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To first demonstrate enhanced transverse spin–electric coupling, 
we drive electric-dipole spin resonance. When the control micro-
wave is exactly on resonance, the spin-up probability Pup shows a 
so-called Rabi oscillation as a function of the microwave duration. 
Figure 1d shows 16.6 MHz oscillations, whose decay time is too long 
to measure within 40 π  rotations. The decaying time of 3.9 MHz Rabi 
oscillations is 113 ±  3 μ s, yielding the Rabi oscillation Q =  888 ±  25 
(Supplementary Fig.  2c). The rotation frequency increases propor-
tionally to the microwave amplitude up to approximately 20 MHz  
(Fig.  1e), above which faster oscillation damping is observed 
(Supplementary Fig. 2b). A nearly ideal electric-dipole spin resonance 

rotation in the linear regime is further verified by the chevron pattern 
(Fig. 1f); the pattern reflects the qubit spin rotation along a tilted axis 
in the Bloch sphere with deliberately detuned microwave excitation.

We next quantify a longitudinal spin–electric-coupling field in 
the device. This is performed by applying an additional bump pulse 
to gate R in the control stage, during which the qubit precession 
frequency is rapidly shifted (Fig.  2a). Figure  2b shows the result-
ing phase-shift-induced oscillations of Pup lasting 20 μ s with no 
indication of decay. The phase rotation speed grows linearly with 
the bump amplitude δ VR, yielding a frequency-shift lever-arm of  
93 kHz mV−1 (Fig. 2c). Note that the maximum shift (5.2 MHz) is 
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Fig. 1 | Quantum-dot device with extrinsic spin–electric-coupling fields. a, Device layout. Circles indicate approximate positions of a qubit and a charge-
sensing quantum dot and the white boxes with crosses represent Ohmic contacts. We typically apply an external magnetic field Bext of around 0.5 T so 
that the Larmor precession frequency is roughly 18 GHz (the optimal frequency for the set-up of our control circuit). C and R are high-frequency gates. 
b, Control pulse sequence. Waveforms are applied to gate electrode potentials VR and VC of gates R and C, respectively. Traces of typical radiofrequency 
charge-sensing signals VRF with (red) and without (blue) tunnelling events are shown. c, Micromagnet spin–electric-coupling fields. The magnet is 
designed to induce a spatially inhomogeneous stray field BMM at the quantum-dot position when magnetized along Bext. The transverse coupling is 
produced by the inhomogeneous component perpendicular to Bext and is proportional to the field slope btrans"= " ⃗ ⋅ ⊥∇ee B( ) MM, where ⃗ee  is the unit vector along 
an in-plane (yz) electric field, ∇  denotes the vector differential operator and the ⊥ indicates the component perpendicular to Bext. The longitudinal one is, 
in contrast, mediated by the gradient of the parallel component blong"= " ⃗ ⋅ ∇ee B( ) z

MM. We have assumed a quantum-dot confinement that is strong vertically 
(along x) and symmetric laterally. d, Rabi oscillation. Each data point represents the probability of detecting tunnelling events, which we interpret as Pup, 
based on 100 single-shot measurements. The solid curve is the best-fit cosine with the Rabi frequency of 16.6 MHz (no decay is assumed). The oscillation 
visibility is limited by the initialization/readout fidelity. e, Driving amplitude dependence of the Rabi frequency. The dashed line plots a linear fit with the 
data points whose Rabi frequencies are below 24 MHz. f, Chevron pattern. Pup is collected as a function of microwave burst time and detuning. The Rabi 
frequency is 3.9 MHz and Bext is 0.506 T.
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(Spin) Qubit Checklist

1. make a few qubits 
2. initialize 
3. control (1-qubit gate, 2-qubit gate) 
4. read out 
5. understand and reduce information loss

lecture 3

review papers: Hanson et al., Rev. Mod. Phys. (2007), Zwanenburg et al., Rev. Mod. Phys. (2013)
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Spin resonance (linear drive)

Quantum Computing Architectures - Lecture 02
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I. EXERCISES, CONTROL QUESTIONS

1. List three areas where the performance of quantum computing could exceed that of classical computing.

2. List the three Pauli matrices.

3. Construct a classical circuit that adds two single-bit numbers, using only the NAND gate.

4. Construct a quantum circuit that adds two single-bit numbers.

Ebben a fájlban az előadás menetrendjét követve gyűjtöm össze az egyes témakörökhöz kapcsolódó gyakorló felada-
tokat. A fájl hétről-hétre frissülni fog az adott hét feladataival. A zárthelyiken ehhez hasonló feladatok várhatók.

II. CLASSICAL BITS

• the value of a c-bit is 0 or 1

• operations, gates: a c-logical gate maps n c-bits to m c-bits; e.g., NOT, AND, OR, XOR.

• single-bit gate: n = m = 1

5.1. ábra. Bloch gömb. A felcsavarodás ⌦ fekvenciával történik. Ha � 6= 0, azaz nem
teljesen pontosan a rezonancián gerjesztjük a rendszert a felcsavarodás csak részleges
lesz.
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Ekkor nem fog teljesen
”
felforogni” a Bloch gömbön, mint az leolvasható az (5.6),

(5.7) egyenletletekről.
Ha c" = 1

2 , akkor jut el csak az egyenĺıtőig a Bloch gömbön. Ezt a � = ⌦ kitéŕıtéssel
éri el hiszen:
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Tehát, eme Lorenz görbe félértékszélessége a ⌦ lesz.
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Forgóhullámú képben vagyunk,
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ráülünk” a mágneses térrel együttforgó rendszerbe! )

H1 időfüggetlenné fog válni ebben az együttforgó rendszerben, erre hajtunk.
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for weak driving, the qubit dynamics 
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Demonstration of single-electron spin resonance

Koppens et al., Nature 2006

operations can in future experiments be combined with two-qubit
operations to realize universal quantum gates5, and with spin read-out
to demonstrate entanglement32,33.

Device and ESR detection concept
Two coupled semiconductor quantum dots are defined by surface
gates (Fig. 1a) on top of a two-dimensional electron gas. By applying
the appropriate negative voltages to the gates the dots can be tuned to
the few-electron regime8. The oscillating magnetic field that drives
the spin transitions is generated by applying a radio-frequency (RF)
signal to an on-chip coplanar stripline (CPS) which is terminated in a
narrow wire, positioned near the dots and separated from the surface
gates by a 100-nm-thick dielectric (Fig. 1b). The current through the
wire generates an oscillating magnetic field B ac at the dots, perpen-
dicular to the static external field B ext and slightly stronger in the left
dot than in the right dot (see Supplementary Fig. S1).
To detect the ESR-induced spin rotations, we use electrical trans-

port measurements through the two dots in series in the spin
blockade regime where current flow depends on the relative spin
state of the electrons in the two dots30,34. In brief, the device is
operated so that current is blocked owing to spin blockade, but this
blockade is lifted if the ESR condition (hf ac ¼ gmBB ext) is satisfied.

This spin blockade regime is accessed by tuning the gate voltages
such that one electron always resides in the right dot, and a second
electron can tunnel from the left reservoir to the left dot (Fig. 1c and
Supplementary Fig. S2). If this electron forms a double-dot singlet
state with the electron in the right dot (S ¼ "# 2 # "; normalization
omitted for brevity), it is possible for the left electron to move to the
right dot, and then to the right lead (leaving behind an electron in the
right dot with spin " or spin # ), since the right dot singlet state is
energetically accessible. If, however, the two electrons form a double-
dot triplet state, the left electron cannotmove to the right dot because
the right dot’s triplet state is much higher in energy. The electron also
cannot move back to the lead and therefore further current flow is
blocked as soon as any of the (double-dot) triplet states is formed.

Role of the nuclear spin bath for ESR detection
In fact, the situation is more complex, because each of the two spins
experiences a randomly oriented and fluctuating effective nuclear
field of,1–3mT (refs 35, 36). This nuclear field, BN, arises from the
hyperfine interaction of the electron spins with the Ga and As nuclear
spins in the host material, and is in general different in the two dots,
with a difference of DBN. At zero external field and for sufficiently
small double dot singlet–triplet splitting (see Supplementary Fig.
S2d), the inhomogeneous component of the nuclear field causes all
three triplet states (T0, Tþ and T2) to be admixed with the singlet S
(for example, T0 ¼ "#þ#" evolves into S ¼ " #2 # " due to DBN,z,
and Tþ¼ "" and T2¼ ## evolve into S owing to DBN,x). As a result,
spin blockade is lifted. For Bext ..

ffiffiffiffiffiffiffiffiffi
kB2

Nl
p

, however, the Tþ and T2

states split off in energy, which makes hyperfine-induced admixing
between T^and S ineffective (T0 and S remain admixed; see Fig. 2a).
Here spin blockade does occur, whenever a state with parallel spins
( " " or # #) becomes occupied.
ESR is then detected as follows (see Fig. 1c). An oscillating

magnetic field resonant with the Zeeman splitting can flip the spin
in the left or the right dot. Starting from " " or # #, the spin state then
changes to " # (or # "). If both spins are flipped, transitions occur
between " " and # # via the intermediate state "^#ffiffi

2
p "^#ffiffi

2
p . In both cases,

states with anti-parallel spins (S z ¼ 0) are created owing to ESR.
Expressed in the singlet-triplet measurement basis, " # or # " is a
superposition of the T0 and S state ( " # ¼ T0 þ S). For the singlet
component of this state, the left electron can transition immediately to
the right dot and from there to the right lead. The T0 component first
evolves into a singlet due to the nuclear field and then the left electron
can move to the right dot as well. Thus whenever the spins are anti-
parallel, one electron chargemoves through the dots. If such transitions
from parallel to anti-parallel spins are induced repeatedly at a suffi-
ciently high rate, a measurable current flows through the two dots.

ESR spectroscopy
The resonant ESR response is clearly observed in the transport
measurements as a function of magnetic field (Fig. 2a, b), where
satellite peaks develop at the resonant field B ext ¼ ^ hf ac /gmB when
the RF source is turned on (the zero-field peak arises from the
inhomogeneous nuclear field, which admixes all the triplets with the
singlet36,37). The key signature of ESR is the linear dependence of the
satellite peak location on the RF frequency, which is clearly seen in
the data of Fig. 2c, where the RF frequency is varied from 10 to
750MHz. From a linear fit through the top of the peaks we obtain a g-
factor with modulus 0.35 ^ 0.01, which lies within the range of
reported values for confined electron spins in GaAs quantum
dots11,38–40. We also verified explicitly that the resonance we observe
is magnetic in origin and not caused by the electric field that the CPS
generates as well; negligible response was observed when RF power is
applied to the right side gate, generatingmostly a RF electric field (see
Supplementary Fig. S3).
The amplitude of the peaks in Fig. 2b increases linearly with RF

power (,B ac
2 ) before saturation occurs, as predicted25 (Fig. 2b, inset).

