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Networks

Complex networks
I Mathematics: Graphs
I Vertices, nodes, points
I Edges, links, arcs, lines

I Directed or undirected
I Loop
I Multigraph
I Wighted graphs
I Connected
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Complex networks

Phenomenon Nodes Links
Ising Spins Interaction(neighbors)
Cell metabolism Molecules Chem. reactions
Sci. collaboration Scientists Joint papers
WWW Pages URL links
Air traffic Airports Airline connections
Economy Firms Trading
Language Words Joint appearance
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Complex networks, citations
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Random Networks

Generate networks:
I From data:

I Phone calls
I WWW links
I Biology database
I Air traffic data
I Trading data

I Generate randomly
I From regular lattice by random algorithm (e.g. percolation)
I Erdős-Rényi graph
I Watts–Strogatz small world model
I Configuration model
I Barabási-Albert model
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Graphs/Networks
I Described by G(V ,E ), where V is the set of vertices, and E is

the list of edges
I Alternatively: Aij , Adjacency matrix
I Degree of a node: k number of links connecting to the node

(if directed there are in kij and out kout degrees)
I Strength of a node: The sum of weight of the links connecting

the node
I A connected component is a subset of the graph in which all

vertex pairs are connected by continuous path

1 2 3

4 5 6

Aij =



0 1 0 7 1 0
1 0 3 0 0 0
0 3 0 0 0 0
7 0 0 0 4 0
1 0 0 4 0 0
0 0 0 0 0 0
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Basic network properties

I Global:
I Degree distribution
I Shortest path
I Diameter, small world
I Clustering coefficient

I Mesoscopic:
I Communities, modularity
I Treeness
I Hierarchy
I Core-periphery

I Microscopic:
I Assortativity
I Centrality
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Degree distribution
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Degree distribution

I Poisson: Well defined mean and variance
I Power law (scale free): Variance and event mean can be

undefined, but definitely mode does not match with average
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Minimal path

I Minimal path is the path with the smallest possible edges
between the two nodes

I If weighted then generally 1/wij is considered (weight is
proportional to throughput)

I Many applications: e.g. Route planning

1 2 3

4 5 6
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Minimal path
I Minimal path is the path with the smallest possible edges

between the two nodes
I If weighted then generally 1/wij is considered (weight is

proportional to throughput)
I Many applications: e.g. Route planning
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Dijkstra’s algorithm

I Find the shortest path from a source
I Known: links, link weights (node distances)
I Store: distance to that point, link to previous element in

shortest path
I List of unvisited path sorted by distance to origin (set to

infinity if unknown)
I Algorithm:

1. Choose the unvisited node with the smallest distance to the
origin

2. Visit all its unvisited neighbors: if distance is smaller than the
current distance to that point, store it and set link to previous
element to the current active node

3. Mark node as finished
4. If list of unvisited nodes is not empty, go to 1.

Movie
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Diameter/Small world

I Diameter: Largest distance between two vertices
I Average diameter: Mean distance between all vertex pairs
I Society: Small world. Karinthy (1929)

A fascinating game grew out of this discussion. One of us
suggested performing the following experiment to prove that
the population of the Earth is closer together now than they
have ever been before. We should select any person from the
1.5 billion inhabitants of the Earth – anyone, anywhere at all.
He bet us that, using no more than five individuals, one of
whom is a personal acquaintance, he could contact the
selected individual using nothing except the network of
personal acquaintances
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Diameter/Small world
I Diameter: Largest distance between two vertices
I Average diameter: Mean distance between all vertex pairs
I Society: Small world. Karinthy (1929)
I Milgram experiment: Letters were given to individuals in

middle us (Kansas/Nebraska)
I They had to reach a person in Boston
I Average hops was 5.5 persons
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Clustering coefficient
I The fraction of triangles with respect to V structures
I For a node i consider all triangles it is part of
I Divide it by the number of possible triangles

Ci =
|ejk : Aij = 1,Aik = 1,Ajk = 1|

ki (ki − 1)

I In society there are many triangles (high probability that two
of my friends know each other)
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Other measures

I Next week
I Now models
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Erdős-Rényi

I P. Erdős, A. Rényi, On random graphs, Publicationes
Mathematicae Debrecen, Vol. 6 (1959), pp. 290-297 (cit 789)

I Two variants:
1. G (N,M): N nodes, M links
2. G (N,P): N nodes, links with p probability (all considered)

I Algorithm
1. G (N,M):

I Choose i and j randomly i , j ∈ [1,N] and i 6= j
I If there is no link between i an j establish one

2. G (N,P): (Like percolation)
I Take all {i , j} pairs (i 6= j)
I With probability p establish link between i and j

Page 17



Erdős-Rényi: degree distribution
I Degree distribution

P(k) =

(
N − 1
k

)
pk(1− p)N−1−k

I For large N and Np =const it is a Poisson distribution

P(k)→ (np)ke−np

k!
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Erdős-Rényi: Small world

I Small world?
I Yes
I Average degree z = 2M/N
I Nodes reached after l steps (z − 1)l
I All nodes reached N = (z − 1)l so

l = logN/ log(z − 1)

