
1 Time reversal

1.1 Without spin

Time-dependent Schrödinger equation:

i~∂tψ (r, t) =

[
− ~2

2m
∆ + V (r)

]
ψ (r, t) (1)

’Local’ time-reversal transformation, T :

t1 < t2 < . . . < tn ⇒ Tt1 > Tt2 > . . . > Ttn (2)

Tti − Ttj = − (ti − tj) (3)

T = T−1 (4)

⇓
df(T ◦ t)

dt
= lim

dt→0

f (Tt+ Tdt)− f (Tt)

dt
= lim

dt→0

f (Tt− dt)− f (Tt)

dt
= − df (t)

dt

∣∣∣∣
Tt

(5)

For simplicity, we will denote df(t)
dt

∣∣∣
Tt

by df(Tt)
dt

, which should not be confused with df(T◦t)
dt

!

The time-reversed Schrödinger equation then reads as

−i~∂tψ′ (r, T t) =

[
− ~2

2m
∆ + V (r)

]
ψ′ (r, T t) . (6)

On the other hand,

−i~∂tψ∗ (r, t) =

[
− ~2

2m
∆ + V (r)

]
ψ∗ (r, t) (7)

⇓

ψ′ (r, T t) = C ψ (r, t) $ ψ∗ (r, t) . (8)

Properties of the operator C:
C2 = 1 , C−1 = C , (9)

C is anti-hermitian,
〈ψ|Cϕ〉 = 〈ϕ|Cψ〉 = 〈Cψ|ϕ〉∗ (10)

and anti-linear,
C (c1ϕ1 + c2ϕ2) = c∗1Cϕ1 + c∗2Cϕ2 . (11)

However, the C preserves the norm of the wavefunctions,

〈Cψ|Cψ〉 = 〈ψ|ψ〉 . (12)

Relationship to other operators:

C (rψ) = r (Cψ) =⇒ Cr = rC =⇒ [r,C] = 0 (13)
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Notation:
r∗ $ CrC = r .

Furthermore,

C (pψ) =C

(
~
i
∇ψ
)

= −~
i
∇Cψ = −p (Cψ) =⇒ Cp = −pC =⇒ p∗ = −p (14)

CL = C (r× p) = r× Cp = − (r× p)C = −LC =⇒ L∗ = −L . (15)

1.2 With spin

Pauli-Schrödinger Hamilton operator

H =
p2

2m
+ V (r) +

µB
~

(L + 2S)B (16)

Pauli-Schrödinger equation

i~∂tψ (r, t) =

[
− ~2

2m
∆ + V (r) +

µB
~

(L + 2S)B

]
ψ (r, t) (17)

Time-reversed magnetic field: B′= −B ! The time-reversed Pauli-Schrödinger equation then
takes the form,

−i~∂tψ′ (r, T t) =

[
− ~2

2m
∆ + V (r) +

µB
~

(L + 2S)B′
]
ψ′ (r, T t) (18)

=

[
− ~2

2m
∆ + V (r)− µB

~
(L + 2S)B

]
ψ′ (r, T t) . (19)

On the other hand,

−i~∂tψ∗ (r, t) =

[
− ~2

2m
∆ + V (r) +

µB
~

(L∗ + 2S∗)B

]
ψ∗ (r, t) (20)

=

[
− ~2

2m
∆ + V (r)− µB

~
(L− 2S∗)B

]
ψ∗ (r, t) (21)

It is then tempting to suppose that ∃M ∈ L (C2) such that

ψ′ (r, T t) = MC ψ (r, t) = Mψ∗ (r, t) . (22)

Since M acts only in spin space, it commutes with r, p and L. Thus,

−i~M∂tψ∗ (r, t) =

[
− ~2

2m
∆ + V (r)− µB

~
(L− 2S)B

]
Mψ∗ (r, t) (23)

⇓

−i~∂tψ∗ (r, t) =

[
− ~2

2m
∆ + V (r)− µB

~
(
L + 2M−1SM

)
B

]
ψ∗ (r, t) . (24)
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This equation is obviously satisfied if

M−1SM= −S∗ = −C SC =⇒ SMC = −MC S . (25)

Let’s define the time-reversal operator as T $ MC,

TS = −ST . (26)

It is easy to prove that
T = eiθσy C (27)

for any θ ∈ R is a general solution of Eq. (26). In most text-books θ = π
2
→ T = iσy C is

chosen, but in these notes we take θ = 0→ T = σy C.

