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Exams

All exam starts at 9 am.
I 2016.01.06.
I 2016.01.18.
I 2016.01.22.
I 2016.01.27.
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Spreading on networks

I Diffusion
I Random walk
I Disease USA UK
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Random Walk on Random Networks

I Master egyenlet:

∂n(i)
∂t

=
1
2

[n(i − 1)− 2n(i) + n(i + 1)]

∂n(x)

∂t
= D∆n(x)

I Dicrete:
∂ni

∂t
=
∑

j

Dijnj

I What is Dij?
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Random Walk on Random Networks
I Discrete Laplace operator Dij

I 1d:



−2 1 0
1 −2 1

1 −2 . . .
. . . . . . 1

1 −2 1
0 1 −2



I 2d:



−4 1 0 · · · 1 0

1 −4 1
. . .

0 1 −4 . . . 1

1
. . . . . . 1

. . . 1 −4 1
0 1 1 −4


I General: adjacency matrix: Dij = Aij − kjδij
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Random Walk on Random Networks
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Random Walk on Random Networks
I Rate equation nk probability of finding the walker an a site

with k edges:

∂nk

∂t
= −rnk + k

∑
k ′

P(k ′|k)
r
k ′

nk ′

I Uncorrelated random network:

P(k ′|k) =
k ′

〈k〉
Pk ′

I New equation:

∂nk

∂t
= −rnk + r

k
〈k〉

∑
k ′

P(k ′)nk ′

I Solution:
nk =

k
〈k〉N

I Random walkers gather on high connectivity nodes
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Page rank

I Do what surfers do
I Random walk on pages, but sometimes (probability q) a new

(random) restart
I Dumping factor d = 1− q (general choice d = 0.85).
I Self-consistent, equation:

PR(i) =
q
N
− (1− q)

∑
j

Aij
PR(j)
kout,j

I Solution: iteration
I Result: Favours sites which are linked by many (reliable

sources)
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Page rank example
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Disease spreding, SIR model

I S: susceptible (can be infected with prob. β if meets an
infected)

I I: Infected (may infect susceptible, but may recover with prob.
ν).

I R: Recovered (Immune to the disease)
I Other versions:

I SI: agents do not recover (e.g. information spreading)
I SIS: recovered people can get disease again
I SIRS: recovered agents may become susceptible (e.g.

influenza)
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Disease spreding, SIR model

I S: susceptible
I I: Infected
I R: Recovered
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SIR model, connected graph
Governing equations:

Ṡ = −βIS

İ = βIS − νI
Ṙ = νI
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SIR model, connected graph

Governing equations:

Ṡ = −βIS

İ = βIS − νI
Ṙ = νI

I Early stage S ' 1

I ' I0 exp[(β − ν)t]

I R = β/ν epidemic threshold
I R > 1 outbreak
I R < 1 localized
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SIR model vs. reality
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Algorithm for the SIR model

1. List of initially infected nodes is I
2. Get a random (infected) node u from the list I
3. For all neighbors w of u do 4.
4. If w is susceptible change it to infected with probability β, and

enqueue it into list I
5. With probability ν change state of u to recovered otherwise

put it back to I
6. If I is not empty go back to 2.
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Bit coding algorithm for the SIR model

I Ensemble average: each bit is a different instance
I Choose a link l which is between nodes ni and nj

I r is a random number with bits 1 of probability β (choose
β = 2−n or similar)

I Passing disease: p = [s(ni )|s(nj)]&r
I Change states: s(ni )| = p and s(nj)| = p
I A slightly different implementation than previous
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Other agent based models

I Agents are nodes
I Interactions through links
I Any network:

I Lattices
I Random networks
I Scale-free
I Fully connected graphs

I Examples:
I Opinion models
I Game models
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Opinion models

I Agents have opinion xi
I binary ±1 (yes/no)
I discrete (parties)
I continuous (views)
I vector (different aspects)

