
Computer simulations in Physics
Optimization

Janos Török

Department of Theoretical Physics

March 28, 2019

Page 1

Parallelization

I Why?
I The speed of one core processor is limited
I Larger system sizes
I Multi-core processors
I On multi-core system inter-processor data change is fast

I Why not?
I Computing power is lost
I Much more code development
I Very often ensemble average is needed
I Inter-computer communication is terribly slow

RAM → ∼15GB/s, Ethernet 125MB/s, Infiniband ∼1GB/s

Page 2

Parallelization: How?

I Code asks for more instances (e.g. run a loop in parallel)
I Fork, multi-threading
I Used in desktop applications
I Punished on clusters
I Shared memory

I Operating system (or even multiple machines) launches the
code multiple times which can communicate
I Now de facto standard: MPI (Message passing interface)
I Communication is standardized, environment can be

inhomogeneus
I GPU:

I High number of cores
I Non-standard processors
I Non-standard libraries
I Limited memory

Page 3

Parallelization (Bird flocking model)

Page 4

Parallelization

I Molecular dynamics
I Short range interactions: Box must be duplicated, Verlet in

parallel
I Long range: Parallel fast Fourier transformation

I Contact dynamics
I Short range interactions: Box must be duplicated, Iteration in

parallel
I Event Driven Dynamics

I List must be global, no way!
I Kinetic Monte Carlo

I List must be global, no way!

Page 5

Efficiency of parallelization

I Large systems are needed
I Boundary must be minimal
I System size can be increased simulation time not really

Page 6

Efficiency of parallelization

I Calculate time spent in a branch
I Calculate σT =

√
〈T 2〉 − 〈T 〉2/〈T 〉

I Move line if necessary (σT > σ∗T)
I Lower in tree (up in Fig), larger the mass of the border
I Only rarely, data transfer is expensive

Page 7

Optimization
I General problem of finding the ground state
I Phase-space:
I Arbitrary number of dimensions
I Methods:

I Steepest Descent
I Stimulated Annealing
I Genetic algorithm

Page 8

Optimization

I General problem of finding the ground state
I Phase-space:
I Arbitrary number of dimensions
I Methods:

I Steepest Descent
I Stimulated Annealing
I Genetic algorithm

I Implementation
I C: GSL
I python: scipy.optimize
I Both are very flexible and can be used with numerical or

analytical derivatives

Page 9

Gradient based optimization

I Given f (x), with x = {x1, x2, . . . xn}
I Gradient ∇f (x) ≡ g(x) = {∂1f , ∂2f , . . . ∂nf }
I Second order partial derivatives: square symmetric matrix

called the Hessian matrix:

∇2f (x) ≡ H(x) ≡

∂1∂1f . . . ∂1∂nf
...

. . .
...

∂1∂nf . . . ∂n∂nf



Page 10

General Gradient Algorithm

1. Test for convergence
2. Compute a search direction
3. Compute a step length
4. Update x

Page 11

Steepest descent algorithm

1. Start from x0

2. Compute g(xk) ≡ ∇f (xk). If ||g(xk)|| ≤ εg then stop,
otherwise, compute normalized search direction
pk = −g(xk)/||g(xk)||

3. Compute αk such that f (xk + αpk) is minimized
4. New point: xk+1 = xk + αpk

5. Test for |f (xk+1 − f (xk))| ≤ εa + εr |f (xk)| and stop if fulfilled
in two successive iterations, otherwise go to 2.

Page 12

Conjugate Gradient Method
1. Start from x0

2. Compute g(xk) ≡ ∇f (xk). If ||g(xk)|| ≤ εg then stop,
otherwise Go to 6

3. p0 = −g0

4. Compute g(xk) ≡ ∇f (xk). If ||g(xk)|| ≤ εg then stop,
otherwise continue

5. Compute the new conjugate gradient direction
pk = −gk + βkpk−1, where

β =

(
||gk ||
||gk−1||

)2

6. Compute αk such that f (xk + αpk) is minimized
7. New point: xk+1 = xk + αpk

8. Test for |f (xk+1 − f (xk))| ≤ εa + εr |f (xk)| and stop if fulfilled
in two successive iterations, otherwise go to 4.