The ESR satellite peak is expected to be broadened by either the

Figure 1 | Device and ESR detection scheme. a, Scanning electron
microscope (SEM) image of a device with the same gate pattern as used in
the experiment. The Ti/Au gates are deposited on top of a GaAs/AlGaAs
heterostructure containing a two-dimensional electron gas 90 nm below the
surface. White arrows indicate current flow through the two coupled dots
(dotted circles). The right side gate is fitted with a homemade bias-tee (rise
time 150 ps) to allow fast pulsing of the dot levels. b, SEM image of a device
similar to the one used in the experiment. The termination of the coplanar
stripline is visible on top of the gates. The gold stripline has a thickness of
400 nm and is designed to have a 50Q characteristic impedance,Z0, up to the
shorted termination. It is separated from the gate electrodes by a 100-nm-
thick dielectric (Calixerene)50. c, Diagrams illustrating the transport cycle in
the spin blockade regime. This cycle can be described via the occupations
(m,n) of the left and right dots as (0,1) ! (1,1) ! (0,2) ! (0,1). When an
electron enters the left dot (with rate GL) starting from (0,1), the two-
electron system that is formed can be either a singlet S(1,1) or a triplet
T(1,1). From S(1,1), further current flow is possible via a transition to S(0,2)
(with rate Gm). When the system is in T(1,1), current is blocked unless this
state is coupled to S(1,1). For T0, this coupling is provided by the
inhomogeneous nuclear fieldDBN. For Tþor T2, ESR causes a transition to
" # or # ", which contains a S(1,1) component and a T0 component (which is
in turn coupled to S(1,1) by the nuclear field).
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DC transport through the DQD (Pauli blockade) is used for readout

double 
quantum dot 
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DQD covered 
by a wire to 

make ac B-field



Electron spin dynamics is revealed by increased current

excitation amplitude B ac or incoherent processes, like cotunnelling,
inelastic transitions (to the S(0,2) state) or the statistical fluctuations
in the nuclear field, whichever of the four has the largest contri-
bution. No dependence of the width on RF power was found within
the experimentally accessible range (B ac , 2mT). Furthermore, we
suspect that the broadening is not dominated by cotunnelling or
inelastic transitions because the corresponding rates are smaller than
the observed broadening (see Supplementary Figs S4b and S2d). The
observed ESR peaks are steeper on the flanks and broader than
expected from the nuclear field fluctuations. In many cases, the peak
width and position are even hysteretic in the sweep direction,
suggesting that the resonance condition is shifted during the field
sweep.We speculate that dynamic nuclear polarization due to feedback
of the electron transport on the nuclear spins plays a central part here37.

Coherent Rabi oscillations
Following the observation of magnetically induced spin flips, we next
test whether we can also coherently rotate the spin by applying RF
bursts with variable length. In contrast to the continuous-wave
experiment, where detection and spin rotation occur at the same
time, we pulse the system into Coulomb blockade during the spin
manipulation. This eliminates decoherence induced by tunnel events
from the left to the right dot during the spin rotations. The
experiment consists of three stages (Fig. 3): initialization through
spin blockade in a statistical mixture of " " and # #, manipulation by
a RF burst in Coulomb blockade, and detection by pulsing back for
projection (onto S(0,2)) and tunnelling to the lead. When one of the
electrons is rotated over (2n þ 1)p (with integer n), the two-electron
state evolves to " # (or # "), giving a maximum contribution to the
current (as before, when the two spins are anti-parallel, one electron
charge moves through the dots). However, no electron flow is
expected after rotations of 2pn, where one would find two parallel
spins in the two dots after the RF burst.
We observe that the dot current oscillates periodically with the RF

burst length (Fig. 4). This oscillation indicates that we performed
driven, coherent electron spin rotations, or Rabi oscillations. A key
characteristic of the Rabi process is a linear dependence of the Rabi
frequency on the RF burst amplitude, B ac (fRabi ¼ gmBB1/h with
B1 ¼ B ac/2 due to the rotating wave approximation). We verify this
by extracting the Rabi frequency from a fit of the current oscillations
of Fig. 4b with a sinusoid, which gives the expected linear behaviour

Figure 2 | ESR spin state spectroscopy. a, Energy diagram showing the
relevant eigenstates of twoelectron spins inadouble-dot, subject to an external
magnetic field and nuclear fields. Because the nuclear field is generally
inhomogeneous, the Zeeman energy is different in the two dots and results
therefore in a different energy for " # and # ". ESR turns the spin states " " and
# # into " # or # ", depending on the nuclear fields in the two dots. The yellow
bandsdenotetherangesinBextwherespinblockadeis lifted(by thenuclearfield
or ESR) and current will flow through the dots. b, Current measured through
the double-dot in the spinblockade regime, with (red trace, offset by 100 fA for
clarity)andwithout(bluetrace)aRFmagneticfield.Satellitepeaksappearasthe
external magnetic field is swept through the spin resonance condition. Each
measurement point is averaged for one second, and is therefore expected to
representanaverageresponseovermanynuclearconfigurations.TheRFpower
Papplied to theCPS isestimated fromthepowerapplied tothecoax lineandthe
attenuation in the lines. Inset, satellite peak height versus RF power
(f ¼ 408MHz, Bext ¼ 70mT, taken at slightly different gate voltage settings).
The current isnormalized to the current atB ext ¼ 0 ( ¼ I0).Unwantedelectric
fieldeffects are reducedbyapplying a compensating signal to the right side gate
with opposite phase as the signal on the stripline (see Supplementary Fig. S4).
This allowed us to obtain this curve up to relatively highRFpowers. c, Current
through the dots when sweeping the RF frequency and stepping themagnetic
field. The ESR satellite peak is already visible at a smallmagnetic field of 20mT
and RF excitation of 100MHz, and its location evolves linearly in field when
increasing the frequency. Forhigher frequencies the satellite peak is broadened
asymmetrically for certain sweeps, visible as vertical stripes.This broadening is
time dependent, hysteretic in sweep direction, and changes with the dot level
alignment. The horizontal line at 180MHz is due to a resonance in the
transmission line inside the dilution refrigerator.

Figure 3 | The control cycle for coherent manipulation of the electron
spin. During the ‘initialization’ stage the double-dot is tuned in the spin
blockade regime. Electrons will move from left to right until the system is
blocked with two parallel spins (either " " or # #; in the figure only the " "
case is shown). For the ‘manipulation’ stage, the right dot potential is pulsed
up so none of the levels in the right dot are accessible (Coulomb blockade),
and a RF burst with a variable duration is applied. ‘Read-out’ of the spin
state at the end of the manipulation stage is done by pulsing the right dot
potential back; electron tunnelling to the right lead will then take place only
if the spins were anti-parallel. The duration of the read-out and initialization
stages combined was 1 ms, long enough (1ms . .1/GL, 1/GM, 1/GR) to have
parallel spins in the dots at the end of the initialization stage with near
certainty (this is checked by signal saturation when the pulse duration is
prolonged). The duration of the manipulation stage is also held fixed at 1ms
to keep the number of pulses per second constant. The RF burst is applied
just before the read-out stage starts.
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operations can in future experiments be combined with two-qubit
operations to realize universal quantum gates5, and with spin read-out
to demonstrate entanglement32,33.

Device and ESR detection concept
Two coupled semiconductor quantum dots are defined by surface
gates (Fig. 1a) on top of a two-dimensional electron gas. By applying
the appropriate negative voltages to the gates the dots can be tuned to
the few-electron regime8. The oscillating magnetic field that drives
the spin transitions is generated by applying a radio-frequency (RF)
signal to an on-chip coplanar stripline (CPS) which is terminated in a
narrow wire, positioned near the dots and separated from the surface
gates by a 100-nm-thick dielectric (Fig. 1b). The current through the
wire generates an oscillating magnetic field B ac at the dots, perpen-
dicular to the static external field B ext and slightly stronger in the left
dot than in the right dot (see Supplementary Fig. S1).
To detect the ESR-induced spin rotations, we use electrical trans-

port measurements through the two dots in series in the spin
blockade regime where current flow depends on the relative spin
state of the electrons in the two dots30,34. In brief, the device is
operated so that current is blocked owing to spin blockade, but this
blockade is lifted if the ESR condition (hf ac ¼ gmBB ext) is satisfied.

This spin blockade regime is accessed by tuning the gate voltages
such that one electron always resides in the right dot, and a second
electron can tunnel from the left reservoir to the left dot (Fig. 1c and
Supplementary Fig. S2). If this electron forms a double-dot singlet
state with the electron in the right dot (S ¼ "# 2 # "; normalization
omitted for brevity), it is possible for the left electron to move to the
right dot, and then to the right lead (leaving behind an electron in the
right dot with spin " or spin # ), since the right dot singlet state is
energetically accessible. If, however, the two electrons form a double-
dot triplet state, the left electron cannotmove to the right dot because
the right dot’s triplet state is much higher in energy. The electron also
cannot move back to the lead and therefore further current flow is
blocked as soon as any of the (double-dot) triplet states is formed.

Role of the nuclear spin bath for ESR detection
In fact, the situation is more complex, because each of the two spins
experiences a randomly oriented and fluctuating effective nuclear
field of,1–3mT (refs 35, 36). This nuclear field, BN, arises from the
hyperfine interaction of the electron spins with the Ga and As nuclear
spins in the host material, and is in general different in the two dots,
with a difference of DBN. At zero external field and for sufficiently
small double dot singlet–triplet splitting (see Supplementary Fig.
S2d), the inhomogeneous component of the nuclear field causes all
three triplet states (T0, Tþ and T2) to be admixed with the singlet S
(for example, T0 ¼ "#þ#" evolves into S ¼ " #2 # " due to DBN,z,
and Tþ¼ "" and T2¼ ## evolve into S owing to DBN,x). As a result,
spin blockade is lifted. For Bext ..

ffiffiffiffiffiffiffiffiffi
kB2

Nl
p

, however, the Tþ and T2

states split off in energy, which makes hyperfine-induced admixing
between T^and S ineffective (T0 and S remain admixed; see Fig. 2a).
Here spin blockade does occur, whenever a state with parallel spins
( " " or # #) becomes occupied.
ESR is then detected as follows (see Fig. 1c). An oscillating

magnetic field resonant with the Zeeman splitting can flip the spin
in the left or the right dot. Starting from " " or # #, the spin state then
changes to " # (or # "). If both spins are flipped, transitions occur
between " " and # # via the intermediate state "^#ffiffi

2
p "^#ffiffi

2
p . In both cases,

states with anti-parallel spins (S z ¼ 0) are created owing to ESR.
Expressed in the singlet-triplet measurement basis, " # or # " is a
superposition of the T0 and S state ( " # ¼ T0 þ S). For the singlet
component of this state, the left electron can transition immediately to
the right dot and from there to the right lead. The T0 component first
evolves into a singlet due to the nuclear field and then the left electron
can move to the right dot as well. Thus whenever the spins are anti-
parallel, one electron chargemoves through the dots. If such transitions
from parallel to anti-parallel spins are induced repeatedly at a suffi-
ciently high rate, a measurable current flows through the two dots.