I For humanity: l ' log(7 · 109)/ log(150) = 4.5
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Erdős-Rényi: Clustering

I Probability of link is independent p
I Average degree z = 2M/N is kept constant
I Probability of a link is pl = 2M

N(N−1)

I Clustering
C = pl

I For large networks
lim

N→∞
pl = 0

I In large random networks there are no triangles
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Erdős-Rényi
I Real life: Read networks

Most networks are different!
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Watts-Strogatz model

I High clustering: triangular lattice
I Construct a model which continuously extrapolates between

the lattice and the random network
I Start from the lattice and randomly rewire links with

probability p

I p is a parameter, with p = 0 lattice, p = 1 Erdős-Rényi
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Configuration model

I Get the nodes ready with
desired degree distribution

I Connect them randomly
I Self loops, and multiple

links are created
I Problems at the end
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Preferential attachment

Barabási-Albert graph
I Initially a fully connected graph of m0 nodes
I All new nodes come with m links (m ≤ m0)

I Links are attached to existing nodes with probability
proportional to its number of links

I ki is the number links of node i , then

pa =
ki∑
j kj
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Barabási-Albert graph

I Degree distribution
p(k) ∼ k−3

I Independent of m!

m = 1
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Scalefree network example: Flight routes
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Scalefree network example: Co-authorship
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Algorithm for Barabási-Albert graph

1. n = m0 number of existing nodes
2. K =

∑
j kj total number of connections

3. r random number r ∈ [0,K ]

4. Find imax for which
∑imax

j=0 kj < r

5. If there is no edge then add one between nodes n + 1 and imax

6. If node n + 1 has less than m connections go to 3.
7. Increase n by 1
8. If n < N go to 2.
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Centrality
I Degree centrality

I High degree nodes are
more central

I Closeness centrality
I Average distance to

other nodes
I Betweenness centrality

I Number of times part
of a minimal path
considering the
minimal paths amont
all possible pairs

I Eigenvector centrality
(Page rank)
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Random Walk on Random Networks

Page 30



Random Walk on Random Networks
I Rate equation nk probability of finding the walker an a site

with k edges:

∂nk
∂t

= −rnk + k
∑
k ′

P(k ′|k) r
k ′
nk ′

I Uncorrelated random network:

P(k ′|k) = k ′

〈k〉
Pk ′

I New equation:

∂nk
∂t

= −rnk + r
k

〈k〉
∑
k ′

P(k ′)nk ′

I Solution:
nk =

k

〈k〉N
I Random walkers gather on high connectivity nodes
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Page rank

I Do what surfers do
I Random walk on pages, but sometimes (probability q) a new

(random) restart
I Dumping factor d = 1− q (general choice d = 0.85).
I Self-consistent, equation:

PR(i) =
q

N
− (1− q)

∑
j

Aij
PR(j)

kout,j

I Solution: iteration
I Result: Favours sites which are linked by many (reliable

sources)
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Page rank example
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Assortativity
I Whether high degree nodes are connected to high degree nodes

knn(k) = 〈
1
ki

∑
j∈Λi

kj〉i |ki=k
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Percolation and attack on random networks
I Failure: equivalent to percolation: remove nodes at random
I Attack: remove most connected nodes
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Percolation and attack on random networks
I Failure: equivalent to percolation: remove nodes at random
I Attack: remove most connected nodes
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Percolation and attack on random networks
I Efficiency:

E (G ) =
1

N(N − 1)

∑
i 6=j

1
tij

tij the shortest path between i and j .
I N = 2000, k = 104
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Percolation and attack on random networks
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Percolation on networks (graphs)

I Network is defined by nodes and links
I Percolation gives us connected components
I Link removal percolation gives information about robustness,

and structure
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Error vs. attacks
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Link removal percolation on networks
I Granovetter hypothesis: The strength of the weak ties
I Human communities have strong connections
I These communities are connected with weak ties
I Test the structures with Link removal percolation
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Link removal percolation on networks
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Percolation on networks (graphs)

I Network is defined by nodes and links
I Two arrays:

I node[] list of nodes
I link[i][] list of links of node i
I link[i][j] is a link between i and link[i][j]

I Cluster: nodes connected with links

I Links can be directed link[i][j] is a link from i →
link[i][j]
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Stack (Verem – Hole/Pitfall)

I Last in forst out (LIFO)
I Code:

I Error handling?
I Size of the stack?
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Algorithm percolation on networks (graphs)

1. Go through each node
2. Put node in the stack
3. Get a node from the stack
4. Go through each unmarked link of the node
5. Put other end of links in the stack if it is not marked
6. Mark nodes
7. If the stack not empty Go to 3.
8. If the stack empty Go to 1.
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Algorithm percolation on networks (graphs)
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