
Problem set 3 for Quantum Field Theory course

2019.02.26.

Topics covered

• Representation of C,P, T transformations on complex scalar field

• Trace and contraction identities of γ matrices, Fierz identities

• Field bilinears

• Locality, commutators, propagators

Recommended reading
Peskin-Schroeder: An introduction to quantum field theory

• Chapter 2

• Sections 3.4, 3.5

Problem 3.1 Dirac field bilinears

(a) Recall that
S(Λ)γµS(Λ)−1 =

(
Λ−1

)µ
ν
γν . (1)

Show that ΨγµΨ is a Lorentz vector. Show that

ΨγµνΨ ≡ Ψγ[µγν]Ψ =
1

2
Ψ[γµ, γν ]Ψ (2)

transforms as a rank 2 antisymmetric tensor.

(b) Similarly,
ΨγµνρΨ ≡ Ψγ[µγνγρ]Ψ , (3)

where [. . . ] denotes total antisymmetrization, transforms as a rank 3 antisymmetric tensor,
and so on. In 4 dimensions, the series terminates at 4 indeces (rank 4). Show that

γ[µγνγργσ] = −iεµνρσγ5 , γ[µγνγρ] = −iεµνρσγσγ5 . (4)

(c) Consider the 1 + 4 + 6 + 4 + 1 = 16 matrices

11 , γµ , γµν , γµγ5 , γ5 , (5)

and denote them as Γa (a = 1, . . . , 16), e.g. Γ1 = 11, Γ2 = γ0, Γ6 = γ01 etc.

i. Show that (Γa)2 = ±1.

ii. Prove that for all Γa except a = 1 there exists a Γb such that {Γa,Γb} = 0.

iii. Prove that for all a 6= 1 Tr(Γa) = 0.
(Hint: Using i. and ii. write Tr(Γa) = ±Tr

[
Γa(Γb)2

]
where {Γa,Γb} = 0, and use the

cyclic property of the trace.
iv. Demonstrate that for all a 6= b there exists a Γc 6= 11 such that ΓaΓb = Γc.
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v. Finally, show that the set of Γa matrices is linearly independent, i.e.
∑

a λaΓ
a = 0

implies that all λa = 0.
(Hint: Write 0 = Tr

[
Γb
∑

a λaΓ
a
]
and use iv., iii., and i.)

By this you have proved completeness of the set {Γa} in the space of 4× 4 matrices.

Problem 3.2 “Gammaology”

(a) Contraction identities
i. Show that γµγµ = 4 11.

ii. Show that γµγνγµ = −2 γν .

iii. Show that γµγνγργµ = 4ηρν 11.

iv. Show that γµγνγργσγµ = −2 γσγργν .

v. Show that γµγνγργσγλγµ = 2
(
γλγνγργσ + γσγργνγλ

)
.

vi. Show that γλσµνγλ = 0 and γλσµνγργλ = 2γρσµν .

(b) Trace identities
i. Using that (γ5)2 = 1 and {γ5, γµ} = 0, prove that the trace of a product of an odd

number of γ matrices is zero.
ii. Show that Tr (γµγν) = 4ηµν .

iii. Using the Clifford algebra compute {γµ, γνγργσ} and show that

Tr (γµγνγργσ) = 4 (ησµηνρ − ηµρηνσ + ηµνηρσ) . (6)

iv. Using the notation a/ = γµaµ we can write the previous equality as

Tr(�a�b�c�d) = 4[(ab)(cd)− (ac)(bd) + (ad)(bc)] . (7)

Generalizing the previous identities prove that

Tr(�a1 . . . �a2n) = a1a2Tr(�a3 . . . �a2n)− a1a3Tr(�a2�a4 . . . �a2n) + · · ·+ a1a2nTr(�a2 . . . �a2n−1) ,
(8)

which allows for a recursive evaluation of such expressions.
(c) Show that

Tr(γ5) = Tr(γ5γµ) = Tr(γ5γµγν) = Tr(γ5γµγνγρ) = 0 . (9)

Prove that
Tr(γ5γµγνγργσ) = −4iεµνρσ . (10)

Problem 3.3 C,P, T transformation for a complex scalar field

The plane wave expansion of a complex scalar field is

φ̂(x) =

∫
d3k

(2π)3
1√
2k0

[
âke
−ikx + b̂†ke

ikx
]
. (11)

(a) Charge conjugation transform the annihilation operators as

CâpC
−1 = ξb̂p , Cb̂pC

−1 = ξ̃âp , (12)

which through Eq. (11) determines the transformation of the field: φ̂C(x, t) = Cφ̂(x, t)C−1.

Compute
[
φ̂(x, t), φ̂C(y, t)

]
and show that it vanishes for space-like separation (i.e. φ̂ and

φ̂C are local with respect to each other) if and only if ξ̃ = ξ∗. How can we write φ̂C then?
(b) Under parity transformations,

P âpP = ηâ−p , P b̂pP = η̃b̂−p . (13)

Similarly to the previous case, η̃ = η∗ must hold to preserve locality. Compute Pφ̂(x, t)P−1.
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(c) Under time reversal,
T âpT

−1 = ζâ−p , T bpT
−1 = ζ̃ b̂−p . (14)

This is the same as for P, however, T is an anti-unitary operator. Show that this implies
that the phases ζ, ζ̃ are not physical. (Hint: compute the eigenvalue of T on the state eiα|ψ〉
where T |ψ〉 = ζ|ψ〉 and α ∈ R is arbitrary.)
Compute T φ̂(x, t)T−1.