ESR spectroscopy
The resonant ESR response is clearly observed in the transport
measurements as a function of magnetic field (Fig. 2a, b), where
satellite peaks develop at the resonant field B ext ¼ ^ hf ac /gmB when
the RF source is turned on (the zero-field peak arises from the
inhomogeneous nuclear field, which admixes all the triplets with the
singlet36,37). The key signature of ESR is the linear dependence of the
satellite peak location on the RF frequency, which is clearly seen in
the data of Fig. 2c, where the RF frequency is varied from 10 to
750MHz. From a linear fit through the top of the peaks we obtain a g-
factor with modulus 0.35 ^ 0.01, which lies within the range of
reported values for confined electron spins in GaAs quantum
dots11,38–40. We also verified explicitly that the resonance we observe
is magnetic in origin and not caused by the electric field that the CPS
generates as well; negligible response was observed when RF power is
applied to the right side gate, generatingmostly a RF electric field (see
Supplementary Fig. S3).
The amplitude of the peaks in Fig. 2b increases linearly with RF

power (,B ac
2 ) before saturation occurs, as predicted25 (Fig. 2b, inset).

The ESR satellite peak is expected to be broadened by either the

Figure 1 | Device and ESR detection scheme. a, Scanning electron
microscope (SEM) image of a device with the same gate pattern as used in
the experiment. The Ti/Au gates are deposited on top of a GaAs/AlGaAs
heterostructure containing a two-dimensional electron gas 90 nm below the
surface. White arrows indicate current flow through the two coupled dots
(dotted circles). The right side gate is fitted with a homemade bias-tee (rise
time 150 ps) to allow fast pulsing of the dot levels. b, SEM image of a device
similar to the one used in the experiment. The termination of the coplanar
stripline is visible on top of the gates. The gold stripline has a thickness of
400 nm and is designed to have a 50Q characteristic impedance,Z0, up to the
shorted termination. It is separated from the gate electrodes by a 100-nm-
thick dielectric (Calixerene)50. c, Diagrams illustrating the transport cycle in
the spin blockade regime. This cycle can be described via the occupations
(m,n) of the left and right dots as (0,1) ! (1,1) ! (0,2) ! (0,1). When an
electron enters the left dot (with rate GL) starting from (0,1), the two-
electron system that is formed can be either a singlet S(1,1) or a triplet
T(1,1). From S(1,1), further current flow is possible via a transition to S(0,2)
(with rate Gm). When the system is in T(1,1), current is blocked unless this
state is coupled to S(1,1). For T0, this coupling is provided by the
inhomogeneous nuclear fieldDBN. For Tþor T2, ESR causes a transition to
" # or # ", which contains a S(1,1) component and a T0 component (which is
in turn coupled to S(1,1) by the nuclear field).
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excitation amplitude B ac or incoherent processes, like cotunnelling,
inelastic transitions (to the S(0,2) state) or the statistical fluctuations
in the nuclear field, whichever of the four has the largest contri-
bution. No dependence of the width on RF power was found within
the experimentally accessible range (B ac , 2mT). Furthermore, we
suspect that the broadening is not dominated by cotunnelling or
inelastic transitions because the corresponding rates are smaller than
the observed broadening (see Supplementary Figs S4b and S2d). The
observed ESR peaks are steeper on the flanks and broader than
expected from the nuclear field fluctuations. In many cases, the peak
width and position are even hysteretic in the sweep direction,
suggesting that the resonance condition is shifted during the field
sweep.We speculate that dynamic nuclear polarization due to feedback
of the electron transport on the nuclear spins plays a central part here37.

Coherent Rabi oscillations
Following the observation of magnetically induced spin flips, we next
test whether we can also coherently rotate the spin by applying RF
bursts with variable length. In contrast to the continuous-wave
experiment, where detection and spin rotation occur at the same
time, we pulse the system into Coulomb blockade during the spin
manipulation. This eliminates decoherence induced by tunnel events
from the left to the right dot during the spin rotations. The
experiment consists of three stages (Fig. 3): initialization through
spin blockade in a statistical mixture of " " and # #, manipulation by
a RF burst in Coulomb blockade, and detection by pulsing back for
projection (onto S(0,2)) and tunnelling to the lead. When one of the
electrons is rotated over (2n þ 1)p (with integer n), the two-electron
state evolves to " # (or # "), giving a maximum contribution to the
current (as before, when the two spins are anti-parallel, one electron
charge moves through the dots). However, no electron flow is
expected after rotations of 2pn, where one would find two parallel
spins in the two dots after the RF burst.
We observe that the dot current oscillates periodically with the RF

burst length (Fig. 4). This oscillation indicates that we performed
driven, coherent electron spin rotations, or Rabi oscillations. A key
characteristic of the Rabi process is a linear dependence of the Rabi
frequency on the RF burst amplitude, B ac (fRabi ¼ gmBB1/h with
B1 ¼ B ac/2 due to the rotating wave approximation). We verify this
by extracting the Rabi frequency from a fit of the current oscillations
of Fig. 4b with a sinusoid, which gives the expected linear behaviour

Figure 2 | ESR spin state spectroscopy. a, Energy diagram showing the
relevant eigenstates of twoelectron spins inadouble-dot, subject to an external
magnetic field and nuclear fields. Because the nuclear field is generally
inhomogeneous, the Zeeman energy is different in the two dots and results
therefore in a different energy for " # and # ". ESR turns the spin states " " and
# # into " # or # ", depending on the nuclear fields in the two dots. The yellow
bandsdenotetherangesinBextwherespinblockadeis lifted(by thenuclearfield
or ESR) and current will flow through the dots. b, Current measured through
the double-dot in the spinblockade regime, with (red trace, offset by 100 fA for
clarity)andwithout(bluetrace)aRFmagneticfield.Satellitepeaksappearasthe
external magnetic field is swept through the spin resonance condition. Each
measurement point is averaged for one second, and is therefore expected to
representanaverageresponseovermanynuclearconfigurations.TheRFpower
Papplied to theCPS isestimated fromthepowerapplied tothecoax lineandthe
attenuation in the lines. Inset, satellite peak height versus RF power
(f ¼ 408MHz, Bext ¼ 70mT, taken at slightly different gate voltage settings).
The current isnormalized to the current atB ext ¼ 0 ( ¼ I0).Unwantedelectric
fieldeffects are reducedbyapplying a compensating signal to the right side gate
with opposite phase as the signal on the stripline (see Supplementary Fig. S4).
This allowed us to obtain this curve up to relatively highRFpowers. c, Current
through the dots when sweeping the RF frequency and stepping themagnetic
field. The ESR satellite peak is already visible at a smallmagnetic field of 20mT
and RF excitation of 100MHz, and its location evolves linearly in field when
increasing the frequency. Forhigher frequencies the satellite peak is broadened
asymmetrically for certain sweeps, visible as vertical stripes.This broadening is
time dependent, hysteretic in sweep direction, and changes with the dot level
alignment. The horizontal line at 180MHz is due to a resonance in the
transmission line inside the dilution refrigerator.

Figure 3 | The control cycle for coherent manipulation of the electron
spin. During the ‘initialization’ stage the double-dot is tuned in the spin
blockade regime. Electrons will move from left to right until the system is
blocked with two parallel spins (either " " or # #; in the figure only the " "
case is shown). For the ‘manipulation’ stage, the right dot potential is pulsed
up so none of the levels in the right dot are accessible (Coulomb blockade),
and a RF burst with a variable duration is applied. ‘Read-out’ of the spin
state at the end of the manipulation stage is done by pulsing the right dot
potential back; electron tunnelling to the right lead will then take place only
if the spins were anti-parallel. The duration of the read-out and initialization
stages combined was 1 ms, long enough (1ms . .1/GL, 1/GM, 1/GR) to have
parallel spins in the dots at the end of the initialization stage with near
certainty (this is checked by signal saturation when the pulse duration is
prolonged). The duration of the manipulation stage is also held fixed at 1ms
to keep the number of pulses per second constant. The RF burst is applied
just before the read-out stage starts.
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(Fig. 4b, inset). From the fit we obtain B ac ¼ 0.59mT for a stripline
current ICPS of ,1mA, which agrees well with predictions from
numerical finite element simulations (see Supplementary Fig. S1).
The maximum B1 we could reach in the experiment before electric
field effects hindered the measurement was 1.9mT, corresponding to
p/2 rotations of only 27 ns (that is, a Rabi period of 108 ns, see Fig.
4b). If the accompanying electric fields from the stripline excitation
could be reduced in future experiments (for example, by improving
the impedance matching from coax to CPS), considerably faster Rabi
flopping should be attainable.
The oscillations in Fig. 4b remain visible throughout the entire

measurement range, up to 1 ms. This is striking, because the Rabi
period of,100 ns is much longer than the time-averaged coherence
time T2* of 10–20 ns (refs 14, 19, 35, 36) caused by the nuclear field
fluctuations. The slow damping of the oscillations is only possible
because the nuclear field fluctuates very slowly compared to the
timescale of spin rotations and because other mechanisms, such as

the spin-orbit interaction, disturb the electron spin coherence only
on even longer timescales13,41,42. We also note that the decay is not
exponential (grey line in Fig. 4a), which is related to the fact that the
nuclear bath is non-markovian (it has a long memory)43.

Theoretical model
To understand better the amplitudes and decay times of the oscil-
lations, we model the time evolution of the spins throughout the
burst duration. The model uses a hamiltonian that includes the
Zeeman splitting for the two spins and the RF field, which we take to
be of equal amplitude in both dots (SL and SR refer to the electron
spins in the left and right dot respectively):

H ¼gmBðBext þBL;NÞSL þ gmBðBext þBR;NÞSR

þ gmB cosðqtÞBacðSL þ SRÞ
where BL,N and BR,N correspond to a single frozen configuration of
the nuclear field in the left and right dot. This is justified because the
electron spin dynamics is much faster than the dynamics of the
nuclear system. From the resulting time evolution operator and
assuming that the initial state is a statistical mixture of " " and # #,
we can numerically obtain the probability for having anti-parallel
spins after the RF burst. This is also the probability that the left
electron tunnels to the right dot during the read-out stage.
In the current measurements of Fig. 4a, each data point is averaged

over 15 s, which presumably represents an average over many nuclear
configurations. We include this averaging over different nuclear
configurations in the model by taking 2,000 samples from a gaussian
distribution of nuclear fields (with standard deviation j¼

ffiffiffiffiffiffiffiffiffi
kB2

Nl
p

),
and computing the probability that an electron tunnels out after
the RF burst. When the electron tunnels, one or more additional
electrons, say m, may subsequently tunnel through before " " or # #
is formed and the current is blocked again. Takingm and j as fitting
parameters, we find good agreement with the data for m¼1.5 and
j ¼ 2.2 mT (solid black lines in Fig. 4a). This value for j is
comparable to that found in refs 35 and 36. The value found for m
is different from what we would expect from a simple picture where
all four spin states are formed with equal probability during the
initialization stage, which would give m ¼ 1. We do not understand
this discrepancy, but it could be due to different tunnel rates for "
and # or more subtle details in the transport cycle that we have
neglected in the model.

