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Networks

Complex networks
» Mathematics: Graphs

> Vertices, nodes, points

» Edges, links, arcs, lines
» Directed or undirected

Loop

Multigraph

Wighted graphs

| 2
»
»
» Connected
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Complex networks
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’ Phenomenon Nodes ‘ Links ‘
Ising Spins Interaction(neighbors)
Cell metabolism Molecules | Chem. reactions
Sci. collaboration | Scientists | Joint papers
WWW Pages URL links
Air traffic Airports | Airline connections
Economy Firms Trading
Language Words Joint appearance




Complex networks, citations
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Random Networks

Generate networks:
» From data:

>
>
>
>
>

Phone calls
WWW links
Biology database
Air traffic data
Trading data

» Generate randomly
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>

>
>
>
>

From regular lattice by random algorithm (e.g. percolation)
Erd6s-Rényi graph

Watts—Strogatz small world model

Configuration model

Barabasi-Albert model



Graphs/Networks

» Described by G(V/, E), where V is the set of vertices, and E is
the list of edges

> Alternatively: Aj;, Adjacency matrix

» Degree of a node: k number of links connecting to the node
(if directed there are in kjj and out ko,: degrees)

» Strength of a node: The sum of weight of the links connecting
the node

» A connected component is a subset of the graph in which all
vertex pairs are connected by continuous path
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Basic network properties

» Global:

» Degree distribution
» Shortest path

» Diameter, small world
» Clustering coefficient

» Mesoscopic:
» Communities, modularity
> Treeness
» Hierarchy
» Core-periphery
» Microscopic:
> Assortativity
» Centrality
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Degree distribution




Degree distribution

» Poisson: Well defined mean and variance

» Power law (scale free): Variance and event mean can be
undefined, but definitely mode does not match with average
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Minimal path

» Minimal path is the path with the smallest possible edges
between the two nodes

> If weighted then generally 1/wj; is considered (weight is
proportional to throughput)

» Many applications: e.g. Route planning
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Minimal path
» Minimal path is the path with the smallest possible edges
between the two nodes

If weighted then generally 1/w;; is considered (weight is
proportional to throughput)

> Many applications: e.g. Route planning
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Dijkstra’s algorithm

v

Find the shortest path from a source
Known: links, link weights (node distances)

Store: distance to that point, link to previous element in
shortest path

List of unvisited path sorted by distance to origin (set to
infinity if unknown)
Algorithm:
1. Choose the unvisited node with the smallest distance to the
origin
2. Visit all its unvisited neighbors: if distance is smaller than the
current distance to that point, store it and set link to previous
element to the current active node
3. Mark node as finished
4. If list of unvisited nodes is not empty, go to 1.

Movie
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Diameter/Small world

>
>
>
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Diameter: Largest distance between two vertices
Average diameter: Mean distance between all vertex pairs

Society: Small world. Karinthy (1929)

A fascinating game grew out of this discussion. One of us
suggested performing the following experiment to prove that
the population of the Earth is closer together now than they
have ever been before. We should select any person from the
1.5 billion inhabitants of the Earth — anyone, anywhere at all.
He bet us that, using no more than five individuals, one of
whom is a personal acquaintance, he could contact the
selected individual using nothing except the network of
personal acquaintances



Diameter/Small world

>

>
>
>

Diameter: Largest distance between two vertices

Average diameter: Mean distance between all vertex pairs
Society: Small world. Karinthy (1929)

Milgram experiment: Letters were given to individuals in
middle us (Kansas/Nebraska)

They had to reach a person in Boston

Average hops was 5.5 persons




Clustering coefficient

» The fraction of triangles with respect to V structures

» For a node i consider all triangles it is part of

» Divide it by the number of possible triangles

G

_ et A =1, Ak = 1, A = 1

ki(ki — 1)

» In society there are many triangles (high probability that two

of my friends know each other)

(D
N
(a) No pairs formed among (b) One pair formed among
neighbors: C =0 neighbors: C=1/3
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N4

(c) Three pairs formed among
neighbors: C=3/3



Other measures

» Next week

» Now models
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Erdés-Rényi

> P. Erdés, A. Rényi, On random graphs, Publicationes
Mathematicae Debrecen, Vol. 6 (1959), pp. 290-297 (cit 789)

» Two variants:
1. G(N,M): N nodes, M links
2. G(N, P): N nodes, links with p probability (all considered)
» Algorithm
1. G(N,M):
» Choose i and j randomly i,j € [1, N] and i # j
» If there is no link between i an j establish one
2. G(N, P): (Like percolation)

> Take all {i,j} pairs (i #J)
> With probability p establish link between i and j
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Erdés-Rényi: degree distribution

» Degree distribution

P = (M) et gy

» For large N and Np =const it is a Poisson distribution

(np)*e=?

P(k) — I

p=0 r=01 p=02

() (0 (=
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Erdés-Rényi: Small world

» Small world?