I Interaction with other agents
I pairwise
I global (with mean)
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Ising-model at T = 0

I Result depends on the lattice type (surface tension)
I Phase transition
I For larger systems probability to reach order goes to zero in

d > 2 (surface gets more important)
I Fully connected goes to order (no surface)
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Voter model
I Agents take opinion of random neighbor

1 1
| |

1 – 1 – 0 → 1 – 0 – 0
| |
1 1

I d = 1, 2 final state is consensus
I d > 2 final state is not consensus, but a finite system reaches

consensus after a time τ(N) ∼ N
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Variants

I Majority rule (with two neighbors (3 nodes) towards majority)
I Presence of zealots, i. e. agents that do not change their

opinion
I Presence of contrarians
I Three opinion states with interactions only between

neighboring states
I Noise (with some probability p agents change their state)
I Biased opinion in case of a tie
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Bounded confidence model: Deffuant model

I Agents have opinion xi
I if |xi (t)− xj(t)| < ε then

I xi (t + 1) = xi (t)− µ[xi (t)− xj(t)]
I xj(t + 1) = xj(t) + µ[xi (t)− xj(t)]

I µ compromise parameter µ = 1/2 complete compromise
I ε tolerance parameter
I Methods:

I Monte-Carlo simulation
I Master equation:

∂P(x , t)

∂t
=

∫
|x1−x2|<ε

dx1dx2P(x1, t)P(x2, t)×

×
[
δ

(
x − x1 + x2

2

)
− δ(x − x1)

]
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Deffuant model: Opinion groups (fully connected graph)
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Deffuant model: Bifurcation diagram

∆ = 2/ε, µ = 1/2
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Global: Hegselmann-Krause model

I Choose node i
I Test for all neighbors, which have opinion within the tolerance

level
I Average their opinion
I Adapt to it
I Similar behavior
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Hegselmann-Krause model
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Game models:

I Rock-paper-scissors
I Prisoner’s dilemma
I Chicken, hawk-dove game
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Rock-paper-scissors

I No winning strategy on (truly) random opponent
I E.g bacterian and antibiotics in mice
I Grass-rabbit-fox
I Popular in games
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Prisoner’s Dilemma

I Each player with a preferred strategy that collectively results in
an inferior outcome

I Dominating strategy regardless of the opponent’s action
I Nash equilibrium, from which no individual player benefits

from deviating

Cooperate Defect
Cooperate 4, 4 1, 5
Defect 5, 1 2, 2
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Prisoner’s Dilemma

I One game → defect
I Fixed number of games → defect
I Large pool of players (movie):

I If other codes are known, it can be derived
I If pool is diverse the best strategy is tit for tat (start with

cooperation)
I In general:

I Nice (do not defect before opponent does)
I Retaliating (punish!)
I Forgiving (Yes!)
I Non-envious (do not want to gain more than your neighbor)

Page 30



Chicken game, Hawk-Dove game

Page 31



Chicken game, Hawk-Dove game
I No preferred strategy
I The best strategy is to anti-coordinate with your opponent

Cooperate Defect
Cooperate 0, 0 -1, 2
Defect 2, -1 -5, -5

I Example: Cold war
I Solution: anti-correlated pure strategy
I Probabilistic (play Hawk with p′)
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Chicken game, Hawk-Dove game difference to Prisoner’s
dilemma

Cooperate Defect
Cooperate Reward S, T
Defect T, S Punish

Hawk-Dove Prisoner’s dilemma
C D

C 0, 0 -1, +1
D +1, -1 -10,-10

C D
C 3, 3 0, 5
D 5, 0 1, 1

I Prisoner’s dilemma:
Temptation(T)>Reward(R)>Punish(P)>Sucker(S)

I Chicken game:
Temptation(T)>Reward(R)>Sucker(S)>Punish(P)

Page 33



Prisoner’s dilemma
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