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1 Green-function matrices in the TB formalism

In the tight binding (TB) picture the matrix of a Hamiltonian H is in the form

H =
{
H ij
}
, (1)

where

H ij = εi δij + γij . (2)

Single and double underlines denote matrices in angular momentum space and site-angular mo-

mentum space, respectively. The size of each angular momentum block is determined by the

dimension of the basis centered at each site i. In the case of 3d transition metals e.g., the hy-

bridized 3d-4s-4p valence band spans a 9-dimensional space (18 including spin). In many cases

the on-site energy blocks εi in Eq. (2) are themselves diagonal, but this is not necessary. The

hopping integrals γij are strictly site-off-diagonal.

The resolvent (or Green-function) matrix of a given system described by the Hamiltonian H

can be defined as

G (z) :=
(
z −H

)−1
(3)

for any z ∈ C (at least where the inversion can be performed). Suppose that the solutions of the
eigenvalue equation,

H cr = εr cr (r ∈ N) (4)

are kown, where cr are orthonormal column vectors,

c†rcs = δrs (5)

and form a full set of the Hilbert space, ∑
r

crc
†
r = I . (6)

The Hamiltonian matrix can then be written as

H =
∑
r

εr crc
†
r , (7)
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where n runs over all eigenvectors. This implies the spectral decomposition of the matrix G(z),

G (z) =
∑
r

crc
†
r

z − εr
. (8)

The fundamental analytic property of the resolvent,

G (z∗) = G (z)† (9)

is a consequence of this decomposition. Another fundamental identity can be derived from (3):

dG (z)

dz
= −G (z)2 . (10)

Since G(z) is undefined at real energies, εn, we have to approach the real arguments from the

imaginary direction,

G± (ε) =
∑
r

crc
†
r

ε− εr ± ı0
, (11)

for any ε ∈ R. Note that G+ (ε) 6= G− (ε) if ε is in the spectrum of H. Equation (9) implies[
G+ (ε)

]†
= G (ε) . (12)

The well-known identity,

1

ε− εr ± ı0
= P

(
1

ε− εr

)
∓ ıπδ (ε− εr) , (13)

leads to the relationship,∑
r

δ (ε− εr) crc†r = − 1

2πı

[
G+ (ε)−G− (ε)

]
= − 1

2πı

[
G+ (ε)−

(
G+ (ε)

)†]
. (14)

By composing the trace of (14), the density of states of the system, n (ε), can be expressed from

the Green function as

n (ε) =
∑
r

δ (ε− εr) = − 1

2πı
Tr
[
G+(ε)−

(
G+(ε)

)†]
= − 1

2πı

[
TrG+(ε)−

(
TrG+(ε)

)∗]
(15)

⇓

n (ε) = − 1

π
Im TrG+ (ε) =

1

π
Im TrG− (ε) . (16)

The expectation value of an observable A at zero temperature can be calculated as

〈A〉 =

εF∫
εb

∑
r

δ (ε− εr) c†r A cr dε =

εF∫
εb

∑
r

δ (ε− εr) Tr
[
crc
†
r A
]

dε (17)

⇓

〈A〉 = − 1

π

εF∫
εb

Im Tr
[
G+ (ε) A

]
dε =

1

π

εF∫
εb

Im Tr
[
G− (ε) A

]
dε , (18)

so G(z) and the spectrum of H contain the same information.
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2 Treating perturbations

Suppose now that H = H
0

+ ∆H, and G
0

(z) =
(
z −H

0

)−1
is the resolvent of the reference

system. Then (
z −H

0
−∆H

)
G (z) = I(

I −G
0

(z) ∆H
)
G(z) = G

0
(z) (19)

⇓

G(z) =
(
I −G

0
(z) ∆H

)−1
G
0
(z) = G

0
(z)
(
I −∆H G

0
(z)
)−1

. (20)

On the other hand, from Eq. (19),

G(z) = G
0
(z) +G

0
(z) ∆H G(z) . (21)

This equation can be solved iteratively:

G(0)(z) = G
0
(z)

G(1)(z) = G
0
(z) +G

0
(z) ∆H G

0
(z)

G(2)(z) = G
0
(z) +G

0
(z) ∆H G

0
(z) +G

0
(z) ∆H G

0
(z) ∆H G

0
(z)

...

