1 Time reversal

1.1 Without spin

Time-dependent Schrodinger equation:

o (r,t) = [—h—zA +V (r)} R

2m

"Local’ time-reversal transformation, 71':

h<tbo<..<t,=Tt1>Tty>...>Tt,
T=T"
\
df (T o't) . f(Tt+Tdt)— f(Tt) . f(Tt—dt)— f(T?) df (t)
———= = lim = lim =— —=
dt dt—0 dt dt—0 dt dt T
For simplicity, we will denote #d—(tt) by @, which should not be confused with @!

The time-reversed Schrodinger equation then reads as
. / hz /
—zﬁ@tw (I‘, Tt) = —%A +V (I') 1/1 (I'7 Tt) .

On the other hand,

' (v, Tt) = Co (r,t) =" (r,t) .

Properties of the operator C:

C' is anti-hermitian,
(¥[Cp) = (p|C) = (CYlp)”
and anti-linear,
C (c11 + cap2) = c1C1 + 5Cps .

However, the C' preserves the norm of the wavefunctions,
(CYICY) = (Wly) -
Relationship to other operators:

Cry)=r(CY) = Cr=rC = [r,C]=0



Notation:

Furthermore,

C (py)=C (?WJ) = —?VC@D =-—p(CyY)=Cp=-pC=p"=-p (14)

CL=C(rxp)=rxCp=—(rxp)C=-LC=L"=-L. (15)

1.2 With spin

Pauli-Schrodinger Hamilton operator

2

_ P KB
H—2m+V(r)—|— h(L—i—QS)B (16)
Pauli-Schrédinger equation
. h? 1B
ihow (r,t) = —%A +V(r)+ o (L+2S)B| ¢ (r,t) (17)
Time-reversed magnetic field: B'’= —B ! The time-reversed Pauli-Schrodinger equation then
takes the form,
. / h? KB / /
—iho)' (v, Tt) = —%A +V(r)+ 5 (L+2S)B'| ¢ (r,T%) (18)
= —h—2A+V(r)—@(L+QS)B ' (v, Tt) (19)
2m h ’ '
On the other hand,
. * h2 :uB * * *
—ihop* (r,t) = —%A +Vir)+ T (L* +2S*)B| ¢* (r, 1) (20)
= —h—QA—{—V(r) —’LL—B(L—2S*)B ¥ (r,t) (21)
| 2m h ’

It is then tempting to suppose that IM € L (C?) such that
Y (5, Tt) = MC g (x,1) = M (1,1) (22)

Since M acts only in spin space, it commutes with r, p and L. Thus,

—ihMapp* (r,t) = {—%A +V () — ’%B (L — 28S) B] My* (r,t) (23)
U
—ihdp* (v, 1) = [—%A +V(r)— ’%B (L +2M~'SM) B] " (r,t) . (24)



This equation is obviously satisfied if

M~ 'SM= -S* = -CSC = SMC = —-MC'S.

Let’s define the time-reversal operator as T' = MC,

TS =-ST.

It is easy to prove that
T = e’gay C

(25)

(26)

(27)

for any # € R is a general solution of Eq. (26). In most text-books § = 2 — T = io, C is
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chosen, but in these notes we take 0 =0 — 7T = 0, C.

Proof:
« (0 1Y\ . 0 <\ _ « (1 0 _
=19 )=0% o=\ _ og)="9% ==y _1)=c:
¢
T'o,T =(~0,0) 0, (0,C) = 0,0,0, = —0,
T, T =(~0,0)0,(c,0) = —0,
7', T =(-0,0)0,(0,C) = 0,0,0,=—0,
Properties:
T 1—Cay—a;C:—ayC——T
4
T? = —1

From the relationship,

(W|T) = (Yloy,C) = (a,0]|C) = (0}°) (| Cipr) = (00| Coytbs)
= (p|Coyp) = — (P TY) = — (TYlp)" ,

it follows that
(W[Ty) =—|Ty) =0,

i.e. 1 and T are orthogonal. Note also that 7" is antiunitary,
Wlo) = (VITT o) = = (TY|IT 0)" = (TY|Tp)" = (T|T)

and norm-conserving,

(TY|Tp) = — (P|T%p) = (Y|)

(37)

The momentum operators and angular momentum operators change sign upon time reversal:

T 'pT = Coypo,C = CpC = —p = pT = —pT
T7'LT = CoyLo,C =CLC = -L = LT = —-LT,



thus the Hamilton operator with magnetic field B transforms to that with —B,

TH(B):T(%nLV(r)Jr/%B(LJrQS)B) — (%Jﬂ/(r)—%B(LJFQS)B)T:H(—B)T,
(40)
" T'H(B)T = H(-B). (41)

This is the manifestation that time reversal changes the sign of the magnetic field. This is valid
even in the presence of spin-orbit coupling,

h
HSO:W(VVXP)U; (42)

since

T (VV xp)oT =(T""(VV xp)T) (T 'eT)
=(VV x(=p))(-o) = (VV xp)o, (43)

i.e. Hgp also commutes with T

Corollary 1: The Hamilton operator of a system is time-reversal invariant only in the absence
of external magnetic field (or spontaneous spin-polarization (exchange splitting) that couples
only to the spin of electrons, Hy, = 2’”ij38]_3>(396).

