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1Department of Physics and Centre for Scientific Computing, University of Warwick, Coventry, CV4 7AL, United Kingdom
2Departamento de Fisica Fundamental, Universidad de Salamanca, 37008 Salamanca, Spain

(Received 8 December 2008; published 13 March 2009)

The probability density function (PDF) for critical wave function amplitudes is studied in the three-

dimensional Anderson model. We present a formal expression between the PDF and the multifractal

spectrum fð�Þ in which the role of finite-size corrections is properly analyzed. We show the non-Gaussian

nature and the existence of a symmetry relation in the PDF. From the PDF, we extract information about

fð�Þ at criticality such as the presence of negative fractal dimensions and the possible existence of

termination points. A PDF-based multifractal analysis is shown to be a valid alternative to the standard

approach based on the scaling of inverse participation ratios.
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The fluctuations and correlations of wave amplitudes are
of primary importance for the understanding of many
classical and quantum systems. This is arguably most
pronounced in the physics of Anderson localization [1].
Here, recent advancements in theory [2,3], experiments in
classical [4] and quantum waves [5,6], as well as numerical
methods [7] have led to unprecedented insights into the
nature of the localization-delocalization transition. In con-
trast to the weak- or strong-disorder limits where the
description of nearly extended or strongly localized states
is well known, e.g., from random matrix theory [8], the
intensity distribution at the metal-insulator transition is
more involved due to the multifractal nature of the states
[1,9,10]. The possibility of carrying out a multifractal
analysis directly from the raw statistics of intensities
jc j2, i.e., the probability density function (PDF), is espe-
cially interesting since their distributions can be measured
experimentally in classical [4] and quantum [5,11,12] ex-
periments. However, the numerical relation between the
PDF and the multifractal spectrum fð�Þ has not been
completely elucidated. In this Letter we show how to
obtain the multifractal spectrum based on the PDF. The
PDF-to-fð�Þ connection is a numerically much simpler
procedure than the usual scaling of q moments of jc j2
[13]. Furthermore, it yields direct understanding of physi-
cal properties at criticality, such as the existence of a
symmetry relation, the observation of negative fractal di-
mensions and the physical meaning of the possible appear-
ance of termination points. We apply the PDF-based
approach to the three-dimensional Anderson model within
the Gaussian orthogonal ensemble, using a large number of
critical states at E ¼ 0 and very large system sizes up to
L3 ¼ 2403 [7].

At criticality, the jc j2 distribution has the scaling form

P Lðjc j2Þ � ð1=jc j2ÞLfð� lnjc j2= lnLÞ�d: (1)

In terms of the variable � � � lnjc j2= lnL, the PDF is

P Lð�Þ � Lfð�Þ�d, where fð�Þ is the multifractal spectrum,

i.e., the fractal dimensions of the different � sets made up
of the points where jc ij2 ¼ L��. The fð�Þ spectrum is
usually constructed by a Legendre transformation [13] of
the scaling exponents �ðqÞ for the generalized inverse

participation ratios (GIPR) Ldhjc ij2qi � L��ðqÞ [2,3,7,14].
The relation (1) between P Lð�Þ and fð�Þ suggests a

complete characterization of multifractality directly from
the PDF. The proportionality in (1) contains an L depen-
dence which can be naively included as

P Lð�Þ ¼ P Lð�0ÞLfð�Þ�d; (2)

where �0 is the position of the maximum of the multi-
fractal spectrum, fð�0Þ ¼ d. Furthermore, since fð�Þ< d
for all � � �0, we see that P Lð�0Þ corresponds in fact to
the maximum value of the PDF itself. Hence �0 can be
easily obtained numerically. As for fð�Þ, the value of �0

obtained from the PDF must be L invariant at criticality, as
we show in Fig. 1. The estimation for �0 ¼ 4:027� 0:016
from the PDF is in agreement with that obtained from
GIPR scaling [7], �0 2 ½4:024; 4:030�. From the normal-

ization condition we find P Lð�0Þ ¼ ðR1
0 Lfð�Þ�dd�Þ�1.

