
Statistical physics 2, homework 1

1. Check which of the following matrices can be a density matrix and which describes a pure state:

ρ1 =
(

2/7 0
0 5/7

)
, ρ2 =
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)
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ρ4 =
(
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0 1

)
, ρ5 = 1
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 (1)

2. Density matrix

• Consider a spin 1 system in the following state:

|α〉 = i|1〉 − | − 1〉

• construct the density matrix
• check if the system is in a pure state
• What is the expectation value of the spin?

3. Duble spin

• A sorce emits two spins at the same time which may have two different polarications:

|LL〉 =


1
0
0
0

 , |LR〉 =


0
1
0
0

 , |RL〉 =


0
0
1
0

 , |RR〉 =


0
0
0
1


• The source can produce two different states:

ρ1 = 1
2(|LL〉+ |RR〉)(〈LL|+ 〈RR|)

ρ2 = 1
2(|LL〉〈LL|+ |RR〉〈RR|) (2)

• Calculate the density matrices and show which one of them is in a pure state.
• Alice can measure only the first spin, Bob the second. What is the probability that Bob measures L
if Alice has already measured L in both cases?

4. Density matrix after transition:

• Let us consider a spin 1/2 system. We have two orthogonal pure states: |ψ1〉 and |ψ2〉. Choose an
apropriate basis.
• Using your basis write the density operator for the following states:

ρ1 = 1
2(|ψ1〉+ |ψ2〉)(〈ψ1|+ 〈ψ2|)

ρ2 = 1
2(|ψ1〉〈ψ1|+ |ψ2〉〈ψ2|) (3)

• The system undergoes a transition according to the following:

|ψ1〉 →
1√
2

(|ψ1〉+ |ψ2〉) = |ϕ1〉

|ψ2〉 →
1√
2

(|ψ1〉 − |ψ2〉) = |ϕ2〉 (4)
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• Write the transition operator in your basis
• Calculate the density matrix after the transition for both cases.
• What is the probability of observing |ϕ1〉 and |ϕ2〉?

5. Thermal density matrix: Consider a 1/2-spin system in an external field: H = hσz.

• Write doen the thermal density operator of the system.
• Evaluate the density matrix for large and small temperatures.
• Which of them is a pure state?

6. Ising model density matrix: Consider the Ising Hamiltonian:

H = −J
∑
(i,j)

σiσj − h
∑
i

σi

• Write down the density matrix for a simple spin in the mean field limit using the magnetization of
the system.
• Calculate the density matrix of the while system
• Calculate the expected magnetization using the density matrix and show that it is equal to the
magnetization used for the density matrix.
• Calculate the expectatino value of the energy

7. Neumann equation Describe the time evolution of an 1/2 spin in an external magnetic field ~B.

• Write up a Zeeman Hamiltonian using Pauli matrices and an external field ~B.
• Write up the expectation value of the spin using the density matrix.
• Using the invariance of the trace with respect to cyclic permutation of tensor product show that the
Neumann equation of the above system reduces to:

i
dPi
dt

= −1
2γ
∑
j

BjTr([σi, σj ]ρ) (5)

, where ~P is the polarization of the spin
• Show that the density matrix of the spin polarization is

ρ = 1
2(I2 + ~P~σ), (6)

where I2 is the 2× 2 identity matrix and ~σ is the Pauli vector.
• Show that using Eq. (6) in Eq. (5) gives

d~P

dt
= γ ~P × ~B

8. Neumann equation for separable Hamiltonian: Suppose that your Hamiltonian can be split into
two parts: H = H0 + V , where H0 is time independent. Define the time evolution operator operator:

UI(t) = e−i~H0t,

with
|ψ〉I = U+

I |ψ〉, and AI = U+
I AUI .

Show that the von Neumann equation translates to

i~
∂

∂t
ρI(t) = [V (t), ρI(t)]

9. The maximum entropy principle – simple example Consider a random variable X ∈ 1, 2, 3 which
can take 3 values. We know that the expectation value of 〈X〉 = x̄. The probability pi of outcome i is
unknown.

• Write up the maximum entropy principle
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• Derive the general solution for pi.
• Determine the lagrange multipliers
• Determine pi for the cases: x̄ = 1, x̄ = 2, and x̄ = 3.

10. Closed system A completely uncinstrained system has N states. Calculate the probability of finding
the system in state i using the principle of maximum entropy.

11. Boltzmann factor Let us have a set of states i with energy Ei. We know that the total energy in the
system is E.

• Using the principle of maximum entropy show that the probability of state i is

pi ∝ e−βEi , (7)

where β is the Lagrange multiplier for the energy.
• Calculate the normalization factor
• Calculate the relation between E and β

12. Grand canonical ensemble Let us have a set of states i with energy Ei and particle number Ni. We
know that the total energy and the number of particles in the system are E and N respectively. Using
the principle of maximum entropy show that the probability of state i is

pi ∝ e−βEi−µNi , (8)

where β is the Lagrange multiplier for the energy and µ is that of the particle number

13. The principle of maximum entropy Show that if the variance of a system is constrained than the
probabilities of the states can be described by a Gaussian.

14. The principle of maximum entropy – example Consider a six sided loaded die with the sides
numbered 1 through 6. [Note: A die is said to be loaded if the probabilities of the six possible outcomes
are not uniform.] Using the principle of maximum entropy find the probabilities of outcomes (i.e., 1, 2, 3,
4, 5 and 6) for each of the given constraints.

• The probability of an odd numbered outcome is 1/3.
• The probability of obtaining a 2, 4 or 6 is zero and the expected value of the outcome is 4.
• The probability of an odd numbered outcome is 1/3 and the probability of an outcome that is a
multiple of three is 1/6.

15. Maxwell-Boltzmann distribution

• Consider a set of states where
∑
i x

2
i = E.

• The density of states with outcome x goes as x2

• Show that the probability of a state with outcome x is proportional to:

p(x) ∝ x2 exp(−λx2)
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