G(z) = G
0
(z) +G

0
(z) ∆H G

0
(z) +G

0
(z) ∆H G

0
(z) ∆H G

0
(z) + . . . (22)

This Dyson-equation can be rearranged as

G(z) =G
0
(z) +G

0
(z)
[
∆H + ∆H G

0
(z) ∆H + . . .

]
G
0
(z)

=G
0
(z) +G

0
(z)T (z)G

0
(z) , (23)

where T (z) is the so-called scattering matrix,

T (z) = ∆H + ∆H G(z) ∆H

= ∆H + ∆H G
0
(z) ∆H + ∆H G

0
(z) ∆H G

0
(z) ∆H + . . .

= ∆H + ∆H G
0
(z) T (z) . (24)

T (z) can be expressed as

T (z) =
[
I −∆H G

0
(z)
]−1

∆H = ∆H
[
I −G

0
(z) ∆H

]−1
. (25)

Furthermore,

T (z)G
0
(z) = ∆H G(z) (26)

and

G
0
(z)T (z) = G(z) ∆H . (27)

3



⇓

dT (z)

dz
= ∆H

dG(z)

dz
∆H = −∆HG(z)G(z) ∆H (28)

= −T (z)G
0
(z)G

0
(z)T (z) = T (z)

dG
0
(z)

dz
T (z) . (29)

It can easily be shown that the T matrix has similar analytical properties as the resolvent,

T (z∗) = T (z)† , (30)

while

T±(ε) := lim
δ→0

T (ε± ıδ) =⇒ T− (ε) = T+(ε)† (31)

at real energies ε.

By using equations (16) and (23), we get the density of states (DOS) of the perturbed system

with respect to the reference system,

n(ε) = n0(ε)−
1

π
Im Tr

[
G+
0

(ε)T+(ε)G+
0

(ε)
]
. (32)

The second term on the right-hand side can be reformulated as follows:

Tr
[
G+
0

(ε)T+(ε)G+
0

(ε)
]

= Tr
[
G+
0

(ε)2 T+(ε)
]

= −Tr

[
dG

0
(ε)

dε
T+(ε)

]
= −Tr

[
T+(ε)−1

dT+(ε)

dε

]
= −Tr

d ln
(
T+(ε)

)
dε

leading to the Lloyd-formula, which gives the integrated DOS of the perturbed system,

N(ε) :=

ε∫
−∞

n (ε′) dε′ = N0(ε)±
1

π
Im Tr lnT±(ε) . (33)

3 On-site perturbations

Case of a single on-site impurity: ∆H
i

= {∆H iδinδim},

T =∆H
i
+ ∆H

i
G
0
∆H

i
+ . . . (34)

=
{[

∆H i + ∆H iG
ii
0∆H i + . . .

]
δinδim

}
= {tiδinδim} ,

with the single-site t-matrix

ti = ∆H i + ∆H iG
ii
0 ti =

(
I −∆H iG

ii
0

)−1
∆H i . (35)

Now let ∆H be a sum of such on-site perturbations,

∆H =
∑
i

∆H
i
.
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Then the T -matrix is given by

T =

(∑
i

∆H
i

)
+

(∑
i

∆H
i

)
G
0

(∑
i

∆H
i

)
+ . . .

=
∑
i

∆H
i
+
∑
i,j

∆H
i
G
0
∆H

j
+
∑
i,j,k

∆H
i
G
0
∆H

j
G
0
∆H

k
+ . . . (36)

or written out in site-indices,

T nm =∆Hnδnm + ∆HnG
nm
0 ∆Hm +

∑
k

∆HnG
nk
0 ∆HkG

km
0 ∆Hm + . . .

