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Abstract

We discuss a �nite lattice approximation of an RG-transformation for the

2D Ising model on the square lattice. A 4 � 4 lattices is blocked to a 2 � 2

lattice. We restrict the discussion to the case of a vanishing external �eld.

General features of an RG-transformation can be discussed at this example.

Dispite the simplicity of the approximation the numerical results for the RG-

exponent y

t

compares quite well with the exact result.
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Figure 1: Blocking of a 8� 8 lattice to a 4� 4 lattice.

1 The RG-transformation

We consider the Ising model on the square lattice. In the following we study an

blocking with the scale b = 2. The block-spin S

X

takes the values �1 or 1. We use

the majority rule to assign the value of the block-spin. (i.e. S

X

is equal to the sign

of the sum of the spins in the block.) Since the number of sites in a block is even,

the sum of the spins in the block might vanish. In this case S

X

is set to �1 or 1

with equal probability.

Let us de�ne the transformation more precisely:

The sites of the original lattice are denoted by x = (x

1

; x

2

), where x

1

; x

2

2 f0; 1; :::; l�

1g. The sites of the blocked lattice are denoted by X = (X

1

;X

2

), where X

1

;X

2

2

f0; 1; :::; L � 1g. The blocking scale is b. The lattice size transforms as L = l=b.

Block-sites and sites of the original lattice are related by

X(x) = (X

1

(x

1

);X

2

(x

2

)) = (int(x

1

=b); int(x

2

=b)) : (1)

The blockspin transformation is determined by the so called blocking kernel

T (S; s) which is a function of the blocked spins S and the original spins s. T (S; s)

can be interpreted as the probability to assign the block-spin con�guration S to the

con�guration s. In general, the transformation kernel should satisfy the following

conditions:

0 � T (S; s) � 1 (2)

and

X

S

T (S; s) = 1 (3)
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In addition we require that the kernel respects the symmetries of the model that is

studied and that the blocking is local, i.e. that S

X

is determined by the s

x

in the

block X (and by spins in the neighbourhood).

The Hamiltonian H

0

(S) is de�ned by

exp(�H

0

(S)) :=

X

s

T (S; s) exp(�H(s)) (4)

Note that this de�nition only applies to �nite lattices. In order to de�ne a thermo-

dynamic limit, we �rst have to extract the coupling constants. This can be achived

by parametrizing the Hamiltonian like

H

0

(S) =

X

�

K

�

H

�

(S) (5)

where e.g.

H

2

= �

X

�

X

X

S

X

S

X+�̂

(6)

is the interaction that we already know from the standard Ising model. In addition

we have iteraction between spins with larger distances. There can also be interac-

tions of more than two spins. In the simplest case the interaction of four spins with

minimal distance:

H

4

= �

X

X

S

X

S

X+(1;0)

S

X+(0;1)

S

X+(1;1)

(7)

In the presence of an external �eld also interactions of an odd number of spins are

allowed. Note that there is no well de�ned order of the interaction terms. A general

assumption is that the terms become less important as the distance between the

spins increases.

In the following we take the scale factor b = 2 and study the transformation

kernel

T (S; s) =

Y

X

t(S

X

;

X

x2X

s

x

) (8)

with

t( 1; 4) = 1

t(�1; 4) = 0

t( 1; 2) = 1

t(�1; 2) = 0

t( 1; 0) = 0:5

t(�1; 0) = 0:5

t( 1;�2) = 0

t(�1;�2) = 1

t( 1;�4) = 0

t(�1;�4) = 1 (9)
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We restrict our numerical study to the blocking of a 4 � 4 lattice to a 2 � 2

lattice. We use periodic boundary conditions. We also restrict our study to the

case of a vanishing external �eld. Therefore on the 2�2 lattice there are only three

distinct terms of the Hamiltonian:

the interaction of nearest neighbours, the interaction of next to nearest neighbours

and the interaction of all four spins.

