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Finite difference: First order

» Forward difference
Af(x) = f(x+ h) — f(x) = fep1 — fx
» Backward difference
Vi(x)=f(x)—f(x—h)="1f— 1
» Central difference
0f(x)=f(x+h/2) — f(x — h/2) = fk+% —f1
» Well, if you know it at k —i—%
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Finite difference: Second order

» Forward difference

A%f(x) = frpo — 261 + i
» Backward difference

V2f(x) = fi — 2f_1 + fr_o
» Central difference

62f(x) = fiq1 — 2f + 1
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Finite difference: General
» Forward difference
A"f(x) = Zn:(—l)i (7) fk—itn
» Backward difference
i =3 (-1) (1) i
» Central difference

0" (x) =D (1) <7> sz
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Finite
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First order differential equation

» Example: y' = y — t, boundary conditions: y(0) = yp

» Solution: y(t) =1+t +e'(yo — 1)

» Vector field
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Euler method

» Forward difference, Euler method

Vi1 = Yo + Athy + O(AL2)

v

Backward difference, Implicite Euler method

Yn+1 = Yn + At’rn+1 + O(AtZ)

v

Example, linear function:

f(y) = a0 + ary

v

Then: for1 = fo + a1(Ynt1 — Yn)
And the new position can be obtained as:

v

1
i1 = ———(yn + agAt At?
Ynt1 1_31At(y + aoAt) + O(At7)
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Euler method

v

Second order differential equation:

y=f(y(t),x(t),¢)

First velocity (v = y)

v

Vnil = Vp + At £, + O(AL?)

v

Then position
Ynt1 = Ya+ At v, + O(AF)

» Do not use it!
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Implicit Euler method (backward)

v

Second order differential equation:

y = f(y(t), ¥(t), 1)

First velocity (v = y)

v

Vni1 = Vp + At f, + O(AL?)

v

Then position

Ynil = Yn + At vpr1 + (’)(At3)

v

Surprisingly good!
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Euler
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Verlet method

» Second order differential equation:
y = f(y(t),1)
» From central difference

Yn+1 = 2Yp — Yn—1+ At2 fn+ 0(At4)

» Leapfrog
Ynt1 = Yp + ALV, 41
Vn+% = Vn+% +At fn
» None of them is used

v

Velocity dependent forces are difficult to add
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Velocity Verlet method

» The one actually used in all codes:

1
V4l = Yn + At v, + 5At2f,,
1
Vh+1 = Vn + EAt(fn + fn—l—l)

» Implementation
Vng1/2 = Vo + %ant

- Yny1 =Yn+ At Vnt1/2
. Calculate forces

Vail = Vos1/2 + 3f1 At

Bw e
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Energy comparison
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Energy conservation

» Runge-Kutta is not good, neither is the Euler method

Leapirog
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Value of the timestep

» Example:
y(t) = =Ay(t)
» Euler methor:
Yn+1 = (1 = AAt)y,

» Exact solution:
y(t0 = yp exp(—At)

00000

— At=15

()
]
*
q

» Solution is stable, but what are those oscillations?
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Value of the timestep

» Example:
y(t) = =Ay(t)
» Euler methor:
Ynr1 = (1 = AAt)y,

» If AAt > 2 the oscillations increase

- At=15
—— At=1.9
—— At=2.0
1 === At=21

v

Page 16



Stability
» Describe the iteration with an operator T, erroris €, < y,,
Yor1=TWnl  Yoy1+ €1 =TIy, + €]
» First order expansion
€nt1 =TIy, + €] = Tly,] = T'ly,len = G e,

» This is stable for Eigenvalues with |g,| < 1 of G
» Example: relaxation with Euler method

T[Yn] = (1 - AAt))/n
» The Eigenvalue: g3 =1 — AA, which gives the condition:

0< Mt <2
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Stability

» The implicite Euler with relaxation:

Tlya] = (1+ AAt)y,

v

Which gives 0 < AAt, always stable!
Leapfrog:

v

Ynt1 = —2MAty, + yn1

v

The same applies for the error
€nt1) _ [ —2MAt 1 €n
€n ) 1 0/) \en1

g12 = —AA 4 /1+ ()\At)2

v

Which gives:

» Unfortunately |g»| > 1
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Partial differential equations
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A= O3 + ay? + 9z2

AU(QJ, Y. z, t) = _,0(93, Y, z, t)