> Yes

> Average degree z =2M /N

> Nodes reached after / steps (z — 1)’
» All nodes reached N = (z — 1)’ so

I =logN/log(z — 1)

> For humanity: / ~ log(7 - 10°)/ log(150) = 4.5
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Erdés-Rényi: Clustering

» Probability of link is independent p
» Average degree z =2M/N is kept constant

» Probability of a link is p; = %
» Clustering
C=p
» For large networks
lim Pl = 0
N—oco

» In large random networks there are no triangles
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Erdés-Rényi
> Real ’Iife: nRead netrrworks‘

\




Watts-Strogatz model

» High clustering: triangular lattice

» Construct a model which continuously extrapolates between
the lattice and the random network

» Start from the lattice and randomly rewire links with
probability p

» pis a parameter, with p = 0 lattice, p = 1 Erdés-Rényi
Regular Small-world Random

Increasing randomness

Page 22



Configuration model

> Get the nodes ready with + f 2
_e

desired degree distribution

» Connect them randomly -
» Self loops, and multiple /k
links are created o«

» Problems at the end

RKA LSS

111111222233334445566 | |(14122325123634351145
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Preferential attachment

Barabasi-Albert graph
» Initially a fully connected graph of mg nodes

» All new nodes come with m links (m < myg)

m=1 m=2 m=3

» Links are attached to existing nodes with probability
proportional to its number of links

» k; is the number links of node i/, then
pa = ki
? Zj ki
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Barabasi-Albert graph
» Degree distribution

» Independent of m!
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Scalefree network example: Flight routes
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Scalefree network example: Co-authorship

Page 27



Algorithm for Barabasi-Albert graph

© N o g bk wh =
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n = mg number of existing nodes

K =>_; kj total number of connections

r random number r € [0, K]

Find imax for which Zf:g ki <r

If there is no edge then add one between nodes n+ 1 and imax
If node n+ 1 has less than m connections go to 3.

Increase n by 1

If n < N go to 2.



Centrality

» Degree centrality

» High degree nodes are

more central

» Closeness centrality

> Average distance to

other nodes

» Betweenness centrality
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» Eigenvector centrality

(Page rank)
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Random Walk on Random Networks

. "
1 10* 102
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Random Walk on Random Networks

> Rate equation ny probability of finding the walker an a site
with k edges:

ony r
oy = kEk; P(k’|k)?nk/

» Uncorrelated random network:
k/
P(K'|k) = —— Py
(k)
> New equation:

8@” rnk+r ZP nk/

» Solution:
k
Nk = ——
kN
» Random walkers gather on high connectivity nodes
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Page rank

» Do what surfers do

» Random walk on pages, but sometimes (probability g) a new
(random) restart

» Dumping factor d = 1 — g (general choice d = 0.85).
» Self-consistent, equation:
Pr() =& —(1—q ZA,,
N koutj

» Solution: iteration

» Result: Favours sites which are linked by many (reliable
sources)
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Page rank example
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Assortativity
» Whether high degree nodes are connected to high degree nodes

Page 34



Percolation and attack on random networks

» Failure: equivalent to percolation: remove nodes at random
> Attack: remove most connected nodes

Page 35




Percolation and attack on random networks

» Failure: equivalent to percolation: remove nodes at random
» Attack: remove most connected nodes
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Percolation and attack on random networks

» Efficiency:

tj; the shortest path between / and ;.
> N =2000, k =10

0.4

e—-® ER failure
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p = fraction of removed nodes
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Percolation and attack on random networks
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Percolation on networks (graphs)

» Network is defined by nodes and links

» Percolation gives us connected components

» Link removal percolation gives information about robustness,
and structure
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Error vs. attacks

(b) Scale-free network
2 T T T T
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Link removal percolation on networks

» Granovetter hypothesis: The strength of the weak ties
» Human communities have strong connections

» These communities are connected with weak ties

» Test the structures with Link removal percolation
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Link removal percolation on networks

Ricc

(&) ND
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Percolation on networks (graphs)

» Network is defined by nodes and links
> Two arrays:

» node[] list of nodes
» 1ink[i] [] list of links of node i
» 1ink[i] [j] is a link between i and 1ink[i] [j]

» Cluster: nodes connected with links

» Links can be directed 1ink[i] [j] is a link from i —
link[i] [j]
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Stack (Verem — Hole/Pitfall)

» Last in forst out (LIFO)
» Code:

int Stack_size = Hopefully_large_enough_number;
int stack[Stack_size],
int sp=0;
vold push(int item) {
stack[sp++] = item,
if (sp == Stack_size) enlarge_array(stack),

}

int pop() {
return{stack[--sp]),

» Error handling?
» Size of the stack?
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Algorithm percolation on networks (graphs)

© N o b w

Page 45

Go through each node

Put node in the stack

Get a node from the stack

Go through each unmarked link of the node

Put other end of links in the stack if it is not marked
Mark nodes

If the stack not empty Go to 3.

If the stack empty Go to 1.



Algorithm percolation on networks (graphs)

1 2 3 1 2 1 2 1 2
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