
Computer Simulations in Physics
Differential equations

Janos Török

Department of Theoretical Physics

February 14, 2019

Page 1

Finite difference: First order

I Forward difference

∆f (x) ≡ f (x + h)− f (x) = fk+1 − fk

I Backward difference

∇f (x) ≡ f (x)− f (x − h) = fk − fk−1

I Central difference

δf (x) ≡ f (x + h/2)− f (x − h/2) = fk+ 1
2
− fk− 1

2

I Well, if you know it at k + 1
2

Page 2

Finite difference: Second order

I Forward difference

∆2f (x) ≡ fk+2 − 2fk+1 + fk

I Backward difference

∇2f (x) ≡ fk − 2fk−1 + fk−2

I Central difference

δ2f (x) ≡ fk+1 − 2fk + fk−1

Page 3

Finite difference: General

I Forward difference

∆nf (x) ≡
n∑

i=0

(−1)i
(
n

i

)
fk−i+n

I Backward difference

∇nf (x) ≡
n∑

i=0

(−1)i
(
n

i

)
fk−i

I Central difference

δnf (x) ≡
n∑

i=0

(−1)i
(
n

i

)
fk−i+n/2

Page 4

Finite difference: Comparison

Page 5

First order differential equation
I Example: y ′ = y − t, boundary conditions: y(0) = y0

I Solution: y(t) = 1 + t + et(y0 − 1)

I Vector field

Page 6

Euler method
I Forward difference, Euler method

yn+1 = yn + ∆tfn +O(∆t2)

I Backward difference, Implicite Euler method

yn+1 = yn + ∆tfn+1 +O(∆t2)

I Example, linear function:

f (y) = a0 + a1y

I Then: fn+1 = fn + a1(yn+1 − yn)

I And the new position can be obtained as:

yn+1 =
1

1− a1∆t
(yn + a0∆t) +O(∆t2)

Page 7

Euler method

I Second order differential equation:

ÿ = f (ẏ(t), y(t), t)

I First velocity (v = ẏ)

vn+1 = vn + ∆t fn +O(∆t2)

I Then position

yn+1 = yn + ∆t vn +O(∆t3)

I Do not use it!

Page 8

Implicit Euler method (backward)

I Second order differential equation:

ÿ = f (ẏ(t), y(t), t)

I First velocity (v = ẏ)

vn+1 = vn + ∆t fn +O(∆t2)

I Then position

yn+1 = yn + ∆t vn+1 +O(∆t3)

I Surprisingly good!

Page 9

Euler

Euler
Iplicit Euler

−2

−1.5

−1

−0.5

 0

 0.5

 1

 1.5

 2

 2.5

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

Page 10

Verlet method

I Second order differential equation:

ÿ = f (y(t), t)

I From central difference

yn+1 = 2yn − yn−1 + ∆t2 fn +O(∆t4)

I Leapfrog

yn+1 = yn + ∆t vn+ 1
2

vn+ 1
2

= vn+ 1
2

+ ∆t fn

I None of them is used
I Velocity dependent forces are difficult to add

Page 11

Velocity Verlet method

I The one actually used in all codes:

yn+1 = yn + ∆t vn +
1
2

∆t2fn

vn+1 = vn +
1
2

∆t(fn + fn+1)

I Implementation
1. vn+1/2 = vn + 1

2 fn∆t
2. yn+1 = yn + ∆t vn+1/2
3. Calculate forces
4. vn+1 = vn+1/2 + 1

2 fn+1∆t

Page 12

Energy comparison

Euler
Verlet

Velocity Verlet

−1

−0.9

−0.8

−0.7

−0.6

 0 100 200 300 400 500 600 700 800 900 1000
t

E

Page 13

Energy conservation

I Runge-Kutta is not good, neither is the Euler method

Page 14

Value of the timestep
I Example:

ẏ(t) = −λy(t)

I Euler methor:
yn+1 = (1− λ∆t)yn

I Exact solution:
y(t0 = y0 exp(−λt)

I Solution is stable, but what are those oscillations?
Page 15

Value of the timestep

I Example:
ẏ(t) = −λy(t)

I Euler methor:
yn+1 = (1− λ∆t)yn

I If λ∆t > 2 the oscillations increase

Page 16

Stability

I Describe the iteration with an operator T , error is εn � yn

yn+1 = T [yn] yn+1 + εn+1 = T [yn + εn]

I First order expansion

εn+1 = T [yn + εn]− T [yn] ' T ′[yn]εn ≡ G εn

I This is stable for Eigenvalues with |gv | < 1 of G
I Example: relaxation with Euler method

T [yn] = (1− λ∆t)yn

I The Eigenvalue: g1 = 1− λ∆, which gives the condition:

0 < λ∆t < 2

Page 17

Stability
I The implicite Euler with relaxation:

T [yn] = (1 + λ∆t)−1yn

I Which gives 0 < λ∆t, always stable!
I Leapfrog:

yn+1 = −2λ∆tyn + yn−1

I The same applies for the error(
εn+1
εn

)
=

(
−2λ∆t 1

1 0

)(
εn
εn−1

)
I Which gives:

g1,2 = −λ∆±
√

1 + (λ∆t)2

I Unfortunately |g2| > 1

Page 18

Partial differential equations

Page 19

Partial differential equations: Problems

I Boundary problems:
I Typically time independent systems
I Values are given on a surface, and solution is search for inside

the volume
I e.g. Poisson problem

I Starting value problems:
I Typically time dependent systems
I Start conditions are known, time evolution is searched for
I e.g. Newton equations