Corollary 2: 1f ¢, (B) is an eigenstate of H (B),
H (B) ¢ (B) = &, (B) ¢ (B) (44)

then T4, (B) is the eigenstate of H (—B) with the same energy,

T H(B)TT ', (B) = H(~B)T "¢, (B) = €, (B) T"'¢,, (B) . (45)
This implies that the spectra of H (B) and H (—B) are identical, i.e. the energy of a system
does not change if the magnetic field is reversed.
1.3 Kramers degeneracy
Let us consider an eigenfunction, 1 (ry$1,...,rysy) of the N-electron Hamiltonian,

Hy = ey (46)

being invariant upon time reversal,
T'HT = H . (47)

The time-reversed wavefunction, T, is then also eigenfunction of H with the same eigenvalue,

T HTY = By = H (Ty) = ¢ (TY) . (48)

The time reversal operator T' of the many-electron system should satisfy

78® = —sW | (49)
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for any k = 1,..., N, where S*) = ga(k) is the spin operator of electron k. It is prove to see

that T' can be represented as
T:aél)...aéN)C. (50)

since o® and o*) commute for k # k. The we can derive,

T = 01(11) . .aéN)C = (—1)N 00?51) e aéN) = (—1)N T7!' = T* = (—1)N ) (51)

consequently,
T =(-D"T.

This then implies,
(W|TY) = (YoM .. .oMCp) = (e .. alMy|C ) b o) (p|CalD .. oM )
= (=) (Ploy...o) Cy) = (=1)" (Y|Ty) . (52)

Corollary: For odd number of electrons 1) and T are orthogonal, therefore, the eigenstates of
the system are at least twofold degenerate.

1.4 Kramers degeneracy of Bloch-states

We consider the Hamiltonian derived from the Dirac equation up to first order of 1/c?:

2 4 2

P n AV(r)—FL(VV(r)Xp)U’ (53)

8m3c?  8m?2c? 4m?2c?
where the third, fourth and fifth terms represent the relativistic kinetic energy correction,
the Darwin term and the spin-orbit coupling, respectively. This one-electron Hamiltonian is
invariant w.r.t. time-reversal,

=2 1va)

2m

T'HT =H . (54)

In the previous section we learned that the eigenstates are at least two-fold degenerate:

Hi =¢ey (55)
H (Tvp) = e (T) (56)
and T is orthogonal to .
A Bloch-state eigenfunction is defined as
i (r) = ey (r) (57)
Hkuk = EkUk , Uk (I‘ + R) = Uk (I‘) s (58)

where the k-dependent Hamiltonian for a non-spinpolarized periodic solid is,

(p+ hk)" R

8m3c? 8m2c?

(p + hk)?

2m

AV (r) + o (VV (r) x (p+hk))o. (59)

He —
k 4Am?2c?

+V(r)—

It is straightforward to show that
T HT = H_y, (60)
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therefore,

T Heuy, = e Tty (61)
4

How (T uy) = ex (T uk) (62)
4

£k = &k, (63)

and the two degenerate wavefunctions are:

b =t () ana w ) = e (0 ) (69)

Uk — (I‘)

1.5 Space inversion

Let’s consider the case when also space inversion (i) applies:

Viir)=V (-r)=V(r) (65)
VV(ir)=-VV (r) (66)
AV (ir) = AV (r) (67)
i(pf(r))=-pf(-r) (68)

4
i (Hie (v) we (r)) = Hoge () uge (=) (69)

U
H_y (r)uy (—r) = epuy (—r) . (70)

Similar to time-reversal this implies that

£ x = €k (71)

and also
Uy (r) = ux (—r) .

The corresponding Bloch-eigenfunction for —k is given by,

S = (e ) 72

Uk— (—I‘)

In case of both time-reversal and inversion symmetry, the two eigenfunctions for —k with the
same energy €_i (= gx) are orthogonal:

/ U (1) o) (v) dPr = —i / [t (t) wiey (—1) — ey (r) wie (—1)] dPr = 0.  (73)

Corollary: The Bloch-states (related to a given k) of a nonmagnetic centro-symmetric crystal
are at least twofold degenerate.



1.6 Sorting out the eigenstates by spin-expectation value

In general, the eigenfunctions wl({“ ) (n = 1,2) are not eigenfunctions of the spin-operator S, for
any chosen quantization axis z. This is only the case in the absence of spin-orbit coupling.
Nevertheless, it is possible to construct the linear combinations,

¢1(<+) = 01%((1) + 62101(3) (74>
P = =) + ol (75)

such that (7)
e + e =1 (76)

i.e. the two states are orthonormal, (1)

(o ol ) = (D o) =0 (77)

and (ii1)
(Do w7 ) = P () (78)
0<P(k) <1 (79)

Thus we can sort out the two degenerate states by the spectral spin-polarization, P (k). As it
should apply for a nonmagnetic system, the expectation value of S, within any eigen-subspace
of the Hamiltonian is zero, since it always contains the orthonormal pairs of eigenfunctions,
v and .
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FIG. 2: Band structure of Pt from the fully relativistic (red)
and the relativistic with the spin-orbit coupling scaled to zero
(black) calculation.

[ o FR(x=1.0) o FR(x=0.0)]

\

Energy relative to E_
(eV)

Give to E,

@)

-10

124

r H N P I

FIG. 3: Calculated fully relativistic band structure of bcc Fe.
The small inset shows a comparison to the calculation with
the spin-orbit coupling scaled to zero (x=0). The spin-orbit
interaction leads to avoided crossings.
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FIG. 4: Calculated relativistic Fermi surface of Cu (upper
left), Au (upper right) and Pt (lower left: 9th band, lower
right: 11th band), and the expectation values of Baz for the
‘\I/:> states are indicated as color code. Note the different
scale for Cu and Au in comparison to Pt.
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FIG. 5: Calculated relativistic Fermi surface for the bands
7-10 of bce Fe. The expectation values of the So, operator
are given as color code.
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