Problem 3.4 Commutation relations and locality

Recall that for the Klein–Gordon field

[φ(x), φ(y)] = ∆+(x− y)−∆+(y − x) , (15)

where

∆+(x− y) =

∫
d3p

(2π)3
1

2Ep
e−ip(x−y)

∣∣∣∣
p0=Ep

. (16)

As ∆+(x) = ∆+(−x) for space-like x, the Klein–Gordon commutator vanishes for space-like
separations.

(a) Consider the complex scalar field in Eq. (11). Show that assuming that the creation/annihilation
operators satisfy anticommutation relations,

{ap, a†p′} = (2π)3δ(p− p′) , {bp, b†p′} = (2π)3δ(p− p′) , {ap, b†p′} = 0 , (17)

one gets for the field anticommutator{
φ(x, t), φ†(y, t)

}
= ∆+(x− y) + ∆+(y − x) , (18)

so it does not vanish for space-like separations.
(b) Repeat the calculation for

[
φ(x, t), φ†(y, t)

]
assuming commutation relations,

[ak, a
†
k′ ] = (2π)3δ(k− k′) , [bk, b

†
k′ ] = (2π)3δ(k− k′) , [ak, b

†
k′ ] = 0 . (19)

(c) Let us consider now the Dirac field

ψ(x) =
∑
s

∫
d3k

(2π)3
1√
2k0

[
asku

s(k)e−ikx + (bs)†k v
s(k)eikx

]
. (20)

and assume that the creation/annihilation operators satisfy commutation relations (19) with
an additional δss′ . Making use of the spin sums (see Problem 2.4 c), show that[

ψa(x, t), ψ̄b(y, t)
]

= (i�∂x +m)ab [∆+(x− y) + ∆+(y − x)] . (21)

(d) Finally, assuming anticommutation relations for the mode operators (17) prove that{
ψa(x, t), ψ̄b(y, t)

}
= (i�∂x +m)ab [∆+(x− y)−∆+(y − x)] . (22)

Problem 3.5 Dirac propagator

(a) Starting from the mode expansion of the Dirac field (20), using (17) and the spin sums (see
Problem 2.4 c) derive Eq. (22) and write it as an integral over p.

(b) Write the two terms as residues at the simple poles p0 = ±Ep and arrive at the expression∫
d4p

(2π)4
i(�p+m)

p2 −m2
e−ip(x−y) . (23)

How should the integration contour in p0 be defined in order to obtain the retarded Green’s
function, θ(x0−y0)

{
ψa(x), ψ̄b(y)

}
? What kind of contour gives the advanced Green’s func-

tion, θ(y0 − x0)
{
ψa(x), ψ̄b(y)

}
?
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(c) Prove that the Feynman prescription corresponds to the time ordered expectation value,

SF(x− y) =

∫
d4p

(2π)4
i(�p+m)

p2 −m2 + iε
e−ip(x−y)

= θ(x0 − y0)〈0|ψ(x)ψ(y)|0〉 − θ(y0 − x0)〈0|ψ(y)ψ(x)|0〉 . (24)

Problem 3.6 Hamiltonian, momentum and angular momentum of the Dirac field

Recall that the energy-momentum tensor of the Dirac field is (see Problem 1.5 c)

Tµν =
i

2
ψγµ

↔
∂νψ =

i

2
ψγµ∂νψ − i

2
∂ν ψγµψ . (25)

The angular momentum tensor is (see Problem 2.2 a)

Jλµν = xνT λµ − xµT λν +
1

4
ψ
{
γλ, σµν

}
ψ = xνT λµ − xµT λν + Sλµν . (26)

(a) Write the Hamiltonian and the momentum of the field in terms of the creation/annihilation
operators using Eq. (20).

(b) Write down the spin part of the conserved angular momentum
∫

d3xS0jk in terms of the
creation/annihilation operators. (Note: do not forget to normal order.) Focusing on the z
component, compute the action of

∫
d3xS012 on a zero-momentum state as0

†|0〉.

Problem 3.7 Fierz identities

(a) Demonstrate by explicit calculation that

(σµ)αβ(σµ)γδ = 2εαγεβδ . (27)

Using this show that for ui

(u1Rσ
µu2R)(u3Rσµu1R) = −(u1Rσ

µu4R)(u3Rσµu2R) , (28)

where for each i, uiR 2-spinor is the lower half of a Dirac-spinor ui.

(b) Normalize the 16 ΓA matrices in Problem 3.1 such that

Tr[ΓAΓB] = 4δAB . (29)

(c) The general Fierz identity reads as

(u1Γ
Au2)(u3Γ

Bu4) =
∑
C,D

CABCD (u1Γ
Cu4)(u3Γ

Du2) , (30)

where ui are Dirac-spinors. The coefficients are given by

CABCD =
1

16
Tr[ΓCΓAΓDΓB] . (31)

Work out the Fierz identities for the products (u1u2)(u3u4) and (u1γ
µu2)(u3γµu4). Note

that the Lorentz transformation properties of these expressions greatly reduce the number
of coefficients that must be calculated.
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