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Molecular dynamics

Program:
I Have an algorithm to calculate forces
I Get list of interacting particles
I Determine accelerations and velocities; step particles
I Set temperature
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Nosé-Hoover thermostat

I Original Hamiltonian

H0 =
∑

i

p2
i

2mi
+ U(q)

I Heatbath in the Hamiltonian:

Hn =
∑

i

p′2i
2mi

+ U(q′) +
p2
s

2Q
+ gkBT log(s)

I Extra degree of freedom s.
I Q "mass" related to s → controls the speed of convergence
I g = 3N the number degrees of freedom
I p′ and q′ are virtual coordinates
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Nosé-Hoover thermostat
I Virtual coordinates, vs. original ones:

p = p′/s
q = q′

t =

∫
1
s
dt ′

I Solution of the new Hamiltonian:

ξ = ṡ/s = ps/Q

q̇′ =
p′

m

ṗ′i = −∂U
∂q′i
− ξp′i

ξ̇ =
1
Q

(∑
i

ṗ′
2
i

mi
− gkBT

)
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Alternatives

I Event Driven Dynamics
I Contact Dynamics
I Kinetic Monte Carlo
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Event driven dynamics

I Hard core interactions
I Interactions short in time compared to flight
I (MD needs ∼ 20− 50 timesteps per collision, overlap of

10−3d)
I Integrable path → do it
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Event driven algorithm

I No gravity
I Particles: ri (t), vi (t), ωi (t), Ri

I Calculate collision time: Let dij = |ri − rj | − Ri − Rj , Then

τij =
|dij |2

(vi − vj)dij

I Order collision times, get the smallest τc = minij(τij)

I Go to time t + τc ri (t + τc)

I Calculate velocities after collision vi (t + τc) (may be hard...)
I Restart loop

I Next time Calculate collision time only with i , j
I Dynamic list, change only newly calculate collision times
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Inelastic collapse
I Coefficient of restitution r = vn(tc+)/vn(tc−)
I Energy is lost in an exponential way (Ping Pong)
I Infinite collisions in finite time
I Solution → r = 1 if collisions occur more frequently than a

parameter tcont, the contact duration
I Contact → small vibration :-(well. . . )

MOVIE
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Contact dynamics

I Perfectly rigid particles
I Non-smooth dynamics
I Constraints

I Molecular dynamics
I Normal force: overlap (smooth)
I Shear force: history
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Contact dynamics

I Implicit forces

vi (t + ∆t) = vi (t) +
1
mi

Fi (t + ∆t)∆t

xi (t + ∆t) = xi (t) + vi (t + ∆t)∆t

such as constraints are fulfilled
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Contact dynamics

I Implicit forces

vi (t + ∆t) = vi (t) +
1
mi

Fi (t + ∆t)∆t

xi (t + ∆t) = xi (t) + vi (t + ∆t)∆t

such as constraints are fulfilled
I if gap would be negative increase force
I if there would be a shear displacement increse shear force
I if shear force is larger than allowed restrict it to that value
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Contact dynamics, force calculation

I Two particles with gap g
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Iterative solver
I Updates:

I Parallel: calculate all contacts with old values then change to
new at once → serious instabilities

I Serial: update contacts one-by-one in random order
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Particle chain

I One iteration step:

I Discretized one-dimensional diffusion equation
I Model of rigid particles → elastic
I Elasticity depends on the number of iterations
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Molecular versus Contact dynamics

Limit
Kr2

mv2 = N4/d
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Kinetic Monte Carlo

I Particle sits in a potential well for ages . . .
I What to do?
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Kinetic Monte Carlo
I Long lasting steady state positions
I Slow thermally activated processes
I Infrequent-event system

Solution:
I Consider only jumps between neighboring energy wells
I Probability of jump P ∼ exp(−βEb)

I Rate of jump i → j , kij = Eb.
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Kinetic Monte Carlo

I Get all possible rates ki

I Calculate the cumulative function K =
∑

i ki

I Get a uniform random number u (between 0 and 1)
I Execute the event i for which

∑i
j=1 kj > u >

∑i−1
j=1 kj

I Get new uniform random number u′ (between 0 and 1)
I Update time to t = t + ∆t, ∆t = − log(u′)/ki

I Recalculate rates, which have changed
I Restart loop
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Monte Carlo
Why Monte Carlo? → Random numbers play big role!
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Kinetic Monte Carlo

I Rates
I Physics
I Molecular dynamics

I Must include all rates!
I Used for:

I Surface diffusion
I Surface growth
I Syntering
I Domain evolution

Example....
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Methods

I Molecular Dynamics
I General

I Event Driven Dynamics
I Hard objects, at low density

I Contact Dynamics
I Rigid particles

I Kinetic Monte Carlo
I Infrequent events, bonded particles
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Parallelization

I Why?
I The speed of one core processor is limited
I Larger system sizes
I Multi-core processors
I On multi-core system inter-processor data change is fast

I Why not?
I Computing power is lost
I Much more code development
I Very often ensemble average is needed
I Inter-computer communication is terribly slow

RAM → ∼15GB/s, Ethernet 125MB/s, Infiniband ∼1GB/s
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Parallelization (Bird flocking model)
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Parallelization

I Molecular dynamics
I Short range interactions: Box must be duplicated, Verlet in

parallel
I Long range: Parallel fast Fourier transformation

I Contact dynamics
I Short range interactions: Box must be duplicated, Iteration in

parallel
I Event Driven Dynamics

I List must be global, no way!
I Kinetic Monte Carlo

I List must be global, no way!
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Efficiency of parallelization

I Large systems are needed
I Boundary must be minimal
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Efficiency of parallelization

I Calculate time spent in a branch
I Calculate σT =

√
〈T 2〉 − 〈T 〉2/〈T 〉

I Move line if necessary (σT > σ∗T )
I Lower in tree (up in Fig), larger the mass of the border
I Only rarely, data transfer is expensive
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