=∆Hnδnm +
∑
k

∆HnG
nk
0 T

km. (37)

The T -matrix can be rearranged as follows:

T =
∑
i

Q
i

(38)

where

Q
i

:=∆H
i
+
∑
j

∆H
i
G
0
∆H

j
+
∑
j,k

∆H
i
G
0
∆H

j
G
0
∆H

k
+ . . . (39)

= ∆H
i
+ ∆H

i
G
0

∑
j

Q
j

(40)

=∆H
i
+ ∆H

i
G
0
Q
i
+ ∆H

i
G
0

∑
j(6=i)

Q
j

(41)

⇓(
I −∆H

i
G
0

)
Q
i

= ∆H
i
+ ∆H

i
G
0

∑
j(6=i)

Q
j

⇓

Q
i

= t
i
+ t

i
G
0

∑
j(6=i)

Q
j
, (42)

where t
i
is related to the single-site t-matrices introduced above,

t
i

=
(
I −∆H

i
G
0

)−1
∆H

i
= {ti δinδjn} .
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Solving equation (42) iteratively,

Q(0)
i

:=t
i

(43)

Q(1)
i

=t
i
+
∑
j(6=i)

t
i
G
0
t
j

Q(2)
i

=t
i
+
∑
j(6=i)

t
i
G
0
t
j

+
∑
j(6=i)
k(6=j)

t
i
G
0
t
j
G
0
t
k

...

⇓
Q
i

=t
i
+
∑
j(6=i)

t
i
G
0
t
j

+
∑
j(6=i)
k(6=j)

t
i
G
0
t
j
G
0
t
k

+
∑
j(6=i)
k(6=j)
l(6=k)

t
i
G
0
t
j
G
0
t
k
G
0
t
l
+ . . . (44)

Using equation (39), we arrive at the multiple-scattering expansion of the T -matrix,

T =
∑
i

t
i
+
∑
i 6=j

t
i
G
0
t
j

+
∑
i 6=j 6=k

t
i
G
0
t
j
G
0
t
k

+
∑

i 6=j 6=k 6=l

t
i
G
0
t
j
G
0
t
k
G
0
t
l
+ . . .

Since for all t
i

= {ti δinδim}, the above equation can be rewritten in site-indices as

T nm =tnδnm + (1− δnm) tnG
nm
0 tm +

∑
k

(k 6=n)
(k 6=m)

tnG
nk
0 tkG

km
0 tm + . . . (45)

=tnδnm +
∑
k

tnG
nk
0 (1− δnk)T km. (46)

Collecting all the single-site t-matrices into a site-diagonal matrix,

t = {tn δnm} =


t1 0 0 · · ·
0 t2 0 · · ·
0 0 t3 · · ·
...

...
...
. . .

 (47)

and defining the site-off-diagonal part of the reference system’s resolvent matrix,

Ĝ
0

:=
{
Gnk
0 (1− δnk)

}
=


0 G120 G130 · · ·
G210 0 G230 · · ·
G310 G320 0 · · ·
...

...
...

. . .

 , (48)

the T -matrix can be expressed as

T = t+ t Ĝ
0
t+ t Ĝ

0
t Ĝ

0
t . . . (49)

or

T = t+ t Ĝ
0
T , (50)
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that can be solved explicitely,

T =
[
t−1 − Ĝ

0

]−1
. (51)

For a periodic lattice with one atom per unit cell, ti = t0 (∀i), the T -matrix can be evaluated
via lattice Fourier transformation:

T nm (z) =
1

VBZ

∫
BZ

d3k ei
−→
k (
−→
Rm−

−→
Rn) T (z,

−→
k ) , (52)

where

T (z,
−→
k ) =

[
t0 (z)−1 −G0(z,

−→
k )
]−1

, (53)

with

G0(z,
−→
k ) =

(
zI −H0(

−→
k )
)−1

, (54)

and

H0(
−→
k ) = ε0 + γ(

−→
k ) . (55)

Here ε0 is the on-site energy matrix of the reference system and γ(
−→
k ) is the lattice Fourier

transform of the hopping integrals,

γ(
−→
k ) =

∑
−→
Rn 6=0

ei
−→
k
−→
Rn γ(

−→
R n) . (56)

The resolvent matrix of the perturbed system can then calculated by using Eq.~(23). Equivalently,

Gnm (z) can be evaluated as

Gnm (z) =
1

VBZ

∫
BZ

d3k ei
−→
k (
−→
Rm−

−→
Rn)G(z,

−→
k ) , (57)

where

G(z,
−→
k ) =

(
zI −H(

−→
k )
)−1

(58)

and

H(
−→
k ) = ε+ γ(

−→
k ) , (59)

with ε being the on-site energy matrix of the perturbed system.

