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Percolation
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Percolation

Behavior of connected cluster
» Site percolation

» Bond percolation
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Percolation model

» Random environment
» With probability p site vacant (conducts)
> Two states: percolates or not!

B occupied site  [Jvacant site

. .
low p: does not percolate
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high p: does percolate



Percolation theory

Questions (in infinite systems):
1. Is there an infinite cluster in infinite systems?
2. How many infinite clusters are there?
3. Mean cluster size (without the inifinte one)?
4. Cluster size distribution

Answers:

1. Above a critical density with probability 1 below it with
probability 0

2. Only 1!

3. Decreases as a power low away from the critical density

4. Power law
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Percolation theory

Questions (in infinite systems):
1. Is there an infinite cluster in infinite systems?
2. How many infinite clusters are there?
3. Cluster size distribution (ns)
4. Mean cluster size (without the inifinte one)? (S =", s%n;)
Answers:
1. if p > pc then yes, otherwise no
2. Only 1!
3. ng ~s—
4. S~ |p—pc|™?
Like a second order phase transition in a geometric system!

T
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Percolation model
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Percolation model
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Percolating cluster

» Largest cluster
» fractal with fractal dimension of df
5;‘1 |Og(N/§d) p < Ppc
> S~ Ndf/d P = Pc
NP (p) P > pc

» Largest not infinite cluster: size ~ |p — pc|™
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Percolation theory: Importance

Py, = 16.25 atom/nm’ Py, = 18.25 atom/nm’
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Percolation theory: Importance

vVvyVvVvyypy
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COFFEE!!!!

Non-equilibrium statistical physics

Image analysis

Percolation on networks: Phase transitions
Percolation on networks: robustness, fragility
Flodings




Percolation model

Bond [site] percolation
» Let us have a lattice (network)
» Each bond [site] is occupied with probability p
> (unoccupied with probability 1 — p)
> A cluster is a set of sites connected by occupied bonds
[A cluster is a set of occupied sites]
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Hoshen-Kopelman Algorithm

» Numerical task: find clusters

» lIdentify clusters
> Visit all sites

» Mark them with numbers

1@11””11111111.
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Hoshen-Kopelman Algorithm

» Site percolation

» Open boundary conditions

» Go through site in typewriter style
» Check left and above
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Hoshen-Kopelman Algorithm

link[1]=1
link[2]=2

» Go through sample in typewriter style
> If site is occupied, look left and up

» if no neighbour — new number
» if only one is occupied — inherit number
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Hoshen-Kopelman Algorithm

link[1]=1
link[2]=1

link[1]=1
link[2]=1
link[3]=1
link[4]=4

> ...

> If site is occupied, look left and up
|
» if both sites are occupied — then link the two
» a link which points to itself is a root link
find the root of both sites
connect the larger to the smaller
use this number

vvyy
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Hoshen-Kopelman Algorithm

link[1]=1
link[2]=2

link[1]=1
link[2]=1

link[1]=1
link[2]=1
link[3]=1
link[4]=4
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Hoshen-Kopelman Algorithm

» Site percolation

» Helical boundary conditions (rolled up ont dimensional lattice)

» Go through site in typewriter style
» Check left and above (as before)

a =] C
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Hoshen-Kopelman Algorithm

> Site percolation

» Periodic boundary conditions

» Go through site in typewriter style
» Check left and above (as before)

» After each line if first and last site is occupied link them
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Hoshen-Kopelman Algorithm, Periodic BC

link[1]=1 link[1]=1

link[2]=2 link[2]=2

link[3]=3 link[3]=1

link[1]=1 link[1]=1
link[2]=1 link[2]=1
link[3]1=1 link[3]=1
link[4]=4 link[4]=4
link[5]=1

link[6]=6
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Result

percol
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0.4

0.2
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Determine p,

» From order parameter:

» Increase and decrease p by p/2 to converge to p.
» Use the monotonity of the percolation

» Same random number sequence can be generated!
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Fractals

Mandelbrot set:

fo(z) = z2+c¢, z,c € C for
which £.(0), f(f(0)) re- |
mains bounded in absolute 3
value.
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Fractal growth

Mineralization

Surface crysilization

Bacterial §
colony
growth

Disordered viscous fingering
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Snowflakes

Q™



Fractal growth

Laplacian or gradient governed growth
» Scalar field (electrostatic field, density, through diffusion)

Au=0
> Velocity of the interface ' proportional with the gradient
vlr = —CVulr
» Boundary condition: potential is curvature (k) dependent
ulr = f(Vu, k)

» Disorder: small fluctuations
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Fractal growth
Laplacian or gradient governed growth
» Scalar field (electrostatic field, density, through diffusion)
» Velocity of the interface I proportional with the gradient
» Boundary condition: potential is curvature (k) dependent
» Disorder: small fluctuations
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Fractal growth

Consequences:

» Positive growth feedback: If there is a bump, gradient
increases (peak effect), growth gets faster

» Screening: Faster bump will screen the slower one

» Branching: If tip is far a new bump may grow.