Time evolution of the spin states during RF bursts
We now discuss in more detail the time evolution of the two spins
during a RF burst. The resonance condition in each dot depends on
the effective nuclear field, which needs to be added vectorially to B ext.
Through their continuous reorientation, the nuclear spins will bring
the respective electron spins in the two dots on and off resonance as
time progresses.
When a RF burst is applied to two spins initially in " ", and is on-

resonance with the right spin only, the spins evolve as:

j " lj " l ! j " l j " lþ j # lffiffiffi
2

p ! j " lj # l !

j " l j " l2 j # lffiffiffi
2

p ! j " lj " l

When the RF burst is on-resonance with both spins, the time
evolution is:

j " lj " l ! j " lþ j # lffiffiffi
2
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Figure 4 | Coherent spin rotations. a, The dot current—reflecting the spin
state at the end of the RF burst—oscillates as a function of RF burst length
(curves offset by 100 fA for clarity). The frequency of Bac is set at the spin
resonance frequency of 200MHz (B ext ¼ 41mT). The period of the
oscillation increases and is more strongly damped for decreasing RF power.
The RF power P applied to the CPS is estimated from the power applied to
the coax line and the attenuation in the lines and RF switch. From P, the
stripline current is calculated via the relation P¼ 1

2
ICPS
2

" #2
Z0 assuming

perfect reflection of the RF wave at the short. Each measurement point is
averaged over 15 s.We correct for a current offset which ismeasuredwith the
RF frequency off-resonance (280MHz). The solid lines are obtained from
numerical computation of the time evolution, as discussed in the text. The
grey line corresponds to an exponentially damped envelope. b, The
oscillating dot current (represented in colourscale) is displayed over a wide
range of RF powers (the sweep axis) and burst durations. The dependence of
the Rabi frequency fRabi on RF power is shown in the inset. fRabi is extracted
from a sinusoidal fit with the current oscillations from 10 to 500 ns for RF
powers ranging from 212.5 dBm up to 26 dBm.
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(Fig. 4b, inset). From the fit we obtain B ac ¼ 0.59mT for a stripline
current ICPS of ,1mA, which agrees well with predictions from
numerical finite element simulations (see Supplementary Fig. S1).
The maximum B1 we could reach in the experiment before electric
field effects hindered the measurement was 1.9mT, corresponding to
p/2 rotations of only 27 ns (that is, a Rabi period of 108 ns, see Fig.
4b). If the accompanying electric fields from the stripline excitation
could be reduced in future experiments (for example, by improving
the impedance matching from coax to CPS), considerably faster Rabi
flopping should be attainable.
The oscillations in Fig. 4b remain visible throughout the entire

measurement range, up to 1 ms. This is striking, because the Rabi
period of,100 ns is much longer than the time-averaged coherence
time T2* of 10–20 ns (refs 14, 19, 35, 36) caused by the nuclear field
fluctuations. The slow damping of the oscillations is only possible
because the nuclear field fluctuates very slowly compared to the
timescale of spin rotations and because other mechanisms, such as

the spin-orbit interaction, disturb the electron spin coherence only
on even longer timescales13,41,42. We also note that the decay is not
exponential (grey line in Fig. 4a), which is related to the fact that the
nuclear bath is non-markovian (it has a long memory)43.

Theoretical model
To understand better the amplitudes and decay times of the oscil-
lations, we model the time evolution of the spins throughout the
burst duration. The model uses a hamiltonian that includes the
Zeeman splitting for the two spins and the RF field, which we take to
be of equal amplitude in both dots (SL and SR refer to the electron
spins in the left and right dot respectively):

H ¼gmBðBext þBL;NÞSL þ gmBðBext þBR;NÞSR

þ gmB cosðqtÞBacðSL þ SRÞ
where BL,N and BR,N correspond to a single frozen configuration of
the nuclear field in the left and right dot. This is justified because the
electron spin dynamics is much faster than the dynamics of the
nuclear system. From the resulting time evolution operator and
assuming that the initial state is a statistical mixture of " " and # #,
we can numerically obtain the probability for having anti-parallel
spins after the RF burst. This is also the probability that the left
electron tunnels to the right dot during the read-out stage.
In the current measurements of Fig. 4a, each data point is averaged

over 15 s, which presumably represents an average over many nuclear
configurations. We include this averaging over different nuclear
configurations in the model by taking 2,000 samples from a gaussian
distribution of nuclear fields (with standard deviation j¼

ffiffiffiffiffiffiffiffiffi
kB2

Nl
p

),
and computing the probability that an electron tunnels out after
the RF burst. When the electron tunnels, one or more additional
electrons, say m, may subsequently tunnel through before " " or # #
is formed and the current is blocked again. Takingm and j as fitting
parameters, we find good agreement with the data for m¼1.5 and
j ¼ 2.2 mT (solid black lines in Fig. 4a). This value for j is
comparable to that found in refs 35 and 36. The value found for m
is different from what we would expect from a simple picture where
all four spin states are formed with equal probability during the
initialization stage, which would give m ¼ 1. We do not understand
this discrepancy, but it could be due to different tunnel rates for "
and # or more subtle details in the transport cycle that we have
neglected in the model.

Time evolution of the spin states during RF bursts
We now discuss in more detail the time evolution of the two spins
during a RF burst. The resonance condition in each dot depends on
the effective nuclear field, which needs to be added vectorially to B ext.
Through their continuous reorientation, the nuclear spins will bring
the respective electron spins in the two dots on and off resonance as
time progresses.
When a RF burst is applied to two spins initially in " ", and is on-

resonance with the right spin only, the spins evolve as:
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When the RF burst is on-resonance with both spins, the time
evolution is:
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Figure 4 | Coherent spin rotations. a, The dot current—reflecting the spin
state at the end of the RF burst—oscillates as a function of RF burst length
(curves offset by 100 fA for clarity). The frequency of Bac is set at the spin
resonance frequency of 200MHz (B ext ¼ 41mT). The period of the
oscillation increases and is more strongly damped for decreasing RF power.
The RF power P applied to the CPS is estimated from the power applied to
the coax line and the attenuation in the lines and RF switch. From P, the
stripline current is calculated via the relation P¼ 1

2
ICPS
2

" #2
Z0 assuming

perfect reflection of the RF wave at the short. Each measurement point is
averaged over 15 s.We correct for a current offset which ismeasuredwith the
RF frequency off-resonance (280MHz). The solid lines are obtained from
numerical computation of the time evolution, as discussed in the text. The
grey line corresponds to an exponentially damped envelope. b, The
oscillating dot current (represented in colourscale) is displayed over a wide
range of RF powers (the sweep axis) and burst durations. The dependence of
the Rabi frequency fRabi on RF power is shown in the inset. fRabi is extracted
from a sinusoidal fit with the current oscillations from 10 to 500 ns for RF
powers ranging from 212.5 dBm up to 26 dBm.
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(Fig. 4b, inset). From the fit we obtain B ac ¼ 0.59mT for a stripline
current ICPS of ,1mA, which agrees well with predictions from
numerical finite element simulations (see Supplementary Fig. S1).
The maximum B1 we could reach in the experiment before electric
field effects hindered the measurement was 1.9mT, corresponding to
p/2 rotations of only 27 ns (that is, a Rabi period of 108 ns, see Fig.
4b). If the accompanying electric fields from the stripline excitation
could be reduced in future experiments (for example, by improving
the impedance matching from coax to CPS), considerably faster Rabi
flopping should be attainable.
The oscillations in Fig. 4b remain visible throughout the entire

measurement range, up to 1 ms. This is striking, because the Rabi
period of,100 ns is much longer than the time-averaged coherence
time T2* of 10–20 ns (refs 14, 19, 35, 36) caused by the nuclear field
fluctuations. The slow damping of the oscillations is only possible
because the nuclear field fluctuates very slowly compared to the
timescale of spin rotations and because other mechanisms, such as

the spin-orbit interaction, disturb the electron spin coherence only
on even longer timescales13,41,42. We also note that the decay is not
exponential (grey line in Fig. 4a), which is related to the fact that the
nuclear bath is non-markovian (it has a long memory)43.

Theoretical model
To understand better the amplitudes and decay times of the oscil-
lations, we model the time evolution of the spins throughout the
burst duration. The model uses a hamiltonian that includes the
Zeeman splitting for the two spins and the RF field, which we take to
be of equal amplitude in both dots (SL and SR refer to the electron
spins in the left and right dot respectively):

H ¼gmBðBext þBL;NÞSL þ gmBðBext þBR;NÞSR

þ gmB cosðqtÞBacðSL þ SRÞ
where BL,N and BR,N correspond to a single frozen configuration of
the nuclear field in the left and right dot. This is justified because the
electron spin dynamics is much faster than the dynamics of the
nuclear system. From the resulting time evolution operator and
assuming that the initial state is a statistical mixture of " " and # #,
we can numerically obtain the probability for having anti-parallel
spins after the RF burst. This is also the probability that the left
electron tunnels to the right dot during the read-out stage.
In the current measurements of Fig. 4a, each data point is averaged

over 15 s, which presumably represents an average over many nuclear
configurations. We include this averaging over different nuclear
configurations in the model by taking 2,000 samples from a gaussian
distribution of nuclear fields (with standard deviation j¼

ffiffiffiffiffiffiffiffiffi
kB2

Nl
p

),
and computing the probability that an electron tunnels out after
the RF burst. When the electron tunnels, one or more additional
electrons, say m, may subsequently tunnel through before " " or # #
is formed and the current is blocked again. Takingm and j as fitting
parameters, we find good agreement with the data for m¼1.5 and
j ¼ 2.2 mT (solid black lines in Fig. 4a). This value for j is
comparable to that found in refs 35 and 36. The value found for m
is different from what we would expect from a simple picture where
all four spin states are formed with equal probability during the
initialization stage, which would give m ¼ 1. We do not understand
this discrepancy, but it could be due to different tunnel rates for "
and # or more subtle details in the transport cycle that we have
neglected in the model.

