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Localization: theory and experiment 

Bernhard Krameri and Angus MacKinnont 
tPhysikalisch-Technische Bundesanstall, 38023 Braunschweig, Federal Republic of Germany 
$Blacken Laboratory, imperial College. London SW7 2BZ UK 

Abstract 

The transport properties of disordered solids have been the subject of much work since at 
least the 1950% but with a new burst of activity during the 1980s which has survived up to 
the present day. There have been numerous reviews of a more or less specialized nature. 
The present review aims to fill the niche for a non-specialized review of this very active 
area of research. 

The basic concepts behind the theory are introduced with more detailed sections covering 
experimental results, one-dimensional localization, scaling theory, weak localization, 
magnetic field effects and fluctuations. 

This review was received in its present form in June 1993. 
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1. Introduction 

The theory of the electronic properties of disordered solids has matured considerably during 
the past decade. On the one hand, this is due to the availability of new theoretical methods, 
and of bigger and faster computers. On the other hand, new experimental techniques which 
emerged from the fabrication techniques of modern microelectronics made explicit tests 
of the theoretical results possible, thus providing the possibility of verifying or falsifying 
the underlying microscopic models. The problem of localization of the quantum states i n  a 
random medium, the subject of this review, is one of the examples which may be considered 
as being representative of this development. 

In addition to a number of textbooks on disordered systems which may be used for 
introductory reading (Mott and Davis 1979, Zallen 1983, Ziman 1979, Bonch-Bruevich et 
QI 1984, Shklovskii and Efros 1984, Lifshitz er a/ 1988, Cusack 1987) there is a (still 
increasing) number of review articles on various aspects (Thouless 1974, Elliott et ol 1974, 
Kramer and Weaire 1979). The problem of localization in one-dimensional random systems 
has been treated in reviews by Ishii (1973), Abrikosov and Ryzhkin (1978), Erdos and 
Herndon (1982), and Gogolin (1982). The localization problem was considered in  the 
review by Lee and Ramakrishnan (1985) with special emphasis on the metallic limit. Efetov 
(1983) treated elaborately the field theoretical aspects using the supersymmetric formulation. 
Experiments in the regime of weak Iocalizafion have been reviewed by Bergmann (1984). 
Chakravarty and Schmid (1986) treated the limit of weak localization from the wave 
mechanical point of view. Vollhardt and WoIfle (1992) described the perturbational aspects. 
There are also a number of introductory summaries (Vollhardt 1987, MacKinnon 1988, 
Altshuler and Lee 1988, Kramer 1988, Bonch-Bruevich 1983, Toulouse and Balian 1979). 

Conference volumes devoted to the topic of localization are also available (Friedman and 
Tunstall 1978, Nagaoka and Fukuyama 1982, Nagaoka 1985, Kramer ef ol 1985, Kramer 
and Schweitzer 1984, Weller and Ziesche 1984, Finlayson 1986, Garrido 1985, Ando and 
Fukuyama 1987, Kramer and Schon 1990, Benedict and Chalker 1991, Kramer 1991). One 
might ask, whether or not, and why, another review article on localization is necessary. The 
answer to this question lies in the rather specialized nature of most of the above mentioned 
works. One might argue that the mosf recent general review article on the problem of 
the quantum states in disordered media which covers most of the aspects in a more or 
less equally balanced way is that by Thouless (1974). The above mentioned theoretical, 
computational and experimental work, however, seems to make a general review article 
necessary again, especially since the most recent developments indicate that, i n  spite of 
all the progress made, the Anderson transition is not yet understood and the one-parameter 
scaling approach possibly incomplete. 

The phenomenon of localization, being, in  the first instance, a property of the states in 
random quantum mechanical systems, has its most striking experimental manifestation in 
the transport properties of condensed matter systems. 

The common belief is that the one-particle wavefunctions in macroscopic, disordered 
quantum systems at the absolute zero of temperature can be exponentially localized. More 
precisely, this means that, on the average, their amplitudes are exponentially decaying in 
space at infinity. This is expected if the disorder is sufficiently strong or in energy regions 
where the density of states is sufficiently small. Energy regions with small densities cf states 
are typically associated with the tails of quantum mechanically allowed energy bands. For 
weak disorder or in energy regions with sufficient density of states, the wavefunctions will 
extend throughout the whole system with their phases and amplitudes varying randomly 
in space. Physically the disorder can be imagined to be connected with the presence 
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of impurities, vacancies and dislocations in an otherwise ideal crystal lattice. Another 
possibility is to distribute atoms or molecules at more or less random positions. Strong 
disorder can then be  achieved by using a large concentration of impurities, for instance, 
independently of the strength of the individual impurities. A completely disordered assembly 
of atoms will be one in which the atoms are sitting on sites that are chosen completely 
independently and randomly. 

Particles that occupy exponentially localized states are restricted to finite regions of 
space. They cannot contribute to transport at the absolute zero of temperature, T = 0 K, 
when the coupling to other degrees of freedom, such as phonons, and particle-particle 
interactions has become negligible. On the other hand, particles in extended states can 
escape to infinity and contribute to transport. As a consequence, if there are only localized 
states near the Fermi energy the system will be an insulator, in the sense that, at T = 0 K, the 
DC conductivity, adc (the zero-frequency limit of the linear conductivity) vanishes. On the 
other hand, when the Fermi level lies in  a region of extended wavefunctions odde ( T  = 0 K) 
will be finite and the system will be metallic. Localization of the quantum mechanical 
wavefunctions as a consequence of the presence of disorder is one of the fundamental 
ingredients for the understanding of the existence of insulators and metals, and, in particular, 
the transition between the insulating and the metallic states of matter. The latter is one of 
the main issues to be discussed in this review. 

There are also profound effects of the presence of the disorder deep in the metallic 
regime, usually associated with very weak