4 Chemically disordered systems

4.1 Binary alloys

Let’s consider now a two-component (binary) random alloy, described by the random site-diagonal

Hamiltonian,

H i (ξi) = ξiH
A
i + (1− ξi) HB

i , (60)

where ξi are independent random variables with Bernoulli distribution:

ξi =

{
1 with probability Pi (1) := ci
0 with probability Pi (0) = 1− ci

, (61)

7



and the two chemical components are labelled by A and B. By definition the expected values are

E [ξi] ≡ 〈ξi〉 = ci, (62)

thus the expected value of H i is

〈H i〉 = 〈ξi〉 HA
i + 〈1− ξi〉 HB

i = ciH
A
i + (1− ci) HB

i . (63)

Independence means that the joint probability mass function of {ξ} decomposes into the product
of the individual probability mass functions:

P ({ξ}) =
N∏
i=1

Pi (ξi) . (64)

Of course P ({ξ}) is a probability, since trivially

∑
{ξ}

P ({ξ}) =
∏
i

(
1∑

ξi=0

Pi (ξi)
)

= 1. (65)

The configurational average of some physical quantity is then defined as

〈F ({ξ})〉 :=
∑
{ξ}

P ({ξ})F ({ξ}) =
∑
ξ1

. . .
∑
ξN

P1 (ξ1) . . .PN (ξN)F (ξ1, . . . , ξN) . (66)

Since G = G ({ξ1, ξ2, . . . , ξN}) ≡ G ({ξ}), the mean of a physical quantity A is

〈A〉 =

〈
− 1

π
Im

∫
f(ε) Tr

[
AG ({ξ})

]
dε

〉
(67)

=− 1

π
Im

∫
f(ε) Tr

[
A
〈
G
〉]

dε (68)

(where we suppressed the dependence of G on the energy ε).

4.2 The Coherent Potential Approximation

Let us define an effective Hamiltonian H
c
(often noted as Σ

c
, the self-energy),

H ij
c = Hc,i δij + γij , (69)

such that 〈
G (z)

〉
=: G

c
(z) =

(
z −H

c

)−1
. (70)

called as the coherent potential approximation (CPA). Note that eqn. (70) can only be satisfied

if H
c

= H
c
(z) is a function of the energy, but it is (by definition) configuration-independent.

Choosing H
c
to be the Hamiltonian of the reference system,

∆H = {∆H i δinδim} =
{(
H i −Hc,i

)
δinδim

}
, (71)

the T matrix is defined as

T = t+ t Ĝ
c
t+ +t Ĝ

c
t Ĝ

c
t+ . . . (72)
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with

t = {ti δinδim} (73)

and

ti = ∆H i + ∆H iG
ii
c ti =

(
∆H−1i −Gii

c

)−1
. (74)

Since, by definition, G
c

=
(
z −H

c

)−1
is independent of the chemical configurations, the CPA

condition (70) can be reformulated as〈
G
〉

= G
c

= G
c

+G
c

〈
T
〉
G
c

(75)

⇓〈
T
〉

= 0 (76)

⇓〈
t
〉

+ 〈t Ĝ
c
t〉+ 〈t Ĝ

c
t Ĝ

c
t〉+ . . . = 0 , (77)

or written out with respect to site indices,

〈tn〉 δnm + 〈tnGnm
c tm〉 (1− δnm) +

∑
k( 6=n,m)

〈tnGnk
c tkG

km
c tm〉+

∑
k( 6=n)
l(6=k,m)

〈tnGnk
c tkG

kl
c tlG

lm
c tm〉+ . . . = 0 .

