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Metropolis algorithm

(Metropoli-Rosenbluth-Rosenbluth-Teller-Teller=MR2T2 algorithm)

I Sequence of configurations using a Markov chain
I Configuration is generated from the previous one
I Transition probability: equilibrium probability
I Detailed balance:

P(x)W (x → x ′) = P(x ′)W (x ′ → x)

I Rewritten:
W (x → x ′)
W (x ′ → x)

=
P(x ′)
P(x)

= e−β∆E

I Only the ration of transition probabilities are fixed
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Metropolis algorithm

(Metropoli-Rosenbluth-Rosenbluth-Teller-Teller=MR2T2 algorithm)

W (x → x ′)
W (x ′ → x)

=
P(x ′)
P(x)

= e−β∆E

I Metropolis:

W (x → x ′) =

{
e−β∆E if∆E > 0
1 otherwise

I Symmetric:

W (x → x ′) =
e−β∆E

1 + e−β∆E
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Metropolis algorithm

Recipes:
I Choose an elementary step x → x ′

I Calculate ∆E
I Calculate W (x → x ′)
I Generate random number r ∈ [0, 1]

I If r < W (x → x ′) then new state is x ′; otherwise it remains x
I Increase time
I Measure what you want
I Restart

Movie1 Movie2
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Metropolis algorithm, proposal probability

Transition probability:

W (x → x ′) = g(x → x ′)A(x → x ′)

I g(x → x ′): proposal probability
I Generally uniform
I If different interactions are present then it must be

incorporated
I A(x → x ′): acceptance probability

I Metropolis
I Symmetric
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Metropolis, proof

State flow
Let E > E ′:

I x → x ′

P(x)g(x → x ′)A(x → x ′) = P(x)

I x ′ → x

P(x ′)g(x ′ → x)A(x ′ → x) = P(x ′)e−β∆E

I In equilibrium they are equal:

P(x)

P(x ′)
= eβ∆E

I What we wanted.
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Do we need optimization?

I Correlation lenth ξ
I Characteristic time τchar

I Dynamical exponent z

τchar ∝ ξz

I For 2d Ising model z ' 2.17
I Simulation time:

tCPU ∼ Ld+z

We need more effective algorithms!

Movie1 Movie2
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Cluster algorithm
I Flip more spins together. How?
I The solution – based on an old relationship between the

percolation and the Potts model – is that we consider the spin
configuration as a correlated site percolation problem

I Ising cluster: a percolating cluster of parallel spins
I Ising droplets: a percolating subset of an Ising cluster

pB = 1− exp(−2βJ)
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Swendsen-Wang algorithm

I Take an Ising configuration
I With probability pB = 1− exp(−2βJ) make connection

between parallel spins
I Identify the droplets by Hoshen-Kopelman algorithm
I Flip each droplet with probability: 1/2 (h = 0)
I Repeat it over
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Wolff algorithm

1. Add a random spin to a list of active spins
2. Take a spin from the active list
3. Add each parallel neighboring (not yet visited) spin with

probability pB = 1− exp(−2βJ) to the list of active spins
4. If list of active spins is not empty go to 2.
5. Flip all active spins
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Wolff algorithm proof

I Detailed balance:

Peq(x)W (x → x ′) = Peq(x ′)W (x ′ → x)

I Metropolis:

W (x → x ′) = min
{
1,

Peq(x)

Peq(x ′)

}
I Split W into acceptance A and proposal g probability

A(x → x ′) = min
{
1,

Peq(x)g(x ′ → x)

Peq(x ′)g(x → x ′)

}
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Wolff algorithm proof

movie

I On the boundary: nsame spins parallel and ndiff antiparallel.

A(x → x ′) = min

{
1,

eβJ(ndiff−nsame)

eβJ(nsame−ndiff)

(1− pB)ndiff

(1− pB)nsame

}

= min
{
1,

e−2βJnsame

e−2βJndiff

(1− pB)ndiff

(1− pB)nsame

}
I It gives: pB = 1− exp(−2βJ).
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Comparison magnetization
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Comparison magnetization
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Comparison magnetization
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Comparison magnetization
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Comparison magnetization
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Other ensembles

Microcanonical ensemble
I Daemon with bag with tolerance (both directions)

I Pick a move, and calculate energy change
I If energy change does not fit into bag reject it
I Otherwise add energy change to bag

I In case of conservation the dynamic exponent z is larger!
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Other ensembles

Conserved order parameter: Kawasaki dynamics
I Elementary step:

I Exchange up-down spin pairs (can be anywhere)
simultaneously

I Apply Metropolis to net energy change!
I Diffusive dynamics is more physical: pick neighboring spins

I In case of conservation the dynamic exponent z is larger!
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Calculation of the entropy, free energy, etc.
I Equilibrium statistical physics: From F we can calculate

everything
I In simulations F and S cannot be measured directly
I F = E − TS so one of them is enough (E and T are known)
I Solution:

Calculate the specific heat!

C = kBT 2〈(∆E )2〉

I The energy fluctuations are measurable
I Since

C = T
∂S
∂T

We have

S(T ) = S(T0) +

∫ T

T0

C (T ′)
T ′

dT ′
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Calculation of the entropy, free energy, etc.

I In many cases derivate of the entropy is needed so S(T0) is
not important in

S(T ) = S(T0) +

∫ T

T0

C (T ′)
T ′

dT ′

I From third law of thermodynamics: S(T = 0) = 0.
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Finite size effects
Magnetization 2d lattice Ising model

I Determine critical temperature
I Determine critical exponents
I System size dependence???
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Finite size scaling

I Correlation length
ξ ∝ |T − Tc |−ν

I Cannot be infinite!
I There will be a critical point for the finite system
I If L is finite ξ cannot be larger than L

L ∝ |T (L)− Tc |−ν

I The position and the width of the transition

|T (L)− Tc | ∝ L−1/ν

I 3 parameters to fit ν, Tc , and a constant
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Finite size scaling

I Binder Cumulant method (find something which does not
scale with L)

I Find something which scales with ν
I The standard deviation of the order parameter:

σ(L) ∝ L−1/ν

I Two steps, both with two parameter fits:

σ(L) ∝ L−1/ν

|T (L)− Tc | ∝ L−1/ν
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Three parameter fit: Ising model

I Theory: ν = 1, Tc ' 2.27
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Finite size scaling: Ising model

I Theory: ν = 1, Tc ' 2.27
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Fitting

Linear regression

y = α + βx

β̂ =

∑
(xi − x̄)(yi − ȳ)∑

(xi − x̄)2
=

xy − x̄ ȳ

x2 − x̄2

α̂ = ȳ − β̂x̄

ρ =
xy√
x̄ ȳ

(1)
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Fitting

Houbble original fit:
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Fitting

Houbble change in time:
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Binning and fitting

"a"
f(x)
"b"

exp(35.586946)*x**−3.993403
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I Linear binning (∆c):

ci = xmin + i∆c

I Logarithmic binning (∆c):

ci = c0 exp(i∆c)
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Fitting
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Diffusion

I On normal lattice exactly sovable
I Otherwise e.g. Monte Carlo kinetics. E.g. 1D

I With probability 1/2 → go right
I With probability 1/2 → go left
I Be careful with boundary conditions

I Can easily be biased
I Can be simulated on spurious lattices, e.g. Parcolation clusters
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Diffusion

I Solution for diffusion on finite lattice:
I Count steps in both directions
I The net move is W = n+ − n0
I Use ensemble average
I Plot 〈W 2〉 vs. t
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