Time evolution of the spin states during RF bursts
We now discuss in more detail the time evolution of the two spins
during a RF burst. The resonance condition in each dot depends on
the effective nuclear field, which needs to be added vectorially to B ext.
Through their continuous reorientation, the nuclear spins will bring
the respective electron spins in the two dots on and off resonance as
time progresses.
When a RF burst is applied to two spins initially in " ", and is on-

resonance with the right spin only, the spins evolve as:
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When the RF burst is on-resonance with both spins, the time
evolution is:
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Figure 4 | Coherent spin rotations. a, The dot current—reflecting the spin
state at the end of the RF burst—oscillates as a function of RF burst length
(curves offset by 100 fA for clarity). The frequency of Bac is set at the spin
resonance frequency of 200MHz (B ext ¼ 41mT). The period of the
oscillation increases and is more strongly damped for decreasing RF power.
The RF power P applied to the CPS is estimated from the power applied to
the coax line and the attenuation in the lines and RF switch. From P, the
stripline current is calculated via the relation P¼ 1

2
ICPS
2

" #2
Z0 assuming

perfect reflection of the RF wave at the short. Each measurement point is
averaged over 15 s.We correct for a current offset which ismeasuredwith the
RF frequency off-resonance (280MHz). The solid lines are obtained from
numerical computation of the time evolution, as discussed in the text. The
grey line corresponds to an exponentially damped envelope. b, The
oscillating dot current (represented in colourscale) is displayed over a wide
range of RF powers (the sweep axis) and burst durations. The dependence of
the Rabi frequency fRabi on RF power is shown in the inset. fRabi is extracted
from a sinusoidal fit with the current oscillations from 10 to 500 ns for RF
powers ranging from 212.5 dBm up to 26 dBm.
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FIG. 2: Electron spin resonance (ESR) and Rabi oscillations. a Pulsing scheme for qubit control and readout. The Zeeman-split electron
spin levels are plunged to an energy EP using gate G4 and ESR pulses are applied to rotate the spin on the Bloch sphere. Subsequently, the
electron levels are increased to straddle the Fermi energy of the reservoir R, enabling spin readout. After readout the qubit is automatically
initialized in the spin-down state. b Electron spin-up fraction f" as a function of the microwave burst duration ⌧p, with PESR = 5 dBm. c
Electron spin-up fraction f" as a function of ESR frequency around the resonance frequency, ⌫0 = 39.1408 GHz, with ⌧p = 8.56 µs (corre-
sponding to the peak of the 3rd Rabi oscillation). d Color map of measured spin-up fraction f", showing Rabi oscillations as a function of
⌧p for different microwave detuning frequencies. Inset: Corresponding calculated Rabi oscillations. All data in b-d is fitted by assuming no
decay in time and using f" = A⌦2/⌦2

R sin2(⌦R⌧/2), with ⌦ and ⌦R the Rabi and total Rabi frequency, respectively. The visibility A = 0.7,
determined from the experimental data.

cay of the Ramsey coherence fringes. To remove the effects of
this noise we have applied a Hahn-echo technique, where a ⇡x

pulse is applied exactly in between two ⇡x/2 pulses - see Fig.
3b. From this we measure a spin coherence time T

H
2 = 1.2

ms. The Hahn echo amplitude decays with an exponent ⌘ =
2.2, indicating that the dominant source of decoherence is 1/f
noise. We can further increase the coherence time by applying
a CPMG sequence, where a series of ⇡y pulses are applied to
refocus the signal. Figure 3c shows an echo decay obtained
by applying 500 ⇡y pulses, with a resulting coherence time
of TCPMG

2 = 28 ms. We now turn to the qubit fidelities (see
the Supplementary Information for full details). The measure-
ment fidelity FM = 92% and initialization fidelity FI = 95 %
are primarily limited by broadening in the electron reservoir.
We have characterized the control fidelity of the qubit via ran-
domized benchmarking[25] on Clifford gates, shown in Fig.
4. In this protocol, the fidelity of an individual Clifford gate
is obtained by interleaving it with random Clifford gates and
measuring the decay with increasing sequence length. The
protocol ends with a final random recovery Clifford, such that
the outcome is either spin up or spin down. A reference se-

quence without interleaved gates is performed to observe the
decay due to the random Cliffords. By analyzing the data we
find an average control fidelity of FC = 99.59%, with all gates
having an error rate below the 1% tolerance requirement for
quantum error correction using surface codes[8]. We note that
the decay is slightly non-exponential, indicating dependent er-
rors from a dephasing limited fidelity, which can possibly be
removed by using composite and shaped pulse sequences, as
routinely employed in NMR experiments.

The vertical electric field Fz in our quantum dot can be
tuned over a large range by increasing the voltage on G4,
while reducing the voltage on C to maintain an electron oc-
cupancy of N = 1. Recent experiments on silicon dots have
observed an anticrossing of the spin and valley states (see in-
set to Fig. 5a) due to spin-orbit coupling, which occurs in
a small energy window of neV to µeV, depending on the in-
terface roughness[26, 27]. Using a recently developed hot-
spot spin relaxation technique[26] we have measured (Fig.
S5) the magnitude of the valley splitting Evs as a function
of gate voltage (Fig. 5a) and find a linear dependence of
Evs upon Fz that differs by only 12% from a device reported

Veldhorst et al.,  
Nat. Nanotech. 2014

GaAs: 
random nuclear spins 

=> uncontrolled B-field 
component

Silicon: only 5% has nuclear spins (Si-29, spin-1/2) 
isotopic purification => 0.08% Si-29 content

orders of magnitude. A third timescale, T2*, is often used to denote the 
time after which the electron phase is randomized during free evolution. 
If the spin manipulation time is less than T2*, the fidelity of the control 
can be severely reduced, which adds a second requirement for quantum 
information application.

Quantum coherence of spins in semiconductor quantum dots is lim-
ited by coupling to other degrees of freedom in the environment. Elec-
trons or holes can couple to states outside the quantum dot (Fig. 3a), and 
fluctuations in the electrical potential can indirectly lead to decoherence 
of the spin (Fig. 3b).

The absence of inversion symmetry in the lattice and the presence of 
electric fields or confinement asymmetries lead to coupling between spin 
and the motion of electrons (Fig. 3c). This spin–orbit coupling mixes 
the spin eigenstates. Except for small energy splitting, spin relaxation in 
group III–V quantum dots is typically dominated by spin–orbit coupling 
in combination with phonon emission that takes away the excess energy. 
Measurements of the spin relaxation time in many different devices have 
confirmed the theoretically predicted dependence on magnetic field and 
temperature8. However, the phase of localized electron spins is much 
less sensitive to the spin–orbit coupling15. The spin decoherence time, 
T2, of electrons in group III–V quantum dots is typically limited by the 
nuclear spins (Fig. 3d).

The hyperfine interaction with the nuclear spins has two effects on the 
electron spin42. First, each nuclear spin exerts a tiny effective magnetic 
field on the electron spin. The sum of the fields of the roughly 1 million 
nuclear spins in a quantum dot, known as the Overhauser field, can be 
large (up to several tesla) if the nuclear spins all point in the same direc-
tion. The magnetic moment associated with the nuclear spins is small, 
so the thermal polarization is tiny even at millikelvin temperatures. 
However, the Overhauser field still fluctuates around this tiny average. 
A simple estimate tells us that for n nuclear spins, the statistical variation 
is of the order of √n, which corresponds to an effective magnetic field of 
a few millitesla for a typical group III–V quantum dot. Such a field causes 
the phase of the electron spin to change by π in roughly 10 ns. A measure-
ment usually lasts tens of seconds, during which time the nuclear spins 
change orientation many times. One measurement therefore yields an 
average over many different nuclear spin configurations, leading to ran-
dom phase variations between successive measurements. This leads to 
a dephasing time, T2*, of about 10 ns (refs 13, 14), a timescale that was 
first verified in optical experiments43,44.

The Overhauser field changes slowly relative to the spin manipulation 
time, because the nuclear spins interact weakly both among themselves 
and with their surroundings. For example, recent optical experiments 

indicate that, in certain circumstances, nuclear spin polarizations in quan-
tum dots can sometimes survive for up to an hour45. Simple spin-echo 
techniques can therefore be used to eliminate the effect of the quasi-static 
Overhauser field, provided that the electron spin can be manipulated on 
a timescale that is short compared with the spin precession time in the 
Overhauser field. There are two approaches to achieving this. The most 
straightforward is to make the manipulation time very short, either by 
using the exchange energy in two-spin systems or by optical manipula-
tion using the a.c. Stark effect. Alternatively, the Overhauser field can be 
made smaller. One way of doing this is to narrow the distribution of the 
Overhauser fields by bringing the nuclear spins to a specific and stable 
quantum state46–48. Another option is to polarize all of the nuclear spins. 
Nuclear spin polarizations of up to 60% have been measured in quantum 
dots44,49, but it is anticipated that a polarization far above 90% is required 
for a significant effect50.

Another effect of the nuclear spins on the electron spin coherence 
comes from flip-flop processes42, in which a flip of the electron spin (say 
from spin up to spin down) is accompanied by a flop of one nuclear spin 
(from spin down to spin up). In a first-order process, this leads to spin 
relaxation (the electron spin is flipped). If the electron spin is continu-
ously repolarized, for example by optical pumping, the nuclear spins 
will all be flopped into the same spin state. After many such flip-flop 
events, a significant nuclear spin polarization can arise. This process 
is called dynamical nuclear polarization. If there is a large energy mis-
match between the electron spin splitting and the nuclear spin split-
ting (because there is an external magnetic field, for instance), this 
first-order process is strongly suppressed. Second-order processes — in 
which two nuclear spins exchange their state by two flip-flops with 
the electron spin — are still possible. Through these virtual flip-flops, 
the nuclear spins can change orientation much faster than is possible 
with the magnetic dipolar interaction with nearby nuclear spins. This 
effectively leads to spin diffusion. The observed T2 of about a micro-
second is thought to be compatible with this picture, although firm 
experimental evidence isolating the different causes of nuclear field 
fluctuations is still lacking8. 

Spins of holes in the valence band of group III–V semiconductors have 
wavefunctions that have zero weight at the position of the nuclei, so the 
contact hyperfine interaction should not affect the coherence of holes. 
Richard Warburton and co-workers have recently initialized single hole 
spins in quantum dots at zero magnetic field51 by adapting a procedure 
that was previously demonstrated on single elec tron spins52.

