Problem set 3 for Quantum Field Theory course

2019.02.26.

Topics covered
e Representation of C, P, T transformations on complex scalar field
e Trace and contraction identities of v matrices, Fierz identities

Field bilinears

Locality, commutators, propagators

Recommended reading
Peskin-Schroeder: An introduction to quantum field theory

e Chapter 2

e Sections 3.4, 3.5
Problem 3.1 Dirac field bilinears

(a) Recall that
S(AMS(A)TH = (AT 4"

Show that W~y#W is a Lorentz vector. Show that
_ _ 1
Ty = Tyl = ST, 4]

transforms as a rank 2 antisymmetric tensor.

(b) Similarly,
TPy = @W[uyvfydqj ,

(3)

where [...]| denotes total antisymmetrization, transforms as a rank 3 antisymmetric tensor,

and so on. In 4 dimensions, the series terminates at 4 indeces (rank 4). Show that

W[M,YVVP,YU] = —jehPTnS W[M,yvyp] = —ieMPT AP

(c) Consider the 1 44 +6 + 4 + 1 = 16 matrices

L, ", A", AP, AP

and denote them as T® (a = 1,...,16), e.g. T' =1, T2 =40, I'6 = A9 etc.
i. Show that (I'*)% = £1.

ii. Prove that for all I'* except a = 1 there exists a I'* such that {I'*, "} = 0.

iii. Prove that for all a # 1 Tr(I'*) = 0.

(4)

()

(Hint: Using i. and ii. write Tr(I'*) = £Tr [T'*(I'*)?] where {I',I'*} = 0, and use the

cyclic property of the trace.

iv. Demonstrate that for all a # b there exists a I'® # 1 such that T°T® = I'°,



v. Finally, show that the set of I'* matrices is linearly independent, i.e. > A% = 0
implies that all A\, = 0.
(Hint: Write 0 = Tr [T 3, A,T%] and use iv., iii., and i.)

By this you have proved completeness of the set {I'*} in the space of 4 x 4 matrices.
Problem 3.2 “Gammaology”

(a) Contraction identities
i. Show that y#vy, = 41.
ii. Show that y#~"vy, = —2+".
iii. Show that y#y¥~+Pvy,, = 4nP” 1.
iv. Show that y#4"yPy7y, = =247y Y.
v. Show that 47”777y, = 2 (Y’ P77 + 7777777 .
vi. Show that Y o#~y = 0 and Yo"y yy = 2yPoH.
(b) Trace identities
i. Using that (7°)?2 = 1 and {7®,7#} = 0, prove that the trace of a product of an odd
number of v matrices is zero.
ii. Show that Tr (y#~") = 4nH”.
ili. Using the Clifford algebra compute {v*,7”~v?7°} and show that

Tr (Y'9"yPy7) = 4 (7 n"P — P07 + n"'n7) . (6)
iv. Using the notation ¢ = 7*a, we can write the previous equality as
Tr(gibgd) = 4[(ab)(cd) — (ac)(bd) + (ad)(be)] . (7)

Generalizing the previous identities prove that
TI“(Qfl ... Qfgn) = a1a2TI'(¢3 ... ﬂgn) — a1a3TI'(¢2¢4 ... Qfgn) —+ -+ alagnTr(¢i2 .. -¢£2n—1)

which allows for a recursive evaluation of such expressions.
(c) Show that
Tr(7°) = Tr(y°7*) = Tr(y°7"9") = Tr(y°4#4¥4°) = 0. (9)
Prove that
Tr (79797 7) = —4ie? . (10)
Problem 3.3 C, P,T transformation for a complex scalar field
The plane wave expansion of a complex scalar field is
; &k 1 ~ —ikx | 3T ikx
60) = [ (omy g e+ e )

(a) Charge conjugation transform the annihilation operators as
CapC~t=¢by,  ChpC™'=¢ap, (12)

which through Eq. (11) determines the transformation of the field: ¢€ (x,t) = Co(x,t)C1.

Compute [q?)(x, t), QASC(y, t)} and show that it vanishes for space-like separation (i.e. 6 and

qBC are local with respect to each other) if and only if € = &*. How can we write #C then?
(b) Under parity transformations,

PapP =na_p,  PbpP =iib_p. (13)

Similarly to the previous case, 77 = n* must hold to preserve locality. Compute P(]B(x, t)yP~1L.