(78)

Solving the above equation is quite cumbersome, therefore, the single-site CPA (ss-CPA)

condition is introduced as follows,

〈tn〉 = 0 (∀n) . (79)

The ss-CPA condition implies:

〈tnGnm
c tm〉 =

n6=m
〈tn〉Gnm

c 〈tm〉 = 0 , (80)

∑
k( 6=n,m)

〈tnGnk
c tkG

km
c tm〉 =

∑
k(6=n,m)

〈tnGnk
c 〈tk〉Gkm

c tm〉 = 0 . (81)

thus, the condition set by eq. (78) is satisfied up to third order in tn ! In the sum contributing to

eq. (78) in fourth order of the single-site t-matrices ,∑
k( 6=n)
l(6=k,m)

〈tnGnk
c tkG

kl
c tlG

lm
c tm〉

only those terms do not vanish by virtue of eq. (79), where each site index occurs at least twice,

since averages like 〈. . . tn . . . tn . . .〉 do not vanish by (79). These terms are called backscattering
terms. We can then state that the ss-CPA condition (79) implies the CPA condition (78) if all

the backscattering terms are disregarded. Let’s define this type of average as the ss-CPA average.

Then we can write,

〈tn〉 = 0 =⇒ 〈T nm〉ss−CPA = 0⇐⇒ 〈Gnm〉ss−CPA = Gnm
c . (82)
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4.2.1 Solving the ss-CPA condition

The ss-CPA can be solved iteratively. To initialize the iteration the average of the on-site energy

matrices (termed as the virtual crystal approximaton, VCA) can be used,

ε(0)c = c εA + (1− c) εB . (83)

1) Suppose that after the kth step of the iteration the coherent-potential on-site energy matrix

is ε(k)c . As discussed before for periodic systems, the site-diagonal block of the CPA resolvent

matrix can be evaluated as

Gii(k)
c (z) =

1

VBZ

∫
BZ

d3k G(k)c (z,
−→
k ) , (84)

where

G(k)c (z,
−→
k ) =

(
zI − ε(k)c − γ(

−→
k )
)−1

. (85)

Note that Gii(k)
c (z) is independent on the lattice sites, thus we denote it by G00(k)c (z) .

2) The single-site CPA t-matrices for the two components are given by,

t(k)α =
(
I −∆H(k)

α G00(k)c

)−1
∆H(k)

α (α = A,B) (86)

with

∆H(k)
α = εα − ε(k)c . (87)

3) According to eq. (79) we calculate

t(k)c ≡ ct
(k)
A + (1− c) t(k)B , (88)

and check whether it is zero within a predefined accuracy. If not, we look for a next guess of the

effective medium, ε(k+1)c and start again with step 1). A well-converging scheme to find ε(k+1)c is

based on the notion that the new effective on-site energy matrix, ε(k+1)c , provides the single-site

t-matrix t(k)c with respect to ε(k)c ,

t(k)c =
(
I −

(
ε(k+1)c − ε(k)c

)
G00(k)c

)−1 (
ε(k+1)c − ε(k)c

)
(89)

⇓

ε(k+1)c = ε(k)c +
((
t(k)c
)−1

+G(k)00c

)−1
(90)

= ε(k)c +
(
I + t(k)c G(k)00c

)−1
t(k)c . (91)

Clearly, when the ss-CPA condition converges, t(k)c → 0, then ε(k)c also converges, ε(k+1)c −ε(k)c → 0,

and vica versa.
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4.2.2 Restricted averages

Let us consider the average of the site-diagonal block of the resolvent matrix. Since any site is

occupied by component A with probability c or component B with probability 1− c, this average
can be written as

〈Gnn〉 = c 〈Gnn〉nA + (1− c) 〈Gnn〉nB , (92)

where 〈Gnn〉nα denotes the so-called restricted average, when site n is coccupied by component α,
otherwise the random average over all the other sites is taken. In the relationship,

〈Gnn〉nα = Gnn
c +

∑
k,l

Gnk
c

〈
T kl
〉
nα
Gln
c , (93)

the restricted average of the T -matrix is evaluated as follows:〈
T kl
〉
nα

= 〈tk〉nα δkl+〈tkG
kl
c tl〉nα (1− δkl)+

∑
r(6=k,l)

〈tkGkr
c trG

rl
c tl〉nα+

∑
r( 6=k)
s(6=r,l)

〈tkGkr
c trG

rs
c tsG

sl
c tl〉nα+. . .