The detrimental effect of the nuclear spins on the coherence in quan-
tum dots has also spurred research into materials systems that contain 

a b c dMagnetic field

Electric
field

+

Electron
spin
Electron
spin

Electron
spin
Electron
spin

Nuclear spins

Figure 3 | Spin decoherence in quantum dots. The coherence of spins 
in quantum dots is affected by several mechanisms. a, Co-tunnelling. 
Although energy conservation forbids first-order tunnelling of charge 
carriers to states outside the dot at higher energy, second-order tunnelling 
processes (co-tunnelling) — in which a charge carrier tunnels from the 
dot to a reservoir and is replaced by a different charge carrier from the 
reservoir — are allowed83. The charge carrier from the reservoir will in 
general not be in the same spin quantum state as the one that first occupied 
the dot, so this process causes spin coherence to be lost. By increasing the 
energy difference between the dot and the reservoir states, and also making 
the tunnel coupling between them small, co-tunnelling processes can 
effectively be suppressed. b, Charge noise. Fluctuations in the electrical 
potential (charge noise) do not couple directly to the spin but can influence 
the spin dynamics indirectly. For example, the energy splitting, J, between 

singlet and triplet states in a double quantum dot depends strongly 
on the height of the tunnel barrier between the dots and the alignment 
of the levels in the dots. Any changes in the electrostatic environment 
can lead to changes (indicated by red arrows) in the barrier height and 
level misalignment, which modify J and therefore induce random phase 
shifts between the singlet and triplet states84,85. Charge switching and 
gate-voltage noise are two possible causes for such changes86. c, Spin–orbit 
coupling. The coupling between the spin and orbital of charge carriers 
leads to mixing of the spin states in a quantum dot. As a result of this 
coupling, any disturbance of the orbitals leads to phase fluctuations of 
the spin state. d, Nuclear spins. The charge carriers in the dot couple 
to the nuclear spins of the host material. These nuclear spins exert an 
effective magnetic field, and allow spin flip-flop processes that lead to spin 
relaxation and decoherence.
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Spin control with an ac electric field
EDSR = `electrically driven spin resonance’ or `electric dipole spin resonance’

Interaction between spin and electric field mediated by:

inhomogeneous magnetic field!
(created by `micromagnet’; mu-EDSR)

spin-orbit interaction  
(SOI-EDSR)

Surprisingly, when measuring the EDSR peak at a sufficiently low
power to avoid power broadening, we resolve two lines, separated by
2–4 MHz in the range Bext = 0.55–1.2 T (Fig. 2b). We return to the
origin of this splitting later. Fitting each resonance peak with a
Gaussian function yields δf (2)FWHM = 0.63 ± 0.06 MHz for
the higher-energy transition at frequency f (2)0 and
δf (1)FWHM = 0.59 ± 0.05 MHz for the lower-energy transition at
frequency f (1)0 . From this linewidth we extract a dephasing time

T*
2 =

!!
2

√
h−

gμBσB
=

2
!!!!
ln 2

√

πδfFWHM
= 840 ± 70 ns

(ref. 7), 30–100 times longer than T*
2 in III–V dots4,5,7,8. This

dephasing timescale can be attributed to the random nuclear field

from the 5% 29Si atoms in the substrate with standard deviation
σB = 9.6 µT, consistent with theory23. Previous T*

2 measurements
in Si/SiGe dots22,24 gave somewhat shorter values of 220–360 ns.
T*
2 is expected to scale with the square root of the number of

nuclear spins with which the electron wavefunction overlaps.
Considering these other measurements were done on double dots,
this would imply variations in the volume per dot up to a factor
of 7, if nuclear spins were dominating the decay. Given the presence
of a magnetic field gradient dB||/dx≈ 0.2 mT nm−1, the linewidth
also gives an upper bound on the electron micromotion induced
by low-frequency charge noise of ∼50 pm (r.m.s.).

Coherent control of the electron spin is achieved by applying
short high-power microwave bursts of duration tp. Figure 3a
shows the measured spin-up probability, P↑ , as a function of fMW
and burst time tp, which exhibits the chevron pattern that is
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Figure 1 | Device schematic and measurement cycle. a, False-colour device image showing a fabricated pattern of split gates, labelled 1–12. For this
experiment we create a single quantum dot (estimated location indicated by a red circle) and a sensing dot. Current I is measured as a function of time for a
fixed voltage bias of −600 µeV. The voltage pulses are applied to gate 3 and the microwaves are applied to gate 8. Green semitransparent rectangles show
the position of two 200-nm-thick Co micromagnets. The yellow-shaded areas show the location of two accumulation gates, one for the reservoirs and
another for the double quantum dot region. b, Numerically computed magnetic field component perpendicular to the external field, induced by the
micromagnet in the plane of the Si quantum well, for fully magnetized micromagnets. Straight solid lines indicate the edges of the micromagnet as simulated.
The region shown is outlined with dotted lines in a. c, Microwave (MW) and gate voltage pulse scheme (see main text) as well as an example trace of ISD
recorded during the pulse cycle and cartoons illustrating the dot alignment and tunnel events. During stages (1) and (3) the Fermi level in the reservoir is set
between the spin-down and spin-up energy levels so that only a spin-down electron can tunnel into the dot and only a spin-up electron can tunnel out3.
During stage (2), the dot is pulsed deep into the Coulomb blockade to minimize photon-assisted tunnelling. The MW burst of duration tp ends ∼100–500 μs
before the detection stage. When a step is observed during stage (3) (see the dotted line) we count the electron as spin-up. Stage (4) serves to keep the d.
c. component of the pulse zero and to symmetrize pulse distortions from the bias-tee. In the process, the quantum dot is emptied. The spike during the
manipulation stage is due to the influence of the microwave burst (here 700 µs) on the detector.
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periodically displacing the electron wave function
around its equilibrium position (Fig. 1B).

The experiment consists of four stages (Fig.
1C). The device is initialized in a spin-blockade
regime where two excess electrons, one in each

dot, are held fixed with parallel spins (spin
triplet), either pointing along or opposed to the
external magnetic field [the system is never
blocked in the triplet state with antiparallel
spins, because of the effect of the nuclear fields

in the two dots combined with the small interdot
tunnel coupling; see (16) for details]. Next, the
two spins are isolated by a gate voltage pulse,
such that electron tunneling between the dots or
to the reservoirs is forbidden. Then, one of the
spins is rotated by an ac voltage burst applied to
the gate, over an angle that depends on the
length of the burst (17) (most likely the spin in
the right dot, where the electric field is expected
to be strongest). Finally, the readout stage allows
the left electron to tunnel to the right dot if and
only if the spins are antiparallel. Subsequent tun-
neling of one electron to the right reservoir gives
a contribution to the current. This cycle is re-
peated continuously, and the current flow through
the device is thus proportional to the probability
of having antiparallel spins after excitation.

To demonstrate that electrical excitation can
indeed induce single-electron spin flips, we ap-
ply a microwave burst of constant length to the
right side gate and monitor the average current
flow through the quantum dots as a function of
external magnetic field Bext (Fig. 2A). A finite
current flow is observed around the single-
electron spin resonance condition, i.e., when
|Bext| = hfac/gmB, with h Planck’s constant, fac
the excitation frequency, and mB the Bohr
magneton. From the position of the resonant
peaks measured over a wide magnetic field
range (Fig. 2B), we determine a g factor of |g| =
0.39 ± 0.01, which is in agreement with other
reported values for electrons in GaAs quantum
dots (18).

In addition to the external magnetic field, the
electron spin feels an effective nuclear field BN
arising from the hyperfine interaction with
nuclear spins in the host material and fluctuating
in time (19, 20). This nuclear field modifies the
electron spin resonance condition and is gener-
ally different in the left and right dot (by DBN).
The peaks shown in Fig. 2A are averaged over
many magnetic field sweeps and have a width
of about 10 to 25 mT. This is much larger than
the expected linewidth, which is only 1 to 2 mT
as given by the statistical fluctuations of BN

(21, 22). Looking at individual field sweeps
measured at constant excitation frequency, we
see that the peaks are indeed a few mT wide
(Fig. 2C), but that the peak positions change in
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averaged peaks on sweep direction, the origin of
this large variation in the nuclear field is most
likely dynamic nuclear polarization (4, 23–26).

To demonstrate coherent control of the spin,
we varied the length of the microwave bursts
and monitored the current level. In Fig. 3A we
plot the maximum current per magnetic field
sweep as a function of the microwave burst
duration, averaged over several sweeps (this is a
more sensitive method than averaging the traces
first and then taking the maximum) (17). The
maximum current exhibits clear oscillations as a
function of burst length. Fitting with a cosine
function reveals a linear scaling of the oscilla-

Fig. 1. (A) Scanning elec-
tron micrograph of a de-
vice with the same gate
structure as the one used
in this experiment. Metallic
TiAu gates are deposited
on top of a GaAs hetero-
structure that hosts a two-
dimensional electron gas
90 nm below the surface.
Not shown is a coplanar
stripline on top of the
metallic gates, separated
by a dielectric [not used
in this experiment; see also
(4)]. In addition to a dc
voltage, we can apply fast
pulses and microwaves to
the right side gate (as indi-
cated) through a homemade
bias-tee. The orientation of
the in-plane external magnetic field is as shown. (B) The electric field generated upon excitation of the
gate displaces the center of the electron wave function along the electric field direction and changes
the potential depth. Here, D is the orbital energy splitting, ldot = ħ/

ffiffiffiffiffiffiffiffiffi

m!D
p

the size of the dot, m* the
effective electron mass, ħ the reduced Planck constant, and E(t) the electric field. (C) Schematic of the
spin manipulation and detection scheme, controlled by a combination of a voltage pulse and burst, V(t),
applied to the right side gate. The diagrams show the double dot, with the thick black lines indicating
the energy cost for adding an extra electron to the left or right dot, starting from (0,1), where (n,m)
denotes the charge state with n and m electrons in the left and right dot. The energy cost for reaching
(1,1) is (nearly) independent of the spin configuration. However, for (0,2), the energy cost for forming a
singlet state [indicated by S(0,2)] is much lower than that for forming a triplet state (not shown). This
difference is exploited for initialization and detection, as explained further in the main text.
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Fig. 2. (A) The current
averaged over 40 mag-
netic field sweeps is
given for eight differ-
ent excitation frequen-
cies, with a microwave
burst length of 150 ns.
The traces are offset
for clarity. The micro-
wave amplitude Vmw
was in the range 0.9
to 2.2 mV, depending
on the frequency (esti-
mated from the output
power of the micro-
wave source and tak-
ing into account the
attenuation of the co-
axial lines and the
switching circuit used
to create microwave
bursts). (B) Position of
the resonant response
over wider frequency
and field ranges. Error bars are smaller than the size of the circles. (C) Individual magnetic field sweeps
at fac = 15.2 GHz measured by sweeping from high to low magnetic field with a rate of 50 mT/min. The
traces are offset by 0.1 pA each for clarity. The red trace is an average over 40 sweeps, including the ones
shown and scaled up by a factor of 5.
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Pályi András

Elméleti Fizika Tanszék, BME
(Dated: October 16, 2018)

H = Hosc +Hhom +Hinh +HE(t) (1)
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g⇤µBB0�z (4)
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g⇤µB�x�y (5)

HE(t) = exE(t) = exE0 sin(!t) (6)

H = Hosc +Hhom +HSOI +HE(t) (7)

HSOI =
↵

~ (�ypx � �xpy) (8)

Excitation resonant with Zeeman splitting: (9)

~! = �EZ ⌘ ~!L ⇡ g⇤µBB0 ⌧ ~!0 (10)

Electronic potential along x : (11)

V (x) =
1

2
m!2

0(x+ x0(t))
2 � . . . (12)

where x0(t) =
eE0 sin!t

m!2
0

(13)

Electron follows potential minimum. (14)
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Semiclassical minimal model of mu-EDSR
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I. EXERCISES, CONTROL QUESTIONS

1. List three areas where the performance of quantum computing could exceed that of classical computing.

2. List the three Pauli matrices.

3. Construct a classical circuit that adds two single-bit numbers, using only the NAND gate.

4. Construct a quantum circuit that adds two single-bit numbers.

Ebben a fájlban az előadás menetrendjét követve gyűjtöm össze az egyes témakörökhöz kapcsolódó gyakorló felada-
tokat. A fájl hétről-hétre frissülni fog az adott hét feladataival. A zárthelyiken ehhez hasonló feladatok várhatók.