(c) Under time reversal, .
TapT ' =Ca_p,  TbpyT ' =Cb_p. (14)
This is the same as for P, however, T is an anti-unitary operator. Show that this implies

that the phases C, f are not physical. (Hint: compute the eigenvalue of T on the state e'|1))
where T'|¢) = (|¢) and « € R is arbitrary.)

Compute T (x, )T 1.

Problem 3.4 Commutation relations and locality
Recall that for the Klein—Gordon field

[P(2), p(y)] = Ay (x —y) — Ay (y — o), (15)
where 3 .
p —ip(x—y
ave=v)= [ s e (16)

As Ay(x) = Ay(—=x) for space-like z, the Klein-Gordon commutator vanishes for space-like
separations.

(a) Consider the complex scalar field in Eq. (11). Show that assuming that the creation/annihilation
operators satisfy anticommutation relations,

{ap.al,} = 27)%(p —p'), {bp,b,} = 2m)%(p—P'), {ap.bl,}=0, (17
one gets for the field anticommutator
{o(x,), 01y, 0)} = Az —y) + Asly—2), (18)

so it does not vanish for space-like separations.

(b) Repeat the calculation for [¢(x,t), ¢! (y,t)] assuming commutation relations,
[, al,] = (27)%0(k = K'),  [bi, bl = (27)%6(k = K'), [, bl = 0. (19)

(¢) Let us consider now the Dirac field

3 . .
0w =3 [ s [ @9 + (07 0] (20)

and assume that the creation/annihilation operators satisfy commutation relations (19) with
an additional dsy. Making use of the spin sums (see Problem 2.4 ¢), show that

[wa(xa t)? &b(yva t)] = (Zﬁﬂﬁ + m)ab [A-F('CC - y) + A"r(y - .’L')] : (21)
(d) Finally, assuming anticommutation relations for the mode operators (17) prove that
{va(x, 1), ¥p(y, 1) } = (o + m)ap [As(z —y) = Ay (y — )] . (22)

Problem 3.5 Dirac propagator

(a) Starting from the mode expansion of the Dirac field (20), using (17) and the spin sums (see
Problem 2.4 ¢) derive Eq. (22) and write it as an integral over p.

(b) Write the two terms as residues at the simple poles p° = +FE, and arrive at the expression

/ d'p WPtm) ipa—y) (23)

2r)t P —m? |

How should the integration contour in p° be defined in order to obtain the retarded Green’s
function, 6(z° — ) {¢a (2), ¢b(y)}? What kind of contour gives the advanced Green’s func-

tion, 0(y° — 2°) {¥a(2), ¥u(y) }?



(c) Prove that the Feynman prescription corresponds to the time ordered expectation value,

d'p i(p+m)
SF($—y):/(27r)4p2_m2+i€€ ple=y)

= 0(z° — ) (01¥(2)()|0) — 0(y” — «°) (0 (y)(x)[0) . (24)

Problem 3.6 Hamiltonian, momentum and angular momentum of the Dirac field

Recall that the energy-momentum tensor of the Dirac field is (see Problem 1.5 ¢)
o Ly = e - 0T, 2
The angular momentum tensor is (see Problem 2.2 a)
N YT, e {70 b = e g 4 g (26)
4 ’ '

(a) Write the Hamiltonian and the momentum of the field in terms of the creation/annihilation
operators using Eq. (20).

(b) Write down the spin part of the conserved angular momentum [ d32S5%* in terms of the
creation/annihilation operators. (Note: do not forget to normal order.) Focusing on the z
component, compute the action of [ d325%12 on a zero-momentum state a0T|0>

Problem 3.7 Fierz identities
(a) Demonstrate by explicit calculation that
(0")ap(ou)ys = 2€ay€ss - (27)
Using this show that for u;
(w1 ro"ugr)(Uspouuir) = —(U1RO usR) (UsrROLUR) 5 (28)

where for each ¢, u;p 2-spinor is the lower half of a Dirac-spinor u;.
(b) Normalize the 16 I'4 matrices in Problem 3.1 such that

Tr[[ATP) = 4648 (29)
(c) The general Fierz identity reads as

(u1P uQ ugI‘BU4 ZC’A U1FCU4)(ESFDU2)» (30)

where u; are Dirac-spinors. The coeflicients are given by

cAB, = 1T}Tr[rcrf‘rDrB] . (31)
Work out the Fierz identities for the products (wiug)(usus) and (wiy*us2)(Usy,usa). Note
that the Lorentz transformation properties of these expressions greatly reduce the number
of coefficients that must be calculated.