(94)

〈tk〉nα δkl = tnα δknδln

〈tkGkl
c tl〉nα (1− δkl) = tnαG

nl
c 〈tl〉 δkn (1− δnl) + 〈tk〉Gkl

c tnα δln (1− δkn)

+ 〈tk〉Gkl
c 〈tl〉 (1− δkl) (1− δnl) (1− δnk) = 0

∑
r(6=k,l)

〈tkGkr
c trG

rl
c tl〉nα = δnkδnl

∑
r(6=n)

tnαG
nr
c 〈tr〉Grl

c tnα

+ δnk (1− δnl)
∑
r( 6=n.l)

tnαG
nr
c 〈tr〉Grl

c 〈tl〉

+ (1− δnk) δnl
∑

r( 6=k,n)

〈tk〉Gkr
c 〈tr〉Grn

c tnα

+ (1− δnk) (1− δnl)
∑
r(6=k,l)

〈tkGkr
c 〈tr〉Grl

c tl〉

= (1− δnk) (1− δnl) 〈tkGkr
c tnαG

rl
c tl〉 ,

which is nonzero only for k = l. This is, however, a backscattering term which is neglected within

the ss-CPA. Similarly, only the backscattering terms add contributions to the remaining sums in

(94). Omitting these terms, we obtain〈
T kl
〉ss−CPA
nα

= tnα δknδln , (95)

⇓

〈Gnn〉ss−CPAnα = Gnn
c +Gnn

c tnαG
nn
c = Gnn

c Dnα = D̃nαG
nn

c (96)

with the so-called embedding matrices

Dnα = I + tnαG
nn
c (97)
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and

D̃nα = I +Gnn
c tnα . (98)

The notation refers to the fact that Gnn
c Dnα or D̃nαG

nn

c mean the site-diagonal block of the

resolvent matrix for a system, when an atom α is embedded into the coherent medium at lattice

site n. The ss-CPA condition can then be reformulated as

cDnA+ (1− c)DnB = c D̃nA+ (1− c) D̃nB = I . (99)

Later on we’ll need the two-site restricted average of the site-off-diagonal blocks of the resolvent,

〈Gnm〉nα,mβ for n 6= m. For this reason we need to calculate
〈
T kl
〉
nα,mβ

. Similar considerations as

in case of the one-site restricted average lead to the result,〈
T kl
〉ss−CPA
nα,mβ

= tnαδknδln + tmβδkmδlm + tnαG
nm
c tmβ δknδlm + tmβG

mn
c tnα δkmδln . (100)

〈Gnm〉nα,mβ can then be evaluated as

〈Gnm〉nα,mβ = Gnm
c +

∑
k,l

Gnk
c

〈
T kl
〉ss−CPA
nα,mβ

Glm
c

= Gnm
c +Gnn

c tnαG
nm
c +Gnm

c tmβG
mm
c +Gnn

c
tnαG

nm
c tmβG

mm
c +Gnm

c tmβG
mn
c tnαG

nm

c
.

(101)

According to the single-site CPA, we neglect the backscattering term Gnm
c tmβG

mn
c tnαG

nm

c
in the

above formula and obtain the following compact result,

〈Gnm〉ss−CPAnα,mβ = (I +Gnn
c tnα) Gnm

c

(
I + tmβG

mm
c

)
= D̃nαG

nm

c Dmβ . (102)

4.2.3 Bloch spectral functions for disordered alloys

In case of periodic solids the eigenstates of the Hamiltonian are Bloch functions characterized by
~k vectors in the Brillouin zone and bands b,

H(~r)ψb(~k, ~r) = εb(~k)ψb(~k, ~r) (103)

where

ψb(~k, ~r + ~Rn) = ei
~k ~Rn ψb(~k, ~r) . (104)

Let us transform the Schrödinger equation (103) into the orthonormal tight-binding represen-

tation: ∑
m,α′

〈n, α|H(~r)|m,α′〉︸ ︷︷ ︸
Hnm
αα′

〈m,α′|ψb(~k, ~r)〉︸ ︷︷ ︸
cm
b,α′ (

~k)

= εb(~k) 〈n, α|ψb(~k, ~r)〉︸ ︷︷ ︸
cnb,α(

~k)

(105)

where n,m label sites, α, α′ stand for orbitals, and the coeffi cents cnb,α(~k) satisfy,

cnb,α(~k) = ei
~k ~Rnc0b,α(~k) . (106)

Introducing the row-vector,

cb(~k) =
{
c0b,α(~k)

}
, (107)
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eq. (105) can be rewritten as∑
m