Page 20

Discretization

I Discretization of
I Derivative
I Space (mesh)
I Basis function

Page 21

Discretization on a two-dimensional lattice
I Poisson equation:

∂2u(x , y)

∂x2 +
∂2u(x , y)

∂y2 = −ρ(x , y)

I Central derivative

−ρi ,j =
1
h2 (ui+1,j + ui−1,j − 4ui ,j + ui ,j+1 + ui ,j−1)

ui ,j =
1
4

(h2ρi ,j + ui+1,j + ui−1,j + ui ,j+1 + ui ,j−1)

I The new value of the grid does not depend on itself!

Page 22

Matrix formulation
I 1d:

ui+1 − 2ui + ui−1 = −ρih2

I System of linear equations, solve it!

Aij =


1 if |i − 1| = j

−2 if i = j

0 otherwise

I 2d: (i = 0, . . .N − 1, j = 0, . . .M − 1) r = iM + j

vr−M + vr−1 − 4vr + vr+1 + vr+M = −ρih2

Page 23

Matrix formulation
I Problem

Av = b

I Gauss elimination is not a good idea
I Sparce matrices
I Special sparce matric methods
I Iterative methods
I LU decomposition: A = L− zI + U

I Jacobi approximation

I Gauss-Seidel approximation

Page 24

Partial differential equations: Boundary values

I Dirichlet problems:
I Values of the function is known on the surface

I Neumann problem
I Derivative of the function is known on the surface

I Cauchy problem
I Alternatively derivative or the value of the function is known

on the surface
I Periodic boundary

I Same value, zero derivative on both sides
I e.g. crystal potential

Page 25

Partial differential equations: Boundary values

I Dirichlet problems:
I Do not update boundary points
I In matrix formulation move values to the constant part

I Neumann problem
I Boundary points are inactive for the dynamics
I The value is changed however if the corresponding inner grid

changes its value to keep derivative constant
I For matrix method new fictional points
I Equation for derivative

Page 26

Fourier transform

I The differential equation

D[y(t)] = f (t)

I The Fourier transform of the Green’s function of F [D] = G (ω)

I The Fourier transform of F [f (t)] = F (ω)

y(t) = F−1[G (ω)F (ω)]

Page 27

Order of update

I Random: pick a node randomly and update the value at that
point

I Random sequential: at every step shuffle the order of the
nodes, and update each in the given order

I Parallel: solution is done to a separate array simultaneously
I Can be done in parallel
I Stability problems may arise!

Page 28

Units

I Computer stores only numbers
I We have to keep in mind the units
I Better to facilitate our life
I e.g. Damped harmonic oscillator

m∂2
t x + γ∂tx + kx = 0

I Units/values:

m = m′ · [m], x = x ′ · [x], t = t ′ · [t]

where [.] is the unit of the quantity
I SI units: kg, m, s

Page 29

Units

I Parameters:

[m] = [m], γ =
[m]

[t]
, [k] =

[m]

[t]2

I Boundary conditions

[x0] = [x], [v0] =
[x]

[t]

I Possible choice

[m] = m, [x] = x0, [t] =
√
m/k

I This gives
m′ = 1, x ′0 = 1

Page 30

Units

I Dimensionless equation:

∂2
t′x
′ +

γ√
km

∂t′x
′ + x ′ = 0

I This gives us two control parameters:

Γ =
γ√
km

, v ′0 =
v0

x0

√
m

k

Page 31

Units: example
I Gravitational potential

V (r) = −αm
r

I Parameters:

[m] = [m], [α] =
[x]3

[t]2
, [x0] = [x], [v0] =

[x]

[t]

I Natural units

[m] = m, [x] = x0, [t] =

√
x3
0
α

I Control parameter:

v ′0 = v0
[t]

[x]
= v0

√
x0

α

Page 32

References

I https:
//www.cs.colorado.edu/~lizb/chaos/ode-notes.pdf

I http://faculty.olin.edu/bstorey/Notes/DiffEq.pdf

Page 33

https://www.cs.colorado.edu/~lizb/chaos/ode-notes.pdf
https://www.cs.colorado.edu/~lizb/chaos/ode-notes.pdf
http://faculty.olin.edu/bstorey/Notes/DiffEq.pdf

Practice
I Oscillator: Solve numerically the following differential

equation, starting from x(0) = 0, ẋ(0) = 1 using different
integrators:

ẍ = −γx
Measure the positions of the maxima:

 1

 1.005

 1.01

 1.015

 1.02

 1.025

 1.03

 0 200 400 600 800 1000

m
a
x
im

u
m

time

I Poisson equation: Solve the following differential equation
using iterative technique:

∇2u(x , y) = −ρ(x , y)

Choose δx = δy = 1, L = 10, ρ(x , y) = 0. The boundary is
zero everywhere, except for u(x , L) = 1. Change only
ρ(4, 4) = a, Solve the problem again.

Page 34