Using the saddle point method, justified in the limit of

large L, we compute P Lð�0Þ �
ffiffiffiffiffiffiffiffi
lnL

p
, which holds very

well even for small L as shown in Fig. 1(a). From the
PDF for fixed L the multifractal spectrum is hence
straightforwardly obtained from (2) as fð�Þ ¼
dþ ln½P Lð�Þ=P Lð�0Þ�= lnL. Alternatively, if fð�Þ is
known, the PDF can be easily generated. We find excellent
agreement between the singularity spectrum obtained from
the PDF for L ¼ 30; . . . ; 240 and the one obtained from the
more involved box-size scaling of the GIPR [7]. It must be
noted that P Lð�Þ is always system-size dependent, and it is
through the fð�Þ spectrum that all PDFs for different L
collapse onto the same function; cf. Fig. 1(b). Thus the
fð�Þ can also be understood as the natural scale-invariant
distribution at criticality.
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In order to minimize finite-size effects, we can also
determine fð�Þ from the PDF using system-size scaling.
We note that for a given L the number of points per wave
function with � 2 ½����=2; �þ ��=2� is N Lð�Þ �
LdP Lð�Þ��. Hence the following normalized volume of

the � set ~N Lð�Þ � LdP Lð�Þ=P Lð�0Þ obeying
~N Lð�Þ ¼ Lfð�Þ; (3)

can be used to extract fð�Þ from a series of systems with
different L. In Fig. 2 we compare the multifractal spectrum
obtained using PDF scaling (3) with the one from GIPR
scaling [7] for L 2 ½20; 100� and having 5� 104 critical
states for each size. We find very good agreement between
both, as well as between the numerical PDFs and those
generated from the GIPR fð�Þ [Fig. 2(a)].

Numerically, the PDF is approximated by

P Lð�Þ ���!0 h�ð��=2� j�þ lnjc ij2= lnLjÞi=��;
(4)

where � is the Heaviside step function and h:i involves an
average over the volume of the system and all realizations
of disorder. To minimize the uncertainty in the small jc ij2,
which becomes greatly enhanced in terms of �ðjc ij2Þ, the
amplitudes used for the histogram are those obtained from
a coarse-graining procedure of the state using boxes of
linear size l ¼ 5. Therefore the system size in all equations
is the effective system size L=l. The uncertainty of the PDF
value is estimated from the usual standard deviation for a

counting process as �P Lð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P Lð�Þ=NwL

d��
p

, where

Nw is the total number of states in the average, and for the
� values a constant �� ¼ ��=3 is assigned. This proce-

dure assumes uncorrelated �’s and hence jc j2’s; this is
only true between different disorder realizations, but not
necessarily within each state. Hence the errors of the PDF
are probably somewhat underestimated and the small un-
certainty of the fð�Þ-values obtained from PDF scaling in
Fig. 2 must be interpreted carefully. There also exists
another source of error difficult to quantify, namely, how
much the histogram for finite �� deviates from the real
PDF when �� ! 0. In spite of this, the PDF method is
easy to implement numerically and hence a valid alterna-
tive to the more demanding GIPR scaling techniques.
Symmetry relation for the PDF.—The symmetry rela-

tion, fð2d� �Þ ¼ fð�Þ þ d� � [2] for L ! 1, implies
the existence of a symmetry for the PDF which should hold
for large enough system sizes,

P Lð2d� �Þ ¼ Ld��P Lð�Þ: (5)