52

—Au(m, Y, 2) +E - V(xaya Z) =0
2m

K2 du

L Au+inZ v =0

2m u ot
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Partial differential equations: Problems

» Boundary problems:

» Typically time independent systems

» Values are given on a surface, and solution is search for inside
the volume

» e.g. Poisson problem

» Starting value problems:

» Typically time dependent systems
» Start conditions are known, time evolution is searched for
» e.g. Newton equations
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Discretization

» Discretization of
» Derivative
» Space (mesh)
» Basis function
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Discretization on a two-dimensional lattice

» Poisson equation:

0%u(x,y 0%u(x,y
a(xz ) + a(yg ) = *p(X,y)

> Central derivative
1
—pij = 1y (i1 + Uimyj — Ui+ Uij1 + Uij-1)

2
uij = o (h°pij + tivrj + ti—1j + Uijr1 + Uij-1)

» The new value of the grid does not depend on itself!
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Matrix formulation

> 1d:
Uis1 — 2uj + uj_1 = —pih?

» System of linear equations, solve it!
1 ifli—1=j
Aj={ -2 ifi=j
0 otherwise
»2d: (i=0,...N—1,j=0,...M—1) r=iM+]

2
Ve + Vee1 — 4ve + Vel + Vg = —pih

0 5
o
""-._. 2D, 6x6
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Matrix formulation

Problem

v

Av=D>b

» Gauss elimination is not a good idea

v

Sparce matrices

v

Special sparce matric methods
Iterative methods

LU decomposition: A=L—zl + U
Jacobi approximation

ﬁncw - % [(L + U)ﬁold + hQE]

= Uold + Told + S h™p

v Vv

v

» Gauss-Seidel approximation
— 1 — — —
rgs = E(Lvncw + UUold) — Vold

Unew = Uold T TGs + zh P
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Partial differential equations: Boundary values

» Dirichlet problems:

» Values of the function is known on the surface
» Neumann problem

» Derivative of the function is known on the surface
» Cauchy problem

» Alternatively derivative or the value of the function is known
on the surface

» Periodic boundary

» Same value, zero derivative on both sides
» e.g. crystal potential
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Partial differential equations: Boundary values

» Dirichlet problems:
» Do not update boundary points
» In matrix formulation move values to the constant part
» Neumann problem
» Boundary points are inactive for the dynamics
» The value is changed however if the corresponding inner grid
changes its value to keep derivative constant
» For matrix method new fictional points
» Equation for derivative
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Fourier transform

» The differential equation

Dly(#)] = £(¢)

» The Fourier transform of the Green's function of F[D] = G(w)
» The Fourier transform of F[f(t)] = F(w)

y(t) = FHG(w)F(w)]
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Order of update

» Random: pick a node randomly and update the value at that
point

» Random sequential: at every step shuffle the order of the
nodes, and update each in the given order

» Parallel: solution is done to a separate array simultaneously

» Can be done in parallel
» Stability problems may arise!
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Units
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Computer stores only numbers
We have to keep in mind the units
Better to facilitate our life

e.g. Damped harmonic oscillator
mo?x + y0:x + kx = 0
Units/values:
m=m-[m], x=x"-[x], t=1t"][t]

where [] is the unit of the quantity
Sl units: kg, m, s



Units

» Parameters:

_ [m] [m]

ml=lml. =" =R

» Boundary conditions

[x]

[MZVLDMZH

» Possible choice

[m]=m, x| =x, [t]=+m/k

» This gives
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Units

» Dimensionless equation:

~
vV km

» This gives us two control parameters:

(9,_%X' =+ at/X, =+ X, = O
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Units: example

» Gravitational potential

» Parameters:

[x° [x]

[m] = [m], [a]=W7 [xol = []; [m]:m

3
[m=m, [x]=x0, [t]= \/E

» Control parameter:

» Natural units
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Practice

» Oscillator: Solve numerically the following differential
equation, starting from x(0) = 0, x(0) = 1 using different
integrators:

X = —yx
Measure the positions of the maxima:

T
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» Poisson equation: Solve the following differential equation
using iterative technique:

V2u(x,y) = —p(x,y)
Choose 0x =0y =1, L =10, p(x,y) = 0. The boundary is
zero everywhere, except for u(x, L) = 1. Change only

p(4,4) = a, Solve the problem again.
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