1 end in module j
probability a random edge would fall into module 7

» Modularity is

» Try to maximize @
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Modularity algorithm

» Rewrite Q:
1 kikj
Q=5m 2 [AU - Zm]
ij
2m = Zi k,'
» Only two modules

v

si = =£1: 1 if node i is in module 1; -1 otherwise

_ ! kil
)

» +1 is a constat can be omitted

v

Change the vector s; to maximize Q
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Modularity algorithm
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Ly~ kik;
Q= 4m o [AU B 2m] Si
ij

Try to find 1 vector s; that maximizes the modularity.
Start with two groups

Then split one of the two groups using the same technique
Very similar to spin glass Hamiltonian

Generally a np-complete problem, we can use the same
techniques.

Often steepest descent is used, (greedy method): change the
site that would increase the modularity the most.



Modularity: human interactions between

cities
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Modularity: human interactions between cities
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Problems with modularity

Resolution

1 kik;
O m WEE-IEr
I7-/

» On large networks normalization factor m can be very large

v

(It relies on random network model)

v

The expected edge between modules decreases and drops
below 1

v

A single link is a strong connection.

Small modules will not be found

v
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k-means clustering

v

Cut the system into exactly k parts

v

Let u; be the mean of each cluster (using a metric)

v

The cluster i is the set of points which are closer to y; than to
any other y;

v

The result is a partitioning of the data space into Voronoi cells

tep 1 tep 2 tep 3
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k-means clustering, standard algorithm:

Define a norm between nodes

v

v

Give initial positions of the means m;

v

Assignment step: Assign each node to cluster whoose mean
m;j is the closest to node.

v

Update step: Calculate the new means of the clusters
Go to Assignment step.

v

Page 21



k-means clustering, problems:

» k has to fixed beforhand

>

Fevorizes equal sized clusters:
Different cluster analysis results on "mouse" data set:
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» No guarantee that it converges
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Hierarchical clustering

1. Define a norm between nodes d(a, b)

2. At the beginning each node is a separate cluster
3. Merge the two closest cluster into one

4. Repeat 3.

Norm between clusters ||A — B||
» Maximum or complete linkage clustering:

max{d(a,b) :a€ A, be B}
» Minimum or single-linkage clustering:
min{d(a,b) :a€ A, b e B}

» Mean or average linkage clustering:

1
AT 2 2 4. )

acA beB
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Hierarchical clustering
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Example: Temperatures in capitals

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Mow Dec

Tallinn -3 5 1 3 18 13 16 16 18 6 1 -2
Beijing -3 8 6 13 28 24 26 25 28 13 B -1
Berlin g -1 4 7 12 16 1§ 17 14 9 4 1
Buenos #dires 23 22 Z8 16 13 18 18 11 13 16 158 22
Cairo 13 16 17 21 25 27 28 27 26 23 19 1B
Canberra 28 28 17 13 9 & & 7 9 12 15 18
Cape Town 21 21 28 17 15 13 12 13 14 16 158 28
Helsinki -5 -6 -2 3 18 13 16 15 18 5 B -3
Landon 3 03 6 7 11 14 16 16 13 18 & &
Hascow -5 -7 -2 6 1z 15 17 1k 18 3 -2 -6
Ottawa -8 -5 -2 6 13 18 21 28 14 7 1 -7
Paris 3 04 7 18 13 16 19 19 16 11 & &
Rigo -3 -3 1 5 11 18 17 16 12 7 2 -1
Rome g & 11 12 17 28 23 23 Z1 17 12 9
Singopore 27 27 28 28 28 E8 Z8 23 ZY 27 2V Z
Stockholm -Z -3 8 3 18 14 17 16 11 & 1 -2

Washington D.C. 2 3 7 13 18 23 26 26 Z1 15 9 3
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Jon Feb Mar Apr Moy Jun Jul Aug Sep Oct Mow Dec

