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Abstract

We discuss a finite lattice approximation of an RG-transformation for the
2D Ising model on the square lattice. A 4 x 4 lattices is blocked to a 2 x 2
lattice. We restrict the discussion to the case of a vanishing external field.
General features of an RG-transformation can be discussed at this example.
Dispite the simplicity of the approximation the numerical results for the RG-
exponent y; compares quite well with the exact result.
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Figure 1: Blocking of a 8 x 8 lattice to a 4 X 4 lattice.

1 The RG-transformation

We consider the Ising model on the square lattice. In the following we study an

blocking with the scale b = 2. The block-spin Sx takes the values —1 or 1. We use

the majority rule to assign the value of the block-spin. (i.e. Sx is equal to the sign

of the sum of the spins in the block.) Since the number of sites in a block is even,

the sum of the spins in the block might vanish. In this case Sx is set to —1 or 1

with equal probability.

Let us define the transformation more precisely:

The sites of the original lattice are denoted by @ = (&1, x3), where @1, 22 € {0, 1, ..., [—
1}. The sites of the blocked lattice are denoted by X = (Xi, X3), where Xy, X, €

{0,1,...,L — 1}. The blocking scale is b. The lattice size transforms as L = [/b.

Block-sites and sites of the original lattice are related by
X(w) = (Xi(21), Xo(22)) = (int(21/b), int(z5/0)) . (1)

The blockspin transformation is determined by the so called blocking kernel
T(S,s) which is a function of the blocked spins S and the original spins s. T'(.5, s)
can be interpreted as the probability to assign the block-spin configuration S to the
configuration s. In general, the transformation kernel should satisfy the following
conditions:

0<T(8,s) <1 (2)

and

ZS:T(S,S) =1 (3)

1



In addition we require that the kernel respects the symmetries of the model that is
studied and that the blocking is local, i.e. that Sx is determined by the s, in the
block X (and by spins in the neighbourhood).

The Hamiltonian H'(S) is defined by

exp(—H'(8)) = > T(S,s) exp(—H(s)) (4)
Note that this definition only applies to finite lattices. In order to define a thermo-
dynamic limit, we first have to extract the coupling constants. This can be achived
by parametrizing the Hamiltonian like

H'(S) = 3 K Ho(S) (5)

where e.g.

Hy= =% SxSxya (6)

is the interaction that we already know from the standard Ising model. In addition
we have iteraction between spins with larger distances. There can also be interac-
tions of more than two spins. In the simplest case the interaction of four spins with
minimal distance:

H4 = - Z SXSX+(1,0)SX+(0,1)SX+(1,1) (7)
X

In the presence of an external field also interactions of an odd number of spins are
allowed. Note that there is no well defined order of the interaction terms. A general
assumption is that the terms become less important as the distance between the
spins increases.

In the following we take the scale factor b = 2 and study the transformation

(S, s) = I;It(SX, 3 s.) (8)
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We restrict our numerical study to the blocking of a 4 x 4 lattice to a 2 x 2

lattice. We use periodic boundary conditions. We also restrict our study to the
case of a vanishing external field. Therefore on the 2 x 2 lattice there are only three
distinct terms of the Hamiltonian:

the interaction of nearest neighbours, the interaction of next to nearest neighbours
and the interaction of all four spins.

o= —

Ky Z Sx(Sx4+1,0) + Sx+(0,1))
X

K Z Sx(Sx+a,1) + Sx+0,-1))
X

K3 SxSx4(1,009%+(0,1)S X 4(1,1)
X

const (10)

All 2'¢ = 65536 configurations on the 4* lattice can be easly generated on the
computer. Therefore we can directly implement eq. (4) as a Fortran program.

On the 2 x 2 lattice there are 2* = 16 configurations. For symmetry reasons
only 4 classes of configurations with distinct Blotzmann factor remain:
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+ +[[ - + + +] + -
+ +||+ || - - +
- -+ -+ - - +
- -+ +|+ -+ -
+ +| - -
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Hence the evaluation of eq. (4) gives us the four numbers H'(Cy), H'(Cy),

H/(Cg) and H/(C4)
The terms of the H

miltonian are

Cl 02 03 04
H,y 8| 0] 0] -8
Hy | 8| 0] -8 8
Hy | 4] 4| 4| 4




Note that periodic boundary conditions have to be taken into account. Therefore
e.g. Hj takes the value —4 or 4 and not —1 or 1.

Now we have four equations with the four variables Ky, K3, K3 and const. Their
value can be obtained by solving the system of linear equations.

In order to iterate the transformation we put the new couplings back on the
4 x 4 lattice.

2 Numerical results

In figure 2 we show the projection of the flow of the couplings to the K, K5 plane.
The fixed point of the RG-transformation is

K™ =(0.299761200480, 0.087094327205, —0.00125863335) (11)

The set of points in the coupling space that flows after infinitely many RG transfor-
mations into the fixed point is called the “critical surface”. The intersection of the
critical surface with the line K = (K1,0,0) is the critical coupling of the 2D Ising
model on the square lattice with nearest neighbour interaction. The critical cou-
pling of the 2D Ising model on the square lattice with nearest neighbour iteraction
is

Beappros = 0.418197047162 (12)

This value can be compared with the exact result
1
B = 5 In(v2 4 1) = 0.4406867935098 (13)

and the meanfield approximation 8. pr = 0.25.
In order to obtain the critical exponent v we have to study the linearized RG-
transformation in the neighbourhood of the fixed point.

OK'

Tos = 52
' 0K

|5 (14)

From finite differences we get

1.358964  1.555979 0.602007
T = 0.434221  0.749081 0.194741
—0.004499 —0.009853 0.131374
Note that 7" is not a symmetric matrix!
In order to obtain the critical exponent v we have to compute the eigenvalues of
the left eigenvectors of T"

YOI, = N (15)
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Figure 2: Flow of the couplings Ky and K,. K3 is not displayed.



The results is

A = 1.928122 , @' =(0.605106,0.796143, 0.289033)
Ay = 0.178873 , 0% = (—0.409055,1.104918, —0.654347)
Az = 0.132424 , 0% = (—0.181359,0.613127,9.733203)
(16)
Note that the eigenvectors of T are not orthogonal to each other!
The RG-exponents are defined by:
A =b" (17)
We get
1
— =y =y = 0.947196 , y, = —2.482992 | y3 = —2.916763 (18)
v
Discussion:

We have obtained one relevant RG-exponent. This qualitative result agrees with
the exact result. Also the numerical value y; = 0.947196 compares quite well with
the exact result 1/v = y, = 1. Note that mean-field predicts v = 0.5!

3 Exercises:

1) Add an external field to the problem. How many new couplings have to be
added? Compute the exponent yy.
2) Study generalizations of the block-transformation:

o w) = exp(Kuw)

exp(kw) + exp(—kKw) (19)

The transformation kernel T'(S,s) is defined as in eq. (8). Note that in the limit
k — oo we recover the blocking kernel as discussed above.
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