Proof :

σ∗x =

(
0 1
1 0

)
= σx σ∗y =

(
0 i
−i 0

)
= −σy σ∗z =

(
1 0
0 −1

)
= σz (28)

⇓

T−1σxT = (−σyC)σx (σyC) = σyσxσy = −σx (29)

T−1σyT = (−σyC)σy (σyC) = −σy (30)

T−1σzT = (−σyC)σz (σyC) = σyσzσy = −σz . (31)

Properties:
T−1 = Cσy = σ∗yC = −σyC = −T (32)

⇓ (33)

T 2 = −1 . (34)

From the relationship,

〈ψ|Tϕ〉 = 〈ψ|σyCϕ〉 = 〈σyψ|Cϕ〉 =
(
σrsy
)∗ 〈ψs|Cϕr〉 =

〈
ϕr|Cσrsy ψs

〉

= 〈ϕ|Cσyψ〉 = −〈ϕ|Tψ〉 = −〈Tψ|ϕ〉∗ , (35)

it follows that
〈ψ|Tψ〉 = −〈ψ|Tψ〉 = 0 , (36)

i.e. ψ and Tψ are orthogonal. Note also that T is antiunitary,

〈ψ|ϕ〉 =
〈
ψ|TT−1ϕ

〉
= −

〈
Tψ|T−1ϕ

〉∗
= 〈Tψ|Tϕ〉∗ = 〈Tϕ|Tψ〉

and norm-conserving,
〈Tψ|Tψ〉 = −

〈
ψ|T 2ψ

〉
= 〈ψ|ψ〉 . (37)

The momentum operators and angular momentum operators change sign upon time reversal:

T−1pT = CσypσyC = CpC = −p =⇒ pT = −pT (38)

T−1LT = CσyLσyC = CLC = −L =⇒ LT = −LT , (39)
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thus the Hamilton operator with magnetic field B transforms to that with −B,

TH (B) = T

(
p2

2m
+ V (r) +

µB
~

(L + 2S)B

)
=

(
p2

2m
+ V (r)− µB

~
(L + 2S)B

)
T = H (−B)T ,

(40)
or

T−1H (B)T = H (−B) . (41)

This is the manifestation that time reversal changes the sign of the magnetic field. This is valid
even in the presence of spin-orbit coupling,

HSO =
~

4m2c2
(∇V × p)σ , (42)

since

T−1 (∇V × p)σT =
(
T−1 (∇V × p)T

) (
T−1σT

)

= (∇V × (−p)) (−σ) = (∇V × p)σ , (43)

i.e. HSO also commutes with T .

Corollary 1: The Hamilton operator of a system is time-reversal invariant only in the absence
of external magnetic field (or spontaneous spin-polarization (exchange splitting) that couples
only to the spin of electrons, Hsp = 2µB

~ SBex).

Corollary 2: If ψn (B) is an eigenstate of H (B),

H (B)ψn (B) = εn (B)ψn (B) (44)

then T−1ψn (B) is the eigenstate of H (−B) with the same energy,

T−1H (B)TT−1ψn (B) = H (−B)T−1ψn (B) = εn (B)T−1ψn (B) . (45)

This implies that the spectra of H (B) and H (−B) are identical, i.e. the energy of a system
does not change if the magnetic field is reversed.

1.3 Kramers degeneracy

Let us consider an eigenfunction, ψ (r1s1, . . . , rNsN) of the N -electron Hamiltonian,

Hψ = εψ (46)

being invariant upon time reversal,
T−1HT = H . (47)

The time-reversed wavefunction, Tψ, is then also eigenfunction of H with the same eigenvalue,

T−1HTψ = Eψ =⇒ H (Tψ) = ε (Tψ) . (48)

The time reversal operator T of the many-electron system should satisfy

TS(k) = −S(k)T , (49)
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for any k = 1, . . . , N, where S(k) = ~
2
σ(k) is the spin operator of electron k. It is prove to see

that T can be represented as
T = σ(1)

y . . . σ(N)
y C . (50)

since σ(k) and σ(k′) commute for k 6= k′. The we can derive,

T = σ(1)
y . . . σ(N)

y C = (−1)N Cσ(1)
y . . . σ(N)

y = (−1)N T−1 =⇒ T 2 = (−1)N , (51)

consequently,
T−1 = (−1)N T .

This then implies,

〈ψ|Tψ〉 =
〈
ψ|σ(1)

y . . . σ(N)
y Cψ

〉
=
〈
σ(1)
y . . . σ(N)

y ψ|C ψ
〉

=
Eq. (10)

〈
ψ|Cσ(1)

y . . . σ(N)
y ψ

〉

= (−1)N
〈
ψ|σ1

y . . . σ
N
y C ψ

〉
= (−1)N 〈ψ|Tψ〉 . (52)

Corollary : For odd number of electrons ψ and Tψ are orthogonal, therefore, the eigenstates of
the system are at least twofold degenerate.