H = � K

1

X

X

S

X

(S

X+(1;0)

+ S

X+(0;1)

)

� K

2

X

X

S

X

(S

X+(1;1)

+ S

X+(1;�1)

)

� K

3

X

X

S

X

S

X+(1;0)

S

X+(0;1)

S

X+(1;1)

� const (10)

All 2

16

= 65536 con�gurations on the 4

2

lattice can be easly generated on the

computer. Therefore we can directly implement eq. (4) as a Fortran program.

On the 2 � 2 lattice there are 2

4

= 16 con�gurations. For symmetry reasons

only 4 classes of con�gurations with distinct Blotzmann factor remain:

C

1

C

2

C

3

C

4

+ + � + + + + �

+ + + + � � � +

� � + � + � � +

� � + + + � + �

+ + � �

� + + +

+ + � +

+ � � +

+ �

� �

� +

� �

� �

+ �

� �

� +

Hence the evaluation of eq. (4) gives us the four numbers H

0

(C

1

), H

0

(C

2

),

H

0

(C

3

) and H

0

(C

4

).

The terms of the Hamiltonian are

C

1

C

2

C

3

C

4

H

1

8 0 0 -8

H

2

8 0 -8 8

H

3

4 -4 4 4
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Note that periodic boundary conditions have to be taken into account. Therefore

e.g. H

3

takes the value �4 or 4 and not �1 or 1.

Now we have four equations with the four variablesK

1

, K

2

, K

3

and const. Their

value can be obtained by solving the system of linear equations.

In order to iterate the transformation we put the new couplings back on the

4 � 4 lattice.

2 Numerical results

In �gure 2 we show the projection of the ow of the couplings to the K

1

;K

2

plane.

The �xed point of the RG-transformation is

K

�

= (0:299761200480; 0:087094327205; �0:00125863335) (11)

The set of points in the coupling space that ows after in�nitely many RG transfor-

mations into the �xed point is called the \critical surface". The intersection of the

critical surface with the line K = (K

1

; 0; 0) is the critical coupling of the 2D Ising

model on the square lattice with nearest neighbour interaction. The critical cou-

pling of the 2D Ising model on the square lattice with nearest neighbour iteraction

is

�

c;approx

= 0:418197047162 (12)

This value can be compared with the exact result

�

c

=

1

2

ln(

p

2 + 1) = 0:4406867935098 (13)

and the mean�eld approximation �

c;MF

= 0:25.

In order to obtain the critical exponent � we have to study the linearized RG-

transformation in the neighbourhood of the �xed point.

T

��

=

@K

0

�

@K

0

�

j

K

�

(14)

From �nite di�erences we get

T =

0

B

@

1:358964 1:555979 0:602007

0:434221 0:749081 0:194741

�0:004499 �0:009853 0:131374

1

C

A

Note that T is not a symmetric matrix!

In order to obtain the critical exponent � we have to compute the eigenvalues of

the left eigenvectors of T :

X

�

�

i

�

T

��

= �

i

�

i

�

(15)
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Figure 2: Flow of the couplings K

1

and K

2

. K

3

is not displayed.
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The results is

�

1

= 1:928122 ; �

1

= (0:605106; 0:796143; 0:289033)

�

2

= 0:178873 ; �

2

= (�0:409055; 1:104918;�0:654347)

�

3

= 0:132424 ; �

3

= (�0:181359; 0:613127; 9:733203)

(16)

Note that the eigenvectors of T are not orthogonal to each other!

The RG-exponents are de�ned by:

�

i

= b

y

i

(17)

We get

1

�

= y

t

= y

1

= 0:947196 ; y

2

= �2:482992 ; y

3

= �2:916763 (18)

Discussion:

We have obtained one relevant RG-exponent. This qualitative result agrees with

the exact result. Also the numerical value y

t

= 0:947196 compares quite well with

the exact result 1=� = y

t

= 1. Note that mean-�eld predicts � = 0:5!

3 Exercises:

1) Add an external �eld to the problem. How many new couplings have to be

added? Compute the exponent y

h

.

2) Study generalizations of the block-transformation:

t(u;w) =

exp(�uw)

exp(�w) + exp(��w)

(19)

The transformation kernel T (S; s) is de�ned as in eq. (8). Note that in the limit

�!1 we recover the blocking kernel as discussed above.
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