Tallinn -3 5 -1 3 18 13 16 15 18 6 1 -2
Beijing -3 @8 6 13 @ 24 26 5 2 13 5 -1
Berlin B -1 4 7 12 16 18 17 14 9 4 1
Buenos Aires 23 22 28 16 13 18 18 11 13 16 15 22
Cairo 13 15 47 21 6 27 28 27 2 23 19 1F
Canberra A 2 17 13 9 6 B 7 9 1z 1R 18
Cope Town 21 21 28 17 16 13 12 13 14 16 15 28
Helzinki -5 6 -Z 3 18 13 16 15 18 5 8 -3
London 303 6 7 11 14 16 16 13 18 6 &
Moscow -8 -7 -2 5 12 45 17 15 18 3 -2 -§
Ottawa -85 -2 6 13 48 21 28 14 7 1 -7
Paris 3 04 7 18 13 16 19 19 16 11 6 R
Riga -3 31 & 11 15 17 16 12 7 Z -1
Rome & & 11 12 17 28 23 E3 Bl 17 12 9
Singapore 27 27 28 28 28 28 28 28 2V 27 27 X%
Stockholm -2 3B 3 18 44 17 16 11 & 1 -2

Washington D.C. 2 3 7 13 18 23 26 26 21 18 9 3

> b o
g ) g >
: SEEES
5 05 '_“9 end[19]
13 10
% distance[19]
ight[19
right[19] 30
{40
22 __SU . .
Euclidean distance
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ies hased on proteins

Man
Monkey
Dog
P
Fabbit
Eangaroo
Horse
Donkey
Pekin Duck
Pigeon
Chicken
King Penguin
Enapping Turtle
Rattlesnake
Tuna
Serewworm Fly
Moth
Baker's Mould
Bread Teast
Skin Fangns
Hierarchical classification of species based on proteins
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Skin Fungus
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Hierarchical clustering: problems

o
» Advantages EEE;EHE s 1
> Simol FHHFEEL TS
Imple Se2322222253
» Fast Tallinn
Helsinki
» Number of clusters can be Riga omm
controlled Ortava
» Hierarchical relationship rarie’

Berlin

Beijing
Washington D.C
Eome

Buenos Aires

» Disadvantages
» No a priori cutting level

. Cape Town
» Meaning of clusters Canberra
Caire

unc|ear Singapore
» Important links may be

missed
» Different result if one item

omitted
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Ahn method: Hierarchical clustering of edges

» Partition density:

4 g
- Family ° ©

D — me — (nec — 1) ﬁ?ﬁ b
< n(ne—1)/2—(n. —1) AT i

e

Joint appointment

mc # of links in subset ¢
nc # of nodes in subset ¢

D:%choc

» Cutting at the max of D

» Overlapping communities

lever, wi
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Ahn method: Example
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Ahn method: Works for egocentric networks




Clique percolation

» Motication: clusters are formed with at least triangles

» Can be generalized to any k-clique

Ia\

K, K K,

» k = 2 normal percolation
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Clique percolation

» |t will definitely lead to overlapping communities, but overlap
is limited to kK — 1 nodes

» k-clusters are included in k — 1 clusters
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Clique percolation

> Algorithm
» Similar to normal percolation on networks but with multiple
loops
» Advantages
» Different level of clusters
» Clusters are generally relevant
» No heuristics
» Disadvantages
» Running time cannot be guessed (finding the maximal clique is
an np-complete problem)
» Code may run for ages
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Random Walks on Graphs

» Nodes in a community have higher probability for internal than
for external link.

» Random walker has a higher probability of remaining inside a
community than passing to an other.

» Use this feature for community detection.