> Tip splitting: Tip gets instable and splits

N

Zboe
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Fractal

> Self-similarity
P> Repeating pattern
» Scaling patterns

4l gt y ¥y
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Scale invariance
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Fractal dimension: Example

/\

Ay\zAﬁ/\y\z/\

Koch curve
» Start from unit segment
» Hausdorff dimension: cover it with spheres of size / = 37/
» Number of spheres needed N, = 4/ (take level i)
» Fractal dimensions:
_ IIog; N, _ /!og(4) ~ logy(4)
ogl/l  +ilog(3)
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Dimension

» d =0 point, d =1 line, d = 2 plane, etc. Containing space.
» Dimension of a finite object: Cover it

» Hausdorff (fractal) dimension

» Minkowski—-Bouligand dimension

N-s N=19 N=48 N=97
Great Britain l =2 | =4 =8
=} = = =
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Fractal dimension

» Fractal dimension

» Cover the object with boxes of size ¢, the fractal dimension is
log N
D =dim(S) = li log V(¢)
e—0 logl/e
» Differences:
» Minkowski—Bouligand: Regular lattice is used

» Hausdorff: Spheres of given size are used.
» In practice

N(e) x &P
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Fractal dimension

10° — data
— y=x*%(-1.3)
10*
3 10°
=
10?
10!
100 10t 102 103
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Fractal dimension: Other methods

» Sandbox method: M o LP

» Correlation functions
C(r) = (p(r)p(0)) oc r
D=d-a
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Diffusion Limited Aggregation: Algorithm
Basic:
» Start with a seed at (0,0)
> Particles start far from the aggregate and diffuse till they get
adjacent to existing cluster
Advanced:
> Start with a seed at (0,0)
» Start random walker on a circle just big enough to cover the
cluster
» Define a kill ring big enough or use reentry distribution
> Regions of large jumps, on a larger scale lattice

la]

FIG. 1: (a) Schematic npnxu\l.ﬂmn of IhL upummd random lmjumnu (b) A DLA aggregate and a mesh

Pa ge (8 2 2r, allowed in the white ones. Also, two
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DLA: Lattice effects
106 particles

on-lattice

off-lattice

10 clusters of 10° particles




Ballistic deposition

» Lattice ‘

> Off lattice
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Surface growth models

» Not the whole object but only its
surface is interesting (e.g. coastline)

» Object starts from a d-dimensional
substrate

» Object grows in the d + 1th dimension.

» Object is described by h(x) (x is a
d-dimensional position vector) height
function which is the maximum surface
position at X.

» Width of the surface

Lt)—\/ /[hxt ()Pdx
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Family-Vicsek scaling
» Change of width in time
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» Scaling relation:
w(L,t) oc L*f(t/L%)
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Theory: The KPZ-equation

> Surface growth A(x, t)

» Function of: position(?), height, gradient, Laplace of height,
noise

h(x,t) = f[x, h(x, t), Vh(x, t), Ah(x, t), ..., n(x, t)]
» Normally:
h(x,t) = f[h(x, t), Vh(x, t), Ah(x, t), n(x, t)]

» Gaussian noise:

(n(x, thn(x', t')) = Ad(t — t')d(x — )

Pl) =~ ep (—Z)
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The Kadar-Parisi-Zhang equation

» Growth is lateral, up to second order

h(x,t) = f[(Vh(x, t))%, Ah(x, t), n(x, t)]
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The Kadar-Parisi-Zhang equation

h(x, t) = vAh(x, t) + A(Vh(x, t))? + 1(x, t)

» Nonlinear
» Stochastic

» Partial differential equation
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Discretization in 1D of the KPZ-equation

Space discretization (1+1 dimensions):

xi = iAx, hi = h(x;)

% (x) = —hi‘;;:"‘l +0 (a7
[% (x,-)}2 = % +0(8x3)
Py = 20t bt g (ave)
Y
ilihtl - A1x2 [V(h"“ —2hi + hi1) + %(’W—l — hi_1)?| + noise.

Page 44



Numerical solution of the KPZ-equation

» ¢ is a random number with zero mean (can be Gaussian, or
uniform)

» Due to noise Euler scheme is enough:

hi(t + At) =hi(t) + (AAX"“) (s () — 2hi(2) + hioa(£)] +

+ % [hiva(t) — hi1(t)] + &

» Critical exponents and and universality classes o = 1/2,
z=3/2
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Practice: Hoshen-Kopelman Algorithm

» Fill a square lattice with random 0 and 1
» Creat a large enough array where 1ink[i]=i

» Go through the lattice in a typewriter style
> If the site is not empty check the sites to the top and left (if
they exist)
» if both neighbors are empty — assign it a new label (you can
keep the labels in the original array)
» if only one neighbor is empty — assign it the root label of the
neighbor
» if both neighbors are occupied — search for the root labels of
the sites connect the larger to the smaller and assign this value
to this site

» (Bonus): Measure the distribution of the size of the clusters,
or the size of the largest as function of p, etc.
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