II. CLASSICAL BITS

• the value of a c-bit is 0 or 1

• operations, gates: a c-logical gate maps n c-bits to m c-bits; e.g., NOT, AND, OR, XOR.

• single-bit gate: n = m = 1
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Question: What is the Rabi frequency?
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LETTERSNATURE NANOTECHNOLOGY

To first demonstrate enhanced transverse spin–electric coupling, 
we drive electric-dipole spin resonance. When the control micro-
wave is exactly on resonance, the spin-up probability Pup shows a 
so-called Rabi oscillation as a function of the microwave duration. 
Figure 1d shows 16.6 MHz oscillations, whose decay time is too long 
to measure within 40 π  rotations. The decaying time of 3.9 MHz Rabi 
oscillations is 113 ±  3 μ s, yielding the Rabi oscillation Q =  888 ±  25 
(Supplementary Fig.  2c). The rotation frequency increases propor-
tionally to the microwave amplitude up to approximately 20 MHz  
(Fig.  1e), above which faster oscillation damping is observed 
(Supplementary Fig. 2b). A nearly ideal electric-dipole spin resonance 

rotation in the linear regime is further verified by the chevron pattern 
(Fig. 1f); the pattern reflects the qubit spin rotation along a tilted axis 
in the Bloch sphere with deliberately detuned microwave excitation.

We next quantify a longitudinal spin–electric-coupling field in 
the device. This is performed by applying an additional bump pulse 
to gate R in the control stage, during which the qubit precession 
frequency is rapidly shifted (Fig.  2a). Figure  2b shows the result-
ing phase-shift-induced oscillations of Pup lasting 20 μ s with no 
indication of decay. The phase rotation speed grows linearly with 
the bump amplitude δ VR, yielding a frequency-shift lever-arm of  
93 kHz mV−1 (Fig. 2c). Note that the maximum shift (5.2 MHz) is 
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Fig. 1 | Quantum-dot device with extrinsic spin–electric-coupling fields. a, Device layout. Circles indicate approximate positions of a qubit and a charge-
sensing quantum dot and the white boxes with crosses represent Ohmic contacts. We typically apply an external magnetic field Bext of around 0.5 T so 
that the Larmor precession frequency is roughly 18 GHz (the optimal frequency for the set-up of our control circuit). C and R are high-frequency gates. 
b, Control pulse sequence. Waveforms are applied to gate electrode potentials VR and VC of gates R and C, respectively. Traces of typical radiofrequency 
charge-sensing signals VRF with (red) and without (blue) tunnelling events are shown. c, Micromagnet spin–electric-coupling fields. The magnet is 
designed to induce a spatially inhomogeneous stray field BMM at the quantum-dot position when magnetized along Bext. The transverse coupling is 
produced by the inhomogeneous component perpendicular to Bext and is proportional to the field slope btrans"= " ⃗ ⋅ ⊥∇ee B( ) MM, where ⃗ee  is the unit vector along 
an in-plane (yz) electric field, ∇  denotes the vector differential operator and the ⊥ indicates the component perpendicular to Bext. The longitudinal one is, 
in contrast, mediated by the gradient of the parallel component blong"= " ⃗ ⋅ ∇ee B( ) z

MM. We have assumed a quantum-dot confinement that is strong vertically 
(along x) and symmetric laterally. d, Rabi oscillation. Each data point represents the probability of detecting tunnelling events, which we interpret as Pup, 
based on 100 single-shot measurements. The solid curve is the best-fit cosine with the Rabi frequency of 16.6 MHz (no decay is assumed). The oscillation 
visibility is limited by the initialization/readout fidelity. e, Driving amplitude dependence of the Rabi frequency. The dashed line plots a linear fit with the 
data points whose Rabi frequencies are below 24 MHz. f, Chevron pattern. Pup is collected as a function of microwave burst time and detuning. The Rabi 
frequency is 3.9 MHz and Bext is 0.506 T.
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An EDSR experiment without a micromagnet
Nowack et al. Science 2007

periodically displacing the electron wave function
around its equilibrium position (Fig. 1B).

The experiment consists of four stages (Fig.
1C). The device is initialized in a spin-blockade
regime where two excess electrons, one in each

dot, are held fixed with parallel spins (spin
triplet), either pointing along or opposed to the
external magnetic field [the system is never
blocked in the triplet state with antiparallel
spins, because of the effect of the nuclear fields

in the two dots combined with the small interdot
tunnel coupling; see (16) for details]. Next, the
two spins are isolated by a gate voltage pulse,
such that electron tunneling between the dots or
to the reservoirs is forbidden. Then, one of the
spins is rotated by an ac voltage burst applied to
the gate, over an angle that depends on the
length of the burst (17) (most likely the spin in
the right dot, where the electric field is expected
to be strongest). Finally, the readout stage allows
the left electron to tunnel to the right dot if and
only if the spins are antiparallel. Subsequent tun-
neling of one electron to the right reservoir gives
a contribution to the current. This cycle is re-
peated continuously, and the current flow through
the device is thus proportional to the probability
of having antiparallel spins after excitation.

To demonstrate that electrical excitation can
indeed induce single-electron spin flips, we ap-
ply a microwave burst of constant length to the
right side gate and monitor the average current
flow through the quantum dots as a function of
external magnetic field Bext (Fig. 2A). A finite
current flow is observed around the single-
electron spin resonance condition, i.e., when
|Bext| = hfac/gmB, with h Planck’s constant, fac
the excitation frequency, and mB the Bohr
magneton. From the position of the resonant
peaks measured over a wide magnetic field
range (Fig. 2B), we determine a g factor of |g| =
0.39 ± 0.01, which is in agreement with other
reported values for electrons in GaAs quantum
dots (18).

In addition to the external magnetic field, the
electron spin feels an effective nuclear field BN
arising from the hyperfine interaction with
nuclear spins in the host material and fluctuating
in time (19, 20). This nuclear field modifies the
electron spin resonance condition and is gener-
ally different in the left and right dot (by DBN).
The peaks shown in Fig. 2A are averaged over
many magnetic field sweeps and have a width
of about 10 to 25 mT. This is much larger than
the expected linewidth, which is only 1 to 2 mT
as given by the statistical fluctuations of BN

(21, 22). Looking at individual field sweeps
measured at constant excitation frequency, we
see that the peaks are indeed a few mT wide
(Fig. 2C), but that the peak positions change in
time over a range of ~20 mT. Judging from the
dependence of the position and shape of the
averaged peaks on sweep direction, the origin of
this large variation in the nuclear field is most
likely dynamic nuclear polarization (4, 23–26).

To demonstrate coherent control of the spin,
we varied the length of the microwave bursts
and monitored the current level. In Fig. 3A we
plot the maximum current per magnetic field
sweep as a function of the microwave burst
duration, averaged over several sweeps (this is a
more sensitive method than averaging the traces
first and then taking the maximum) (17). The
maximum current exhibits clear oscillations as a
function of burst length. Fitting with a cosine
function reveals a linear scaling of the oscilla-

Fig. 1. (A) Scanning elec-
tron micrograph of a de-
vice with the same gate
structure as the one used
in this experiment. Metallic
TiAu gates are deposited
on top of a GaAs hetero-
structure that hosts a two-
dimensional electron gas
90 nm below the surface.
Not shown is a coplanar
stripline on top of the
metallic gates, separated
by a dielectric [not used
in this experiment; see also
(4)]. In addition to a dc
voltage, we can apply fast
pulses and microwaves to
the right side gate (as indi-
cated) through a homemade
bias-tee. The orientation of
the in-plane external magnetic field is as shown. (B) The electric field generated upon excitation of the
gate displaces the center of the electron wave function along the electric field direction and changes
the potential depth. Here, D is the orbital energy splitting, ldot = ħ/

ffiffiffiffiffiffiffiffiffi

m!D
p

the size of the dot, m* the
effective electron mass, ħ the reduced Planck constant, and E(t) the electric field. (C) Schematic of the
spin manipulation and detection scheme, controlled by a combination of a voltage pulse and burst, V(t),
applied to the right side gate. The diagrams show the double dot, with the thick black lines indicating
the energy cost for adding an extra electron to the left or right dot, starting from (0,1), where (n,m)
denotes the charge state with n and m electrons in the left and right dot. The energy cost for reaching
(1,1) is (nearly) independent of the spin configuration. However, for (0,2), the energy cost for forming a
singlet state [indicated by S(0,2)] is much lower than that for forming a triplet state (not shown). This
difference is exploited for initialization and detection, as explained further in the main text.
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Fig. 2. (A) The current
averaged over 40 mag-
netic field sweeps is
given for eight differ-
ent excitation frequen-
cies, with a microwave
burst length of 150 ns.
The traces are offset
for clarity. The micro-
wave amplitude Vmw
was in the range 0.9
to 2.2 mV, depending
on the frequency (esti-
mated from the output
power of the micro-
wave source and tak-
ing into account the
attenuation of the co-
axial lines and the
switching circuit used
to create microwave
bursts). (B) Position of
the resonant response
over wider frequency
and field ranges. Error bars are smaller than the size of the circles. (C) Individual magnetic field sweeps
at fac = 15.2 GHz measured by sweeping from high to low magnetic field with a rate of 50 mT/min. The
traces are offset by 0.1 pA each for clarity. The red trace is an average over 40 sweeps, including the ones
shown and scaled up by a factor of 5.
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periodically displacing the electron wave function
around its equilibrium position (Fig. 1B).

The experiment consists of four stages (Fig.
1C). The device is initialized in a spin-blockade
regime where two excess electrons, one in each

dot, are held fixed with parallel spins (spin
triplet), either pointing along or opposed to the
external magnetic field [the system is never
blocked in the triplet state with antiparallel
spins, because of the effect of the nuclear fields

in the two dots combined with the small interdot
tunnel coupling; see (16) for details]. Next, the
two spins are isolated by a gate voltage pulse,
such that electron tunneling between the dots or
to the reservoirs is forbidden. Then, one of the
spins is rotated by an ac voltage burst applied to
the gate, over an angle that depends on the
length of the burst (17) (most likely the spin in
the right dot, where the electric field is expected
to be strongest). Finally, the readout stage allows
the left electron to tunnel to the right dot if and
only if the spins are antiparallel. Subsequent tun-
neling of one electron to the right reservoir gives
a contribution to the current. This cycle is re-
peated continuously, and the current flow through
the device is thus proportional to the probability
of having antiparallel spins after excitation.