Hnmei
~k ~Rmcb(~k) = ei

~k ~Rnεb(~k)cb(~k) , (108)

which can be refromulated in terms of the lattice Fourier transform of the Hamiltonian

H(~k) =
∑
m

ei
~k(~Rm−~Rn)Hnm =

∑
n

ei
~k ~RnH0n (109)

⇓

H(~k) cb(~k) = εb(~k)cb(~k) . (110)

The resolvent in the ~k-space can then be defined as,

G(z,~k) =
∑
n

ei
~k ~RnG0n (z) =

∑
b

cb(~k)cb(~k)†

z − εb(~k)

which is related to the Bloch spectral function (BSF) by

AB(ε,~k) =
∑
b

δ(ε− εb(~k)) = − 1

π
Im TrG+(ε,~k)

= − 1

π
Im Tr

∑
n

ei
~k ~RnG0n (ε) . (111)

The density of states of the system normalized to one atom can be expressed as

n (ε) =
1

VBZ

∫
BZ

d3k
∑
b

δ(ε− εb(~k)) =
1

VBZ

∫
BZ

d3k AB(ε,~k) . (112)

Calculating the BSF for a given energy ε with a small imaginary part δ, sharp peaks with a

halfwidth of δ show up in the Brillouin zone at the eigenvalues of the Hamiltonian. This is the

way to evaluate the energy dispersion of the Bloch electron (bandstructure) by using the resolvent

(or Green’s function).

In case of disordered alloys the BSF can at best be defined as an average of (111) in the

configuration space,

AB(ε,~k) = − 1

π
Im Tr

∑
~Rn

ei
~k ~Rn〈G0n (ε)〉 . (113)

Next we decompose the BSF into two contributions,

AB(ε,~k) = A1B(ε,~k) + A2B(ε,~k) (114)

where

A1B(ε,~k) = − 1

π
Im Tr 〈G00 (ε)〉 (115)

and

A2B(ε,~k) = − 1

π
Im Tr

∑
~Rn(6=0)

ei
~k ~Rn〈G0n (ε)〉 . (116)
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The first contribution can be evaluated by using the on-site restricted averages of the resolvent,

〈G00〉 = c〈G00〉0A + (1− c) 〈G00〉0B = G00c , (117)

yielding

A1B(ε,~k) = − 1

π
Im TrG00c (ε) . (118)

For the second contribution we use the two-site restricted averages of the resolvent,

〈G0n〉 = c2〈G0n〉0A,nA + c (1− c) 〈G0n〉0A,nB + c (1− c) 〈G0n〉0B,nA + (1− c)2 〈G0n〉0B,nB
= c2D̃AG

0n
c DA + c (1− c) D̃AG

0n
c DB + c (1− c) D̃BG

0n
c DA + (1− c)2 D̃BG

0n
c DB

= (cD̃A + (1− c)D̃B)G0nc (cDA + (1− c)DB) = G0nc ,

where we used the equality (99), resulting in

A2B(ε,~k) = − 1

π
Im Tr

∑
~Rn( 6=0)

ei
~k ~Rn G0nc (ε) =

1

π
Im Tr [G00c (ε)−Gc(ε,

~k)] .

The Bloch spectral function of disordered alloys can thus be written within the ss-CPA in a

similar way as for ordered systems, just by replacing G(ε,~k) with Gc(ε,
~k),

AB(ε,~k) = − 1

π
Im TrGc(ε,

~k) . (119)

We should emphasize again that this is the consequence of neglecting the backscattering terms in

the restricted averages. Since

G00c (ε) =
1

VBZ

∫
BZ

d3k Gc(ε,
~k) , (120)

the average over the Brillouin zone of the BSF gives the averaged DOS per atom,

1

VBZ

∫
BZ

d3k AB(ε,~k) = − 1

π
Im TrG00c (ε) = 〈n (ε)〉 . (121)

The peaks of the BSF give a meaningful information on the bandstructure for disordered alloys

as the positions of peaks εb(~k) can still be associated with the energies of the electrons. The peaks

have, however, finite width even when approaching the imaginary part of the energy to zero. This

refers to the fact that the Bloch states are not eigenstates of the system: the Bloch electrons are

quasiparticles with finite lifetime being inversely proportional with the halfwidth of the peaks of

the BSF. It is often useful to interpret the broadening of the peaks such that the bands of the

pure ordered systems are mixed due to disorder. This mixing can be different in different parts of

the Brillouin zone, thus the broadening of the peaks also varies in the BZ.