1.4 Kramers degeneracy of Bloch-states

We consider the Hamiltonian derived from the Dirac equation up to first order of 1/c2:

H =
p2

2m
+ V (r)− p4

8m3c2
+

~2

8m2c2
∆V (r) +

~
4m2c2

(∇V (r)× p)σ , (53)

where the third, fourth and fifth terms represent the relativistic kinetic energy correction,
the Darwin term and the spin-orbit coupling, respectively. This one-electron Hamiltonian is
invariant w.r.t. time-reversal,

T−1HT = H . (54)

In the previous section we learned that the eigenstates are at least two-fold degenerate:

Hψ = εψ (55)

H (Tψ) = ε (Tψ) (56)

and Tψ is orthogonal to ψ.

A Bloch-state eigenfunction is defined as

ψk (r) = eikruk (r) (57)

Hkuk = εkuk , uk (r + R) = uk (r) , (58)

where the k-dependent Hamiltonian for a non-spinpolarized periodic solid is,

Hk =
(p + ~k)2

2m
+ V (r)− (p + ~k)4

8m3c2
+

~2

8m2c2
∆V (r) +

~
4m2c2

(∇V (r)× (p + ~k))σ . (59)

It is straightforward to show that
T−1HkT = H−k , (60)

5



therefore,
T−1Hkuk = εkT

−1uk (61)

⇓

H−k
(
T−1uk

)
= εk

(
T−1uk

)
(62)

⇓

ε−k = εk , (63)

and the two degenerate wavefunctions are:

ψk (r) = eikr
(
uk+ (r)
uk− (r)

)
and ψ

(1)
−k (r) = e−ikr

(
iu∗k− (r)
−iu∗k+ (r)

)
. (64)

1.5 Space inversion

Let’s consider the case when also space inversion (i) applies:

V (i r) = V (−r) = V (r) (65)

∇V (i r) = −∇V (r) (66)

∆V (i r) = ∆V (r) (67)

i (p f (r)) = −p f (−r) (68)

⇓

i (Hk (r)uk (r)) = H−k (r)uk (−r) (69)

⇓

H−k (r)uk (−r) = εkuk (−r) . (70)

Similar to time-reversal this implies that

ε−k = εk (71)

and also
u−k (r) = uk (−r) .

The corresponding Bloch-eigenfunction for −k is given by,

ψ
(2)
−k (r) = e−ikr

(
uk+ (−r)
uk− (−r)

)
. (72)

In case of both time-reversal and inversion symmetry, the two eigenfunctions for −k with the
same energy ε−k (= εk) are orthogonal:

∫
ψ

(1)
−k (r)+ ψ

(2)
−k (r) d3r = −i

∫
[uk− (r)uk+ (−r)− uk+ (r)uk− (−r)] d3r = 0 . (73)

Corollary : The Bloch-states (related to a given k) of a nonmagnetic centro-symmetric crystal
are at least twofold degenerate.
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1.6 Sorting out the eigenstates by spin-expectation value

In general, the eigenfunctions ψ
(µ)
k (µ = 1, 2) are not eigenfunctions of the spin-operator Sz for

any chosen quantization axis z. This is only the case in the absence of spin-orbit coupling.
Nevertheless, it is possible to construct the linear combinations,

ψ
(+)
k = c1ψ

(1)
k + c2ψ

(2)
k (74)

ψ
(−)
k = −c∗2ψ

(1)
k + c∗1ψ

(2)
k (75)

such that (i)
|c1|2 + |c2|2 = 1 (76)

i.e. the two states are orthonormal, (ii)

〈
ψ

(+/−)
k |σx|ψ(+/−)

k

〉
=
〈
ψ

(+/−)
k |σy|ψ(+/−)

k

〉
= 0 (77)

and (iii)

〈
ψ

(+/−)
k |σz|ψ(+/−)

k

〉
= ±P (k) (78)

0 ≤ P (k) ≤ 1 (79)

Thus we can sort out the two degenerate states by the spectral spin-polarization, P (k). As it
should apply for a nonmagnetic system, the expectation value of Sz within any eigen-subspace
of the Hamiltonian is zero, since it always contains the orthonormal pairs of eigenfunctions,
ψ

(+)
k and ψ

(−)
k .
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FIG. 2: Band structure of Pt from the fully relativistic (red)
and the relativistic with the spin-orbit coupling scaled to zero
(black) calculation.

FIG. 3: Calculated fully relativistic band structure of bcc Fe.
The small inset shows a comparison to the calculation with
the spin-orbit coupling scaled to zero (x=0). The spin-orbit
interaction leads to avoided crossings.
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FIG. 4: Calculated relativistic Fermi surface of Cu (upper
left), Au (upper right) and Pt (lower left: 9th band, lower

right: 11th band), and the expectation values of β̂σz for the∣∣Ψ+
k

〉
states are indicated as color code. Note the different

scale for Cu and Au in comparison to Pt.
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FIG. 5: Calculated relativistic Fermi surface for the bands
7-10 of bcc Fe. The expectation values of the β̂σz operator
are given as color code.
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