
Computer Simulations in Physics
Course for MSc physics students

Janos Török

Department of Theoretical Physics

February 7, 2019

Page 1



Information

I Coordinates:
I Török János
I Email: torok@phy.bme.hu, torok72@gmail.com
I Consultation:

I F III building, first floor 6 (after the first stairs to the right, at
the end of the corridor), Department of Theoretical Physics

I Upon demand (Email)

I Webpage:
http://physics.bme.hu/BMETE15MF45_kov?language=en

I Homework: http://newton.phy.bme.hu/moodle

Page 2

http://physics.bme.hu/BMETE15MF45_kov?language=en
http://newton.phy.bme.hu/moodle


Required knowledge

I Knowledge of basic statistical physics
I Knowledge of basic quantum mechanics
I C, C#, C++ or python language
I If you use C# please submit only the code part!

Page 3



Requirements
I Signature

I 70% participations
I 50% homework submitted and accepted

I Documented working codes (no extra libraries except for gsl)
I Using fancy visualization techniques does not improve the

mark which is given for the algorithm, the efficiency of the
code and the solution of the problem

I If needed and/or a pdf documentation of the results and
explanation

I Exam: mark
I 30%: From homeworks (individual)
I 20%: Small (30 min) test (individual) (must pass!)
I 50%: From projects (pairs/groups) presented in the last

lecture
I Both must be acceptable to pass

I There will be a 5 minute investigation to verify the
authenticity of the codes

I Turn it in language: English, Hungarian, German, French

Page 4



Literature

I D.W. Heermann: Computer simulation methods in theoretical
physics, Springer, 1995

I D. Landau and K. Binder: A guide to Monte Carlo simulations
in statistical physics (Cambridge UP, 2000)

I D. Rapaport: The art of molecular dynamics programming
(Cambridge UP, 2004)

I J. Kertész and I. Kondor (eds): Advances in computer
simulation (Springer, 1998)

I W.G. Hoover: Molecular Dynamics (Springer, 1986)

Page 5



Weeks
1. Random numbers
2. Differential equations
3. Ising, Heisenberg model
4. Optimization
5. Percolation, Fractals
6. Molecular dynamics
7. Kinetic Monte Carlo
8. Networks
9. Clustering

10. Agent based modeling
11. Financial models
12. Hartree-Fock approximation
13. Exact diagonalization for small quantum systems
14. Presentation

Page 6



Differential equations

Page 7



Ising, Heisenberg model

Page 8



Optimization

Page 9



Percolation, Fractals

Page 10



Molecular dynamics

Page 11



Kinetic Monte Carlo

Page 12



Networks

Page 13



Clustering

Page 14



Agent based modeling

Page 15



Financial models

Page 16



Simulations
Experiments Simulations
Principle of measurement Algorithm
Apparatus Program + Hardware
Calibration Calibration + Debugging
Sample Sample
Measurement Run

Data collection
Analysis

Page 17



Simulations

Experiments Simulations
Principle of measurement Algorithm
Apparatus Program + Hardware
Calibration Calibration + Debugging
Sample Sample
Measurement Run

Data collection
Analysis

Marked ones: Computer codes!

Page 18



Programming languages
Simulations codes

I System size must be large
I Phase transition ξ →∞
I Real systems N ∼ 1023 (memory < 1011)

I Simulation time should be long
I Relaxation time
I Interesting phenomena take long
I Separation of time scales

Must be efficient!
It is not bad if program is readable and extensible...

Sample preparation
I Sometimes it is also a simulation

Data analysis
I Anything may happen

Page 19



Programming languages

Problem to solve:
I Fill an array with product of two random numbers
I Calculate the average of them

python
c

Page 20



Programming languages

69s 3.46s
4.51s 3.29s

Page 21



Optimization
I Multiplication vs. Division (not so old computers)

Page 22



Optimization

I Programming language
I In example C is 1.3-20 times faster than python
I On old computers with multiplication is 20% faster
I Matlab, Maple, Mathematica are expensive
I Clusters have C, and C++

I Optimization
I Parallelization
I Indexing Careful usage of pointers
I Reformulate operations
I Does not always worth the pain
I gprof

Page 23



gprof

Page 24



Simulations

I Do what nature does
I Molecular dynamics
I Hydrodynamics

I Make use of statistical physics
I Monte-Carlo dynamics
I Simulate simplified models
I Much smaller codes!

Page 25



Random numbers
I Why?

I Ensemble average:
〈A〉 =

∑
i

AiP
eq
i

Random initial configurations
I Model: e.g. Monte-Carlo
I Fluctuations
I Sample

I How?