» Infomap
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Infomap idea

v

Take a (long) path of a random walker

v

Encode it efficiently by giving unique address to each node

v

Compress the encoding by assuming two level structure

v

Give two level codes: Top ones (unique for each group), local
(can be the same in different groups). Ex:

» addresses in real life: Countries, Cities (there is also a
Budapest in the USA), Streets (you may find Main street in
many cities)

» domain names: .hu, .de; lower domains, e.g. notebook,
weather
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Huffman coding

SYMBOL PROBABILITY copeE

A 28 1 1 38
1

B 15 \ a1 a5
o] 28 1a

c 121 oo =g
1

D 11 oot .44

E os cola 36

F o7 oot 28

o os anna1 22

H 0z 0oooot s

1 o1 oooooo OB

AVERASE WORD LENGTH 2.77
(in binary digits)

» Compress data in the most efficient general way
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Huffman coding

1. Create a leaf node for each symbol and add it to the priority
queue.
2. While there is more than one node in the queue:

2.1 Remove the two nodes of highest priority (lowest probability)
from the queue

2.2 Create a new internal node with these two nodes as children
and with probability equal to the sum of the two nodes’
probabilities.

2.3 Add the new node to the queue.

3. The remaining node is the root node and the tree is complete.
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Huffman coding, vs. infomap

» Can a coding be more efficient than Huffman coding?
» If we know more about the data yes!

» Answer: Two level coding (Of course it would be stupid for
text)
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Sample random path and Huffman coding
Path length: 314 bits
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Sample random path and Huffman

Path length: 243 bits

coding

1110000 11 01 101 100 101 010001 0 110 011 00 11000 1111011 10
111000 10 111000 111 10 011 10000 11110 111 100010 10 011 010
011 10 000 111 0001 0 111 010 100 011 00 111 00 011 00 111 00 111
110 111 110 1011 111 01 101 01 0001 0 110 11100 011 110 111 1011
10111000 10 000 1110001 0 111 010 1010 010 1011 110 00 10 011

11

110
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Infomap: Algorithm
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Start with Huffman coding

Optimize coding to minimize the map equation:

L=q~H(Q)+> pH(PY,

i=1

where H(Q) is the frequency-weighted average length of
codewords for inter group jumps, H(P') is frequency-weighted
average length of codewords for group i.

Implementation: Start with all nodes as different communities

Merge them if L decreases



Infomap

» One of the most popular
» Fast for large networks

» Relability is comparable to more complex methods

(a) _ CliquePerc (b) __Conclude (a)__CliquePerc (b) __Conclude
Py 0 2of 20f
o
0.5 08| A 0. 08|
0.6 0.6 2 0.6| 0.6
04 04 0.4 04
02 s 02 02| y 02
o 0 og 0
85702 04 06 08 10°80 02 04 0F 08 1o 002 04 05 08 10°b0 07 04 05 08 Lo
(9 Ganxis (d)GreedyCliqueExp () Ganxis (d) GreedyCliqueExp
Lo =3 10 s Lof Lof
od 05 ¥ oy o5
06 05 / 0. 05
04 0.4 o 0.4 i { o4
02| 02 S h 02 P 0.2] “,r"
et oo oo
005702 04 06 08 10°86 02 04 05 08 Lo 45 02 04 05 08 10°85 o0z o4 06 05 Lo
o {(e) _Infomap (f)_InfomapSingle o (e) _ Infomap (f)_Inf i
2 ig fus - 2 1o Lof
S 03] > oy S 03] %
7 7
@ 0s @ 0s 7
© © e
S S
g g 02
© 04557 64 06 08 1 1o % 8557 o7 o6 05 10%b0 0z 07 o6 08 Lo
(g)LinkCommunities (g) LinkCommunities  (h) Louvain
P 23] Tof
0. 08|
0. I
P
0.4 e 04
02 > 025 e 0o 0.2
®%0 0z 04 05 08 10°80 02 04 05 08 Lo 85 0z 04 05 08 10°80 0z 04 06 08 Lo
(i Oslom ( Oslom
p ~of
P 0.5
0.
0.4
02
06 08 10 80 02 04 06 08 10

Normalized rank Normalized rank