In terms of the wave function amplitudes, Eq. (5) reads
P LðL�2d=jc j2Þ ¼ ðLdjc j2Þ3P Lðjc j2Þ. The latter relation
establishes that at criticality the distribution in the interval
L�2d < jc j2 � L�d is indeed determined by the PDF in
the region L�d � jc j2 < 1. We carry out a numerical
check of the symmetry relation (5) by evaluating
�P Lð�Þ ¼ P Lð�Þ � L��dP Lð2d� �Þ accounting for
the distance between the original PDF and its symmetry-
transformed counterpart at every �, as well as the cumu-
lative difference �ðLÞ ¼ R

2d
0 d�j�P Lð�Þj. The symmetry-

transformed PDF for L ¼ 100 and the evolution of
�P Lð�Þ for different L are shown in Fig. 3. We find that
the symmetry relation is better satisfied as L increases [7],
and the improvement can be roughly quantified as �ðLÞ �
L�0:545 as shown in Fig. 3(b).
Non-Gaussian nature of the PDF.—The parabolic ap-

proximation for fð�Þ in d ¼ 2þ �, [15] implies a

-1

0

1

2

3

f(
α)

gIPR system-size scaling
from PDF

0 2 4 6
α

0.001
0.01

0.1
1

r
2
f(α)

4
α

0

0.2

0.4

0.6

P L
(α

)

L=240

L=30

Qf(α)

(a)

FIG. 2 (color online). fð�Þ obtained from system-size scaling
of the PDF and the GIPR, for L 2 ½20; 100�. Only one every
second symbol is shown for clarity. Standard deviations are
within symbol size when not shown. The inset shows the
numerical PDF (black) and the PDF calculated from the GIPR
fð�Þ (gray). The bottom panel gives the linear correlation
coefficient r2 and quality-of-fit parameter Q for the fð�Þ ob-
tained from the log-log linear fits of Eq. (3).

0 2 4 6 8

α = - ln|ψ |2/ lnL

0

0.1

0.2

0.3

0.4

0.5

P L
(α

)

L
3 

= 100
3

L
3
 = 200

3

1 100 200

L

0.4

0.6

 P L
(α

0
)

0 2 4 6 8
α

-2

-1

0

1

2

3

f(
α)

(a) (b)

FIG. 1 (color online). PDF at criticality for �� ¼ 0:04. The
gray lines correspond to L from 30 (bottom) to 90 (top).
Standard deviations are within the line width. For L � 100
and L > 100 we average over 5� 104 and 100 states, respec-
tively. The vertical dashed line marks the mean value for �0 ¼
4:027� 0:016 using L from 50 to 200. Inset (a) shows P Lð�0Þ vs
L. Standard deviations are contained within symbol size. The
solid line is the fit a lnðL=lÞb, with a ¼ 0:297� 0:002, b ¼
0:490� 0:005. Inset (b) shows the collapse of all the PDF
from L ¼ 30 to 240 onto the fð�Þ.
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Gaussian approximation (GA) for the PDF, PGA
L ð�Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lnL=4��
p

L�½��ð2þ2�Þ�2=4�. The PDFs in Fig. 1 might in-
deed appear roughly Gaussian and in Fig. 4 we show
Gaussian fits of the PDF for L ¼ 100, obtained via a usual
�2 minimization taking into account the uncertainties of
the PDF values. However, the quality-of-fit parameter Q,
which gives an indication on the reliability of the fit, is
ridiculously small (Q< 10�300 000). Since the standard
deviations of the PDF values may have been slightly under-
estimated we also study how Q behaves when we inten-
tionally increase the error bars by a factor n. As shown in

Fig. 4(c) one would have to go to unreasonable high values
of n� 85 to accept a Gaussian nature for the PDF as
plausible. The deviation from PGA