Page 13

Conjugate Gradient Algorithm

Page 14

Modified Newton’s method

Second order method
1. Start from x0

2. Compute g(xk) ≡ ∇f (xk). If ||g(xk)|| ≤ εg then stop,
otherwise, continue

3. Compute H(xk) ≡ ∇2f (xk) and the search direction
pk = −H−1gk

4. Compute αk such that f (xk + αpk) is minimized
5. New point: xk+1 = xk + αpk

6. Go to 2.

Page 15

Glassy behavior, frustration
I Model glass: spin glass:

H = −1
2

∑
〈i ,j〉

JijSiSj

I where Jij are random quenched variables with 0 mean (e.g.
±J with probability half)

Rugged energy landscape.

Page 16

Spin glass: Aging
I Heat up the sample where it equilibrates fast
I Quench it below Tc

I Wait tw
I Measure a parameter q(tw , tw + t)
I Often q is a covariance (X observable):

q(s, t) = E (XtXs)− E (Xt)E (Xs)

Page 17

Spin glass: Trap model (Bouchaud)
I The evolution of the particle

system is represented by a
Markov process in a random
energy landscape

I The process will spend most
time into deep valleys of lowest
energy where it will be trapped

I The time spent in these valleys
is random and aging will appear
when the mean time spent in
these valleys diverges

I Order parameter: the
magnetization and the two
point spin correlation between
spins at the same site in two
different replicas

Page 18

Rugged energy landscape

I Typical example NP-complete problems:
I Traveling salesman
I Graph partitioning
I Spin glass

I No full optimization is possible (do we need it?)
I Very good minimas can be obtained by stochastic optimization

I Simulated annealing
I Maximum likelyhood
I Genetic algorithm

Page 19

Optimization

I General optimization
I Parameters of the system x (input)

I for networks: adjacency matrix, degree distribution
I for pattern recognition: data, or processed data (e.g Fourier

spectrum, etc.)
I Optimized property: y = f (x), we search for f (.) which gives

the desired y
I any measurable quantity
I classification of data (e.g. y = 1 for cat, y = 2 for dog, etc.)

I Loss function, L(f), the quantity to be minimized
(Energy/Hamiltonian)
I Least square: L(f) = [y − f (x)]2

I Hamming distance: L(f) =

{
1 if f (x) = y

0 otherwise

Page 20

Linear regression

I Assume linear form for the loss function:

fw(x) = wTx

I The problem must not be linear, e.g. polinomial fit w contains
the coefficients of the polynomial (i indexes data points):

yi = w0 + w1xi + w2x
2
i + · · ·+ wmx

m
i + εi

y1
y2
...
yn

 =


1 x1 x2

1 . . . xm1
1 x2 x2

2 . . . xm2
...

...
...

. . .
...

1 xn x2
n . . . xmn



w1
w2
...
wn

+


ε1
ε2
...
εn


I If X is a square matrix than w = X−1y
I Otherwise w = (XTX)−1XTy

Page 21

Linear regression

I If X is a square matrix than w = X−1y
I Otherwise w = (XTX)−1XTy

Page 22

Linear regression: Over fitting

t = sin(2πx) + ξ

Page 23

Linear regression: Over fitting

Page 24

Simulated annealing

I Loss function: e.g. energy E

I Minimize energy like in a physical system
I Vary parameter set w in an egodic way (all possible values

must be reachable)
I Observe detailed balance:

p(i → j) =

{
1 if Ej < Ei

exp[β(Ei − Ej)] otherwise

I where β ' 1/T
I Slowly decrease T

Page 25

Simulated annealing

I Cool down the system slowly
I Speed is crucial and many experiments are needed
I No guarantee that we find something meaningful
I Warm up and down if needed, if the system quenched into a

local minimum
I One needs a Hamiltonian (or a fitness function) and an

elementary move
I Spin glass: Metropolis

I Traveling salesman
I Minimal travelling path for visiting a number of cities
I Elementary move: swap two cities (T ∼ alcohol)