To demonstrate that electrical excitation can
indeed induce single-electron spin flips, we ap-
ply a microwave burst of constant length to the
right side gate and monitor the average current
flow through the quantum dots as a function of
external magnetic field Bext (Fig. 2A). A finite
current flow is observed around the single-
electron spin resonance condition, i.e., when
|Bext| = hfac/gmB, with h Planck’s constant, fac
the excitation frequency, and mB the Bohr
magneton. From the position of the resonant
peaks measured over a wide magnetic field
range (Fig. 2B), we determine a g factor of |g| =
0.39 ± 0.01, which is in agreement with other
reported values for electrons in GaAs quantum
dots (18).

In addition to the external magnetic field, the
electron spin feels an effective nuclear field BN
arising from the hyperfine interaction with
nuclear spins in the host material and fluctuating
in time (19, 20). This nuclear field modifies the
electron spin resonance condition and is gener-
ally different in the left and right dot (by DBN).
The peaks shown in Fig. 2A are averaged over
many magnetic field sweeps and have a width
of about 10 to 25 mT. This is much larger than
the expected linewidth, which is only 1 to 2 mT
as given by the statistical fluctuations of BN

(21, 22). Looking at individual field sweeps
measured at constant excitation frequency, we
see that the peaks are indeed a few mT wide
(Fig. 2C), but that the peak positions change in
time over a range of ~20 mT. Judging from the
dependence of the position and shape of the
averaged peaks on sweep direction, the origin of
this large variation in the nuclear field is most
likely dynamic nuclear polarization (4, 23–26).

To demonstrate coherent control of the spin,
we varied the length of the microwave bursts
and monitored the current level. In Fig. 3A we
plot the maximum current per magnetic field
sweep as a function of the microwave burst
duration, averaged over several sweeps (this is a
more sensitive method than averaging the traces
first and then taking the maximum) (17). The
maximum current exhibits clear oscillations as a
function of burst length. Fitting with a cosine
function reveals a linear scaling of the oscilla-

Fig. 1. (A) Scanning elec-
tron micrograph of a de-
vice with the same gate
structure as the one used
in this experiment. Metallic
TiAu gates are deposited
on top of a GaAs hetero-
structure that hosts a two-
dimensional electron gas
90 nm below the surface.
Not shown is a coplanar
stripline on top of the
metallic gates, separated
by a dielectric [not used
in this experiment; see also
(4)]. In addition to a dc
voltage, we can apply fast
pulses and microwaves to
the right side gate (as indi-
cated) through a homemade
bias-tee. The orientation of
the in-plane external magnetic field is as shown. (B) The electric field generated upon excitation of the
gate displaces the center of the electron wave function along the electric field direction and changes
the potential depth. Here, D is the orbital energy splitting, ldot = ħ/

ffiffiffiffiffiffiffiffiffi

m!D
p

the size of the dot, m* the
effective electron mass, ħ the reduced Planck constant, and E(t) the electric field. (C) Schematic of the
spin manipulation and detection scheme, controlled by a combination of a voltage pulse and burst, V(t),
applied to the right side gate. The diagrams show the double dot, with the thick black lines indicating
the energy cost for adding an extra electron to the left or right dot, starting from (0,1), where (n,m)
denotes the charge state with n and m electrons in the left and right dot. The energy cost for reaching
(1,1) is (nearly) independent of the spin configuration. However, for (0,2), the energy cost for forming a
singlet state [indicated by S(0,2)] is much lower than that for forming a triplet state (not shown). This
difference is exploited for initialization and detection, as explained further in the main text.
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averaged over 40 mag-
netic field sweeps is
given for eight differ-
ent excitation frequen-
cies, with a microwave
burst length of 150 ns.
The traces are offset
for clarity. The micro-
wave amplitude Vmw
was in the range 0.9
to 2.2 mV, depending
on the frequency (esti-
mated from the output
power of the micro-
wave source and tak-
ing into account the
attenuation of the co-
axial lines and the
switching circuit used
to create microwave
bursts). (B) Position of
the resonant response
over wider frequency
and field ranges. Error bars are smaller than the size of the circles. (C) Individual magnetic field sweeps
at fac = 15.2 GHz measured by sweeping from high to low magnetic field with a rate of 50 mT/min. The
traces are offset by 0.1 pA each for clarity. The red trace is an average over 40 sweeps, including the ones
shown and scaled up by a factor of 5.
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tion frequency with the driving amplitude (Fig.
3B), a characteristic feature of Rabi oscillations
and proof of coherent control of the electron
spin via electric fields.

The highest Rabi frequency we achieved is
~4.7 MHz (measured at fac = 15.2 GHz), cor-
responding to a 90° rotation in ~55 ns, which is
only a factor of 2 slower than those realized with
magnetic driving (4). Stronger electrical driving
was not possible because of photon-assisted tun-
neling. This is a process whereby the electric
field provides energy for one of the following
transitions: tunneling of an electron to a reser-
voir or to the triplet with both electrons in the
right dot. This lifts spin blockade, irrespective of
whether the spin resonance condition is met.

Small Rabi frequencies could be observed as
well. The bottom trace of Fig. 3A shows a Rabi
oscillation with a period exceeding 1.5 ms
(measured at fac = 2.6 GHz), corresponding to
an effective driving field of only about 0.2 mT,
one-tenth the amplitude of the statistical fluctua-
tions of the nuclear field. The oscillations are
nevertheless visible because the dynamics of the

nuclear bath are slow compared to the Rabi
period, resulting in a slow power-law decay of
the oscillation amplitude on driving field (27).

We next turn to the mechanism responsible
for resonant transitions between spin states.
First, we exclude a magnetic origin because
the oscillating magnetic field generated upon
excitation of the gate is more than two orders of
magnitude too small to produce the observed Rabi
oscillations with periods up to ~220 ns, which
requires a driving field of about 2 mT (17).
Second, we have seen that there are in principle
a number of ways in which an ac electric field
can cause single-spin transitions. What is
required is that the oscillating electric field give
rise to an effective magnetic field, Beff(t), acting
on the spin, oscillating in the plane perpen-
dicular to Bext, at frequency fac = gmB|Bext|/h.
The g-tensor anisotropy is very small in
GaAs, so g-tensor modulation can be ruled
out as the driving mechanism. Furthermore, in
our experiment there is no external magnetic
field gradient applied, which could otherwise
lead to spin resonance (5). We are aware of

only two remaining possible coupling mech-
anisms: spin-orbit interaction and the spatial
variation of the nuclear field.

In principle, moving the wave function in a
nuclear field gradient can drive spin transitions
(5, 28), as was recently observed (26). However,
the measurement of each Rabi oscillation lasted
more than 1 hour, much longer than the time
during which the nuclear field gradient is
constant (~100 ms to a few s). Because this
field gradient and, therefore, the corresponding
effective driving field, slowly fluctuates in time
around zero, the oscillations would be strongly
damped, regardless of the driving amplitude
(26). Possibly, a (nearly) static gradient in the
nuclear spin polarization could develop as a
result of electron-nuclear feedback. However,
such polarization would be parallel to Bext and
thus cannot be responsible for the observed
coherent oscillations.

In contrast, spin orbit–mediated driving can
induce coherent transitions (12), which can be
understood as follows. The spin-orbit interaction
in a GaAs heterostructure is given by HSO =
a(pxsy − pysx) + b(−pxsx + pysy), where a and b
are the Rashba and Dresselhaus spin-orbit co-
efficient, respectively, and px,y and sx,y are the
momentum and spin operators in the x and y
directions (along the [100] and [010] crystal direc-
tions, respectively). As suggested in (13), the spin-
orbit interaction can be conveniently accounted for
up to the first order in a, b by applying a (gauge)
transformation, resulting in a position-dependent
correction to the external magnetic field. This ef-
fective magnetic field, acting on the spin, is pro-
portional and orthogonal to the field applied

Beff ðx,yÞ ¼ n⊗Bext; nx ¼
2m∗

ħ
ð−ay − bxÞ;

ny ¼
2m∗

ħ
ðaxþ byÞ; nz ¼ 0 ð1Þ

An electric field E(t) will periodically and
adiabatically displace the electron wave func-
tion (Fig. 1B) by x(t) = (eldot

2/D)E(t), so the
electron spin will feel an oscillating effective
field Beff(t) ⊥ Bext through the dependence of
Beff on the position. The direction of n can be
constructed from the direction of the electric
field as shown in Fig. 4C and together with
the direction of Bext determines how effec-
tively the electric field couples to the spin.
The Rashba contribution always gives n⊥E,
while for the Dresselhaus contribution this
depends on the orientation of the electric field
with respect to the crystal axis. Given the gate
geometry, we expect the dominant electric field
to be along the double dot axis (Fig. 1A), which
here is either the [110] or [110] crystallographic
direction. For these orientations, the Dresselhaus
contribution is also orthogonal to the electric field
(Fig. 4C). This is why both contributions will
give Beff ≠ 0 and lead to coherent oscillations in
the present experimental geometry, where E || Bext.
In (26), a very similar gate geometry was used,
but the orientation of Bext was different, and it

Fig. 3. (A) Rabi oscilla-
tions at 15.2 GHz (blue,
average over five sweeps)
and 2.6 GHz (black, av-
erage over six sweeps).
The two oscillations at
15.2 GHz are measured
at different amplitudes of
the microwaves Vmw,
leading to different Rabi
frequencies. (B) Linear
dependence of the Rabi
frequency on applied mi-
crowave amplitude mea-
sured at fac = 14 GHz.
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• No micromagnet, no microwave antenna 
• Spin rabi oscillations are seen 
• Stronger excitation => faster Rabi oscillations 
• Smaller B-field => slower Rabi oscillations

Claim: spin dynamics is caused by spin-orbit interaction



Spin-orbit-induced electrically driven spin resonance
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Rashba spin-orbit interaction

Golovach et al., PRB 2006
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Spin-orbit-induced electrically driven spin resonance

Tool #1: creation/annihilation operators

Golovach et al., PRB 2006
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4⇡✏0✏r`
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Spin-orbit-induced electrically driven spin resonance
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Summary

1. `Initialization’ and `readout’ with Pauli-blockade in a double quantum dot 
2. Continuous-wave and pulsed detection of ESR and EDSR 
3. Electron Spin Resonance with a wire providing ac B-field 
4. Electrically Driven Spin Resonance with a micromagnet 
5. Electrically Driven Spin Resonance due to spin-orbit interaction

Potential extensions
1. Potential advantages of EDSR over ESR (simpler design, selective 

addressing, lower power) 
2. Electrically driven nuclear-spin resonance 
3. Two-qubit gates for the single-electron spin qubit (see Lecture 2) 
4. Single-qubit gates for the S-T0 qubit 
5. Two-qubit gates for the S-T0 qubit (capacitive, exchange-based)