5 Description of the paramagnetic state - disordered local
moments

Spin-polarized electrons are described within the tight-model by spin-dependent on-site energies,

εn = εnmn + bn ~en · ~σ (122)
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where now the single underline denotes matrices in orbital- and spin-space, i.e. a matrix of double

size as before. In the above formula εnmn and bn are matrices in orbital space related to the

non-magnetic part of the Hamiltonian and the exchange splitting, respectively. The unit vector

~en stands for the direction of the exchange field (within the local spin-density approximation of

density functional theory it is identical with the direction of the magnetization) and ~σ denote the

Pauli matrices. Note that spin-orbit coupling is not included in this description.

In the paramagnetic state the spin-orientations are distributed randomly over the unit sphere.

We can choose these orientations as the independent continuous random variables with the dis-

tribution function,

P ({~e}) =

N∏
n=1

P (~en) , (123)

P (~en) =
1

4π
,

∫
d2enP (~en) = 1 , (124)

where
∫
d2en means integration on the surface of the unit sphere. The configurational averages

can be calculated as

〈F ({~e})〉 :=

∫
d2eP ({~e})F ({~e}) =

∫
d2e1 . . .

∫
d2eN P (~e1) . . .P (~eN) F (~e1, . . . , ~eN) (125)

=
1

(4π)N

∫
d2e1 . . .

∫
d2eN F (~e1, . . . , ~eN) . (126)

The Hamiltonian is then a function of the random variables,

H ({~e}) =
{
εn (~en) + γ

nm

}
, (127)

where the hopping integrals are taken to be independent from the orientations of the local spin-

variables. The mean of a physical quantity A can be calculated in terms of the resolvent,

G ({~e}) =
(
z −H ({~e})

)−1
,

as before,

〈A〉 =

〈
− 1

π
Im

∫
f(ε) Tr

[
AG ({~e})

]
dε

〉
(128)

=− 1

π
Im

∫
f(ε) Tr

[
A
〈
G ({~e})

〉]
dε , (129)

thus, it is tempting to use the coherent-potential approximation to evaluate such averages,〈
G ({~e})

〉
= G

c
. (130)

Since G
c
describes a system with zero net magnetization, the effective on-site energy matrix εc,n

should be unit matrix in spin space. The single-site t-matrices with respect to the effective medium

are defined as

tn = ∆Hn + ∆HnG
nn
c tn = (I −∆HnG

nn
c )−1 ∆Hn . (131)
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with

∆Hn = εn (~en)− εc,n . (132)

The single-site CPA condition then reads

〈tn〉 =

∫
d2en tn (~en) = 0 . (133)

It is straightforward to prove that tn (~en) also takes the form of (122),

tn (~en) = tnmn + ∆tn ~en · ~σ , (134)

where the matrices tnmn and ∆tn are unit matrices in spin space. therefore, the condition (133)

can be simplified to∫
d2en (tnmn + ∆tn ~en · ~σ) = tnmn + ∆tn

∫
d2en ~en︸ ︷︷ ︸
=0

· ~σ = tnmn = 0 . (135)

Luckily, when solving the ss-CPA condition we got rid of the integration over continuous spin

directions. We can calculate tnmn by using eq. (131) if we fix ~en to ~ez and −~ez,

tn (±~ez) = tnmn ±∆tn σz → tnmn =
1

2
(tn (~ez) + tn (−~ez)) , (136)

where tn (±~ez) corresponds to impurities embedded into the effective medium with on-site energies,

ε±n = εnmn ± bn . (137)

Thus the ss-CPA condition (135) can be reformulated in analogy of a binary alloy with c = 0.5,

where the two components refer to the same magnetic atom with opposite (up and down) spin

orientations,
1

2

(
t+n + t−n

)
= 0 . (138)

This is the mean-field theory to calculate the electronic structure in the paramagnetic state called

the picture of Disordered Local Moments (DLM).
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