Quantum Computing Architectures

Budapest University of Technology and Economics 2018 Fall

Lecture 10: Grover algorith Teleportation

Coupling qubits Coupling transmons

Individual flux lines for controlling the qubit itself (not via Stark shift)

<u>Point I</u>

Far detuning – effectively decoupled states L and R qubit can be addressed separately Computational states 00 - GS 10 - L excited

- 01 R excited
- 11 both excited

 $\boldsymbol{\mu}\boldsymbol{s}$ lifetimes of individual qubits

Point IV

Cavity – qubit strong coupling

Point III

Qubit-qubit coupling via cavity (2nd order perturbation as seen previously)

<u>Point II</u>

Point of operation

<u>Point II</u>

Point of operation

Transmon: higher levels can also play a role 02 state also becomes important Should cross with 11 at point II, however avoided crossing is seen.

 f_{11} should be f_{10} + f_{01} , but lowered with $\zeta/2\pi$

c-Phase gate can be implemented with this

 $\zeta \sigma_z^1 \otimes \sigma_z^2 \quad \begin{array}{l} \mbox{Usually small interaction, however using} \\ \mbox{second levels can be enhanced, when} \\ \mbox{becomes close to resonant} \end{array}$

$$U = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & e^{i\phi_{01}} & 0 & 0 \\ 0 & 0 & e^{i\phi_{10}} & 0 \\ 0 & 0 & 0 & e^{i\phi_{11}} \end{pmatrix} \quad \theta_z^{ij} = \int \delta \omega_{ij}(t) dt$$
$$\int_0^{t_f} \zeta(t) dt = (2n+1)\pi \qquad \theta_z^{01} = \theta_z^{10} = 0$$

Phase gate

Adjust single qubit phase gates – adiabatic pulses are fine Measure ζ by spectroscopy or by Ramsey of L for 10 and 11

 $U = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$

Entanglement with C-Phase

F~0.87

Tomography:

Measure the elements of the density matrix, using 00 measurements and single qubit rotations

 $F(\rho, \psi) = \langle \psi | \rho | \psi \rangle$

Re part

Different C-phase gates – tuning the sign of Φ_{01} and Φ_{10} Imaginary part of density matrix is small (≤0.05)

Grover search algorithm

<u>Motivation: find a given name in an unordered list of N</u> Classical: ~N trial Quantum ~ sqrt(N)

Grover: N=2ⁿ, can be represented with basis states: e.g. N=4: 00,01,10,11 Oracle: O operator: recognizes the solution

 $O|x\rangle = (-1)^{f(x)}|x\rangle$

state is marked – still has to be read out For more than 4 states, iteration of these operations are needed

L. Dicarlo et al., Nature 460, 240 (2009)

Quantum teleportation

Idea:

- share entangled state between A-B

-A: Entangle it with the input state and measure in a Bell basis

- B: during the measurement the state will collapse
- A send as a *classical information* the measurement result
- -_B can rotate his state to recover the input state

Quantum teleportation Setup

3 qubits: Q1, Q2, Q3 2 Resonators which can be read out: R1, R3 Not directly coupled to the external world: R2 – couples Q2 and Q3 Read: resonotor ports Blue/green: Qubit manipulation ports

L. Steffen et al., Nature, 500, 319 (2013)

Transmon

Air bridges for resonator crossing

Qubit control: Via capacitive coupling (green electrode)

Flux biasing (blue) 3 small coils to tune E_J+ flux lines for fast tuning

Measurement setup

Feed forwards implemented with FPGA Measures the state of the qubit and triggers a fast rotation

Teleportation sequence

A. Walfraff, Lecture notes

Teleportation Post-selection

Only measure 0, 0 state
If it was 0,0, than the output state was the
teleported one
Otherwise: discard the experiment
Set the amplifier such, that it is sensitive to 0,0
(Can be also done for other states) – 91% fidelity
Analysis: state tomography:
Output should be input state

Process tomography

Charcterization of a process (not close system): $\rho \rightarrow \rho'$, acts on density matrices

$$\mathcal{E}(\rho) = \sum_{m,n} \tilde{E}_m \rho \tilde{E}_n^{\dagger} \chi_{m,n}$$

Here χ caracterizes the process (this is what we are looking for), size of 4ⁿ x 4ⁿ, *E* is an operator basis, which can be chosen as the Pauli matrices e.g.:

 $\tilde{E} = \{I, \sigma_X, -i\sigma_Y, \sigma_Z\}^{\otimes n}$

 $-i\sigma_{v}$

Process: has to be done on 4^n independent states (e.g. 0,1, +, -) Here: 1 qubit process – χ 4 x 4 matrix

Example: a) after measurement of 0,0 the output state is in the same state as the input, hence the denisty matrix is not transformed, $E_m = E_n = 1$

b) After measurement the ouput state is the input state times X – hence the only the X,X element is non-zero (rotated density matrix).

L. Steffen, PhD thesis

Teleportation Feed forward

Amplifier and measurement is set such, that the 4 states can be differentiated - 84% fidelity

After the measurement (with an FPGA), the measurement initiates hardwer triggers and rotates the the qubit of the reciever to get the initial state

Process tomography

(b) 1.0 1.0 iana1.0 1.0 0.5 0.5 0.5 0.5 0.0 0.0 0.0 0.0 ΖĪΧΫ Х Х х Х X ĩ 71 64.8% ĩ 69.9% ĩ 67.4% 66.7% (C) 1.0 11.0 1.0 1.0 0.5 0.5 0.5 0.5 0.0 0.0 0.0 0.0 ΙΧ_ΫΖΙΧΫ X_{ŸZI}XŸ Χ_{Υ̃}ΖΙ Х Ŷ 55.4% ΖI 52.8% 54.3% 54.2%

Simultanous deterministic measurements

Simultanous deterministic measurements + post-selection

Lower yield: relaxation during the feed-forward mostly

600

R1

Q3

 $\pi/2$

 $\pi/2_x$

(a)

population

95

235

395

Implementation		Success	Rate	Events	Distance	Avg. state	Det	\mathbf{FF}
		probability	[Hz]	[1/s]	[m]	fidelity		
Photons	first^1	$\approx 3\times 10^{-10}$	76×10^6	pprox 0.025	(≈ 1)	0.68	_	_
	$furthest^2$	$\approx 3\times 10^{-10}$	80×10^6	pprox 0.026	$143 \ 10^3$	0.863	_	_
	$furthest^2$	$\approx 3\times 10^{-10}$	80×10^6	pprox 0.026	$143 \ 10^3$	0.78	_	\checkmark
	$determ.^3$	$\approx 8\times 10^{-11}$	82×10^6	pprox 0.007	(≈ 1)	0.83	\checkmark	_
Ions	one trap^4	1	250	250	$5 \ 10^{-6}$	0.78	\checkmark	\checkmark
	two traps^5	$2.2 10^{-8}$	75000	$1.65 \ 10^{-3}$	1	0.9	_	_
Neutral atoms	6	10^{-3}	10000	10	(≈ 1)	0.789	_	_
Atomic ensembles	7	10^{-4}	71.4	0.007	150	0.95	_	_
Circuit QED		0.6	40 000	24000	0.006	0.695	\checkmark	\checkmark

DiVincenzo criteria for quantum computation:

Outlook

- **1.** Scalable system with well-characterized qubits, $n = 2^{N}$ states: eg. |101..01> (N qubits)
- 2. Initialization protocol: e.g. setting it to |000..00>
- **3.** Universal set of quantum gates: 1- and 2-qubit gates, e.g. Hadamard gates: $U_H|0> = (|0>)$
- + $|1\rangle/2$, and CNOT gates to create entangled states, $U_{CNOT}U_{H}|00\rangle = (|00\rangle + |11\rangle)/2$

4. Read-out :
$$|\psi\rangle$$
 = a $|0\rangle$ + be^{i Φ} $|1\rangle$ \rightarrow a, b

- 5. Long decoherence times, much longer than the gate operation time
- **6.** Transport qubits and to transfer entanglement between different coherent systems (quantum-quantum interfaces).
- 7. Create classical-quantum interfaces to convert stationary qubits to flying qubits

	2D Tmon	3D Tmon	Xmon	Fluxm	C-shunt	Flux	Gatemon
	[25]	[26]	[149]	[137]	[139, 140]	[13]	[153]
DV1, #q	5 [34, 205]	4 [141]	9 [32, 37]	1	2 [140]	4 [206]	2
DV2	Yes	Yes	Yes	Yes	Yes	Yes	Yes
DV3	Yes	Yes	Yes	Yes	Yes	Yes	Yes
t_{1q} (ns)	10-20	30-40	10-20	_	5-10	5-10	30
$n_{\text{op},1q}$	>10 ³	>10 ³	$>10^{3}$	_	$\sim 10^3$	$\sim 10^{3}$	$\sim \! 10^2$
F_{1q}	~ 0.999	>0.999	0.9995	_	_	_	>0.99
t_{2q} (ns)	10-40	~ 450	5-30	_	_	_	50
$n_{\text{op},2q}$	$\sim 10^3$	$\sim 10^2$	$\sim 10^3$	_	_	_	$\sim \! 10^2$
F_{2q}	>0.99	0.96-0.98	0.9945	_	_	_	0.91
DV4	Yes	Yes	Yes	Yes	Yes	Yes	Yes
DV5	Yes	Yes	Yes	Yes	Yes	Yes	Yes
T_1 (μ s)	${\sim}40$	100	50	1000	55	20 [135]	5.3
$T_{2}^{*}(\mu s)$	${\sim}40$	>140	20	>10	40	_	3.7
$T_2^{\text{echo}}(\mu s)$	$\sim \! 40$	>140	—	_	85	—	9.5

- The number of qubits (DV1, #q) refers to operational circuits with all qubits connected.

 $-t_{1q}$ and t_{2q} are gate times for 1q- and 2q-gates.

 $-n_{\text{op},1q}$ and $n_{\text{op},2q}$ are the number of 1q- and 2q-gate operations in the coherence time.

 $-F_{1q}$ and F_{2q} are average fidelities of 1q- and 2q-gates, measured e.g. via randomised benchmarking (section 7.1).

 $-T_1$ is the qubit energy relaxation time.

 $-T_2^*$ is the qubit coherence time measured in a Ramsey experiment.

 $-T_2^{\text{echo}}$ is the qubit coherence time measured in a spin-echo (refocusing) experiment.

- Table entries marked with a hyphen (-) indicate present lack of data.

- Note that average gate fidelities F1q and F2q do not necessarily correspond to thresholds for error correction [208].

- The t_{2q} gate time for the 3D Tmon refers to a resonator-induced phase gate.

R. Barends et al., Nature Comm. 6, 7654 (2015)