Page 26

Hill climb

Page 27

Travelling salesman

Page 28

Maximum likelihood

I Unknown parameter which maximizes the likelihood to obtain
the given data

I We know the probability distribution f (xi , θ) of random
variables Xi

I Likelihood:

L(θ) = f (x1, θ)f (x2, θ) · · · f (xn, θ)

I Generally maximize log L(θ)

I Can be solved in many cases
I Probability distributions must be known in advance
I Parameters obtained through equations.
I Main usage: model parameter estimation

Page 29

Maximum likelihood, example

I Two dice, one normal 6 side, the other has probabilities of
p(1, 2, 3, 4, 5, 6) = (1/12, 1/6, 1/6, 1/6, 1/6, 1/4)

I We have rolled 10 times and the result is
1, 2, 6, 5, 6, 5, 3, 6, 4, 2.

I What is the likelihood that we chose the fake dice?
I pnorm = 1

610 = 1.65 · 10−8

I pfake =
1

66·43·12 = 2.79 · 10−8

Page 30

Genetic algorithm
I Learn from nature
I Let the fittest to survive

I Fitness function, e.g. energy, length, etc.
I Combine different strategies
I State is represented by a vector (genetic code or genotype)

I Phasespace, city order, neural network parameters, etc.
I Offsprings have two parents with shared genetic code
I Mutations
I Those who are not fit enough die out

I Keep the number of agents fixed

Page 31

Genetic algorithm: Reproduction

I Two parents and two children

Page 32

Genetic algorithm terminology
I Chromosome: Carrier of the genetic representation
I Gene: Smallest units in the chromosome with individual

meaning
I Parents: Pair of chromosomes, wich produce offsprings
I Population: Set of chromosomes from which the parents are

selected. Its size should be larger than the length of the
chromosome

I Selection principle: The way parents are selected (random,
elitistic)

I Crossover: Recombination of the genes of the parents by
mixing

I Crossover rate: The rate by which crossover takes place
(∼90%)

I Mutatation: Random change of genes
I Mutation rate: The rate by which mutation takes place (∼1%)
I Generation: The pool after one sweep.

Page 33

Genetic algorithm schema

1. Start with a randomly generated population
2. Calculate the fitnesses
3. Selection

I Random
I Best fitness (keep top 50% and generate new 50%)
I Roulette (Monte-Carlo) selection

4. Crossover: offsprings must be viable (Sometimes difficult)

Page 34

Genetic algorithm schema

1. Start with a randomly generated population
2. Calculate the fitnesses
3. Selection

I Random
I Best fitness (keep top 50% and generate new 50%)
I Roulette (Monte-Carlo) selection

4. Crossover: offsprings must be viable (Sometimes difficult)
I One-point
I Two-point
I Uniform
I Mutation: small rate

Page 35

Genetic algorithm example

Page 36

Practice

Genetic algorithm

Page 37

Network optimization example
I Optimize transmission energy consumption (Jin et al. 2003)
I Sensors scattered in space
I One data collector
I Intermetiate collectors can be installed
I Energy consumption

E (k, d) = Eelec + d2Eamp,

where Eelec is the base electric need of a radio station, Eamp is
the energy need of an amplifier and d is the distance to
transmit to.

Page 38

Network optimization example 2.

I Coding: bit
I 1: direct connection to data collector (it is a cluster head)
I 0: connection to nearest cluster head

Page 39

Network optimization example 3.

I Coding: bit
I 1: direct connection to data collector (it is a cluster head)
I 0: connection to nearest cluster head

I Crossover:
I Mutation: change a bit

Page 40

Network optimization example results

Page 41