Page 26



Generate random numbers

I We need good randomness:
I Correlations of random numbers appear in the results
I Must be fast
I Long cycle
I Cryptography

Page 27



Random number generators

I True (Physical phenomena):
I Shot noise (circuit)
I Nuclear decay
I Amplification of noise

I Atmospheric noise
(random.org)

I Thermal noise of resistor
I Reverse biased transistor
I Lava lamps

I Limited speed
I Needed for cryptography

I Pseudo (algorithm):
I Deterministic

I Good for debugging!
I Fast
I Can be made reliable

Page 28



Language provided random numbers

It is good to know what the computer does!
I Algorithm

I Performance
I Precision
I Limit cycle
I Historically(?) a catastrophe

Page 29



Language provided random numbers

It is good to know what the computer does!

Page 30



Language provided random numbers

It is good to know what the computer does!

Random php rand() on Windows

Page 31



Language provided random numbers

It is good to know what the computer does!
I Algorithm

I Performance
I Precision
I Limit cycle
I Historically a catastrophe

I Seed
I From true random source
I Time
I Manual

I Allows debugging
I Ensures difference

First only uniform random numbers

Page 32



Seed

I From true random source
I Time
I Manual

Random number generator of Python with different seeds:

Page 33



Page 34



Seed
I Ensemble average: Include in the code if possible instead of

restarting it with different seeds!

Page 35



Multiplicative congruential algorithm

I Let rj be an integer number, the next is generated by

rj+1 = (arj + c)mod(m),

I Sometimes only k bits are used
I Values between 0 and m − 1 or 2k − 1
I Three parameters (a, c ,m).
I If m = 2X is fast. Use AND (&) instead of modulo (%).
I Good:

I Historical choice:
a = 75 = 16807, m = 231 − 1 = 2147483647, c = 0

I gcc built-in (k = 31):
a = 1103515245, m = 231 = 2147483648, c = 12345

I Bad:
I RANDU: a = 65539, m = 231 = 2147483648, c = 0

Page 36



Tausworth, Kirkpatrick-Stoll generator

I Fill an array of 256 integers with random numbers

J[k] = J[(k − 250)&255]ˆJ[(k − 103)&255]

I Return J[k], increase k by one

I Can be 64 bit number
I Extremely fast, but short cycles for certain seeds

XOR function
ˆ 1 0
1 0 1
0 1 0

Page 37



Tausworth, Kirkpatrick-Stoll generator corrected by Zipf

The one the lecturer uses
I Fill an array of 256 integers with random numbers

J[k] = J[(k − 250)&255]ˆJ[(k − 103)&255]

Increase k by one

J[k] = J[(k − 30)&255]ˆJ[(k − 127)&255]

I Return J[k], increase k by one
I Extremely fast, reliable also on bit level
I General transformation x ∈ [0 : 1[

x = r/(RAND_MAX + 1)

Page 38



Floating point random numbers

I General transformation x ∈ [0 : 1[

x = r/(RAND_MAX + 1)

I It is important to know whether limits are included or not
I General feature: 0 included 1 not
I Generate integer number from 1,2,3. use i = r%3 (modulo)

result: 1 will be 1+ 10−9 more probable than 2 or 3.
I General practice use division instead of percentage, higher bits

are more reliable

Page 39



Tests

I General: e.g. TESTU01
I Diehard tests:

I Birthday spacings (spacing is exponential)
I Monkey tests (random typewriter problem)
I Parking lot test

I Moments: m =

∫ 1

0

1
n + 1

I Correlation

Cq,q′(t) =

∫ 1

0

∫ 1

0
xqx ′q

′
P[x , x ′(t)]dxdx ′ =

1
(q + 1)(q′ + 1)

I Fourier-spectra
I Fill of d dimensional lattice
I Random walks

Red ones are not always fulfilled!
I Certain Multiplicative congruential generators are bad on bit

series distribution, not completely position independent.

Page 40



Bit series distribution
Probability of having k times the same bit

Fit to the tail for different bit positions show
(gcc)

Page 41



Fill of d dimensional lattice

I Generate d random numbers ci ∈ [0, L]
I Set x [c1, c2, . . . , cd ] = 1
I The Marsaglia effect is that for all congruential multiplicative

generators there will be unavailable points (on hyperplanes) if
d is large enough.

I For RANDU d = 3

Page 42



Solution for Marsaglia effect

I Instead of d random numbers only 1 (x)
I Divide it int d parts

c_1=x%d, x/=d
c_2=x%d, x/=d
...

I Better to have L = 2k .
I In this case much faster!

General advice: Save time by generating less random numbers

Page 43



Random numbers with different distributions

I Let us have a good random number r ∈ [0, 1].
I The probability density function is P(x)
I The cumulative distribution is

D(x) =

∫ x

−∞
P(x ′)dx ′

I Obviously:
P(x) = D ′(x)

I The numbers D−1(x) will be distributed according to P(x)

I D−1(x) is the inverse function of D(x) not always easy to get!

Page 44



Random numbers with different distributions

Graphical representation

Page 45



Random numbers with different distributions

A soluable example
I

P(x) =
1
π

1
1+ x2

I

D(x) =
1
π

∫ x

−∞

1+ x ′2

d
x ′ =

1
2
+

1
π

arctan(x)

I

x = D−1(y) = tan [π(y − 1/2)]

Page 46



Box-Müller method

Page 47



Box-Müller method
Gaussian distributed random numbers

P(x) =
1√
2π

e−x
2/2

I Generate independent uniform r1, r2 ∈ (0, 1)
I r1, r2 cannot be zero!
I Two independent normally distributed random numbers:

x1 =
√
−2 log r1 cos 2πr2

x2 =
√
−2 log r1 sin 2πr2

I It uses radial symmetry:

P(x , y) =
1√
2π

e−x
2/2 1√

2π
e−y

2/2 =
1√
2π

e−(x
2+y2)/2

Page 48



Power law distributed random numbers

Let P(y) have uniform distribution in [0, 1]. We generate P(x)
such as

P(x) = Cxn

for x ∈ [x0, x1].

D(x) =

∫ x

x0

P(x ′)dx ′ =
C

n + 1
(
xn+1 − xn+1

0
)

The inverse function is simple:

x =
[(
xn+1
1 − xn+1

0
)
y + xn+1

0
]1/(n+1)

Page 49



Monte Carlo

I Identify base: [a, b]
I Identify minimum/maximum: Pmax = maxx∈[a,b] P(x), idem...
I Generate a point (x , y) in the rectangle (a,Pmin), (b,Pmax)

I If y < P(x) the return x otherwise generate new point

reject

accept

a b x

P(x)

Page 50



Error
I Ensemble average
I Example: estimate π
I Drop a needle of length l ≤ t
I May or may not cross a line

pcross =
2l
tπ

I Lazzarini in 1901 using N = 3408 tries got:

π ' 355/113 = 3.14159292 = π +O(10−7)

I Impressive 10−7 error, but
1√
N
' 0.0017

Page 51



Programming environment

I Basic
I Editor (not notepad!)
I Compiler (gcc recommended)

I Advanced
I Developer environment
I Integrated developer environment (also compiles)

Page 52



Integrated developer environment

I Visual studio (old version can be downloaded from
http://software.eik.bme.hu only from bme.hu domain)

I Eclipse
I Netbeams
I CodeLite
I etc.

Page 53

http://software.eik.bme.hu


Install compiler

I Linux
I Install development package, usually not install when desktop

installation was selected (libgcc-version-dev, plus any -dev
packages)

I Windows
I Visual studio
I cygwin+gcc http://preshing.com/20141108/

how-to-install-the-latest-gcc-on-windows/
I Eclips+gcc (eclipse does not come with a C compiler)

http://www.dcs.vein.hu/bertok/oktatas/cpp_by_
eclipse/eclipse_for_cpp_on_windows.html

I Eclipse+python
https://www.ics.uci.edu/~pattis/common/handouts/
pythoneclipsejava/eclipsepython.html

I Linux in Virtualbox

Page 54

http://preshing.com/20141108/how-to-install-the-latest-gcc-on-windows/
http://preshing.com/20141108/how-to-install-the-latest-gcc-on-windows/
http://www.dcs.vein.hu/bertok/oktatas/cpp_by_eclipse/eclipse_for_cpp_on_windows.html
http://www.dcs.vein.hu/bertok/oktatas/cpp_by_eclipse/eclipse_for_cpp_on_windows.html
https://www.ics.uci.edu/~pattis/common/handouts/pythoneclipsejava/eclipsepython.html
https://www.ics.uci.edu/~pattis/common/handouts/pythoneclipsejava/eclipsepython.html


Random numbers

I Gnu Scientific library
I variable: gsl_rng *r;
I reading environment variables GSL_RNG_TYPE and

GSL_RNG_SEED: gsl_rng_env_setup
I gsl_rng_default=gsl_rng_mt19937 Mersenne twister

algorithm period: 219937 − 1
I Set seed: gsl_rng_set(r,seed);
I Integer random numbers between gsl_rng_max(r) and

gsl_rng_min(r): unsigned long gsl_rng_get(r);
I double random numbers in the range [0, 1):

gsl_rng_uniform(r);

Page 55



Literature

I http:
//www.lce.hut.fi/teaching/S-114.1100/lect_8.pdf

I https://arxiv.org/pdf/1005.4117.pdf

Page 56

http://www.lce.hut.fi/teaching/S-114.1100/lect_8.pdf
http://www.lce.hut.fi/teaching/S-114.1100/lect_8.pdf
https://arxiv.org/pdf/1005.4117.pdf


Practice

1. Write a code that generates random numbers with distribution

P(x) =
√

1− x2, x ∈ [0 : 1]

2. Write a code which shuffles random numbers (cards)
3. Write a code which generates a list of random numbers and

then select an element of the list with probability proportional
to its value

Page 57