L ð�Þ is also noticeable.
Hence our statistical analysis confirms that the PDF is non-
Gaussian in agreement with the observed nonparabolic
nature of fð�Þ at the 3D MIT [7].
Rare events and their negative fractal dimensions.—The

volume of the � set, N Lð�Þ for a given L, gives the
number of points in the wave function with amplitudes in

the range jc ij2 2 ½L�����=2; L��þ��=2�. It scales with

the system size as N Lð�Þ �
ffiffiffiffiffiffiffiffi
lnL

p
Lfð�Þ. The negative

values of fð�Þ [7] correspond then to those � sets whose
volume decreases with L for large enough L. Physically,
the negative fractal dimensions at small � are caused by
the so-called rare events containing localizedlike regions
of anomalously high jc ij2 at criticality. The probability of
finding them likewise decreases with L. In Fig. 5, we show
examples of rare eigenstates. Because of the finite-size

term
ffiffiffiffiffiffiffiffi
lnL

p
, the threshold �� [where fð��Þ ¼ 0], below

which the decreasing behavior of N Lð�Þ with L is de-
tected, will change with the system-size itself, and so the
normalized volume (3) of the � set must be used. In Fig. 6

we show the behavior of ~N Lð�Þ vs L for two values of �
corresponding to a positive and a negative fractal dimen-
sion. The decreasing of the volume of the � set for fð�Þ<
0 is clearly observed from the PDF values. In Fig. 6(a) it is
demonstrated how the normalized volume of the � set

becomes scale invariant at �� and thus ~N Lð��Þ ¼ 1.
The opposite tendencies with L at each side of �� can
also be seen. The estimated value for �� 2 ½0:643; 0:675�
from the PDF scaling agrees with the result obtained using
the multifractal spectrum from GIPR scaling, �� ¼
0:626� 0:028 [7].
Termination points in fð�Þ.—The fate of the fð�Þ spec-

trum at � ¼ 0 and � ¼ 2d is currently under debate in the
literature [7,16] due to the emergence of singularities at
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FIG. 4 (color online). Gaussian fit (
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FIG. 5 (color online). Rare eigenstates for the 3D Anderson
model (E ¼ 0, Wc ¼ 16:5) for L3 ¼ 1003. The sites with proba-
bility jc jj2 >L�3 are shown as boxes with volume jc jj2L3.

The gray scale distinguishes between different slices of the
system along the axis into the page. The biggest boxes with
black edges enclose the site with the maximum normalized
amplitude: jc ij2 ¼ 0:4484 (left) and 0.3617 (right).
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these points. At present, it is not clear whether fð�Þ con-
tinues towards �1 or terminates with finite values. The
physical consequences of the divergence of fð�Þ at those
points are: (i) jc ij2 > L�2d at criticality since 2dwould be
an upper bound for �, and (ii) the probability to find the
most rare event, namely, the most extremely localized state
(jc i0 j2 ¼ 1, corresponding to � ¼ 0), at the critical point

must always be zero independently of the system-size
[P Lð0Þ ¼ 0]. In principle the PDF can be used to look
for termination points (TP). However, a reliable analysis in
the vicinity of � ¼ 0 requires a huge number of disorder
realizations; relying on the symmetry relation [2] a study
around � ¼ 2d is more appropriate. For 1 � �< 2d and
as long as there is a finite TP, the PDF admits the series
expansion [17]

P Lð�Þ ’ P Lð�0ÞLfð2dÞ�d½1þ q2dð�� 2dÞ lnL�; (6)

where q2d � f0ð�Þj�¼2d. The existence of a finite TP at
� ¼ 0 requires fð2dÞ and q2d to be L independent, for
large enough L. In Fig. 7 we show the values of fð2dÞ and
q2d obtained for different L. The value of fð2dÞ seems to
reach a saturation for large L although the numerical
analysis cannot exclude a very slow decreasing tendency.
A similar result is found for q2d. Still larger L and more
states are needed to decide the fate of fð�Þ at 0 and 2d.
In conclusion, we have shown here that a PDF-based

study can be a valid companion approach to the standard
multifractal analysis, giving complementary and new in-
formation about the critical properties of waves at
Anderson-type transitions as well as offering a conceptu-
ally simpler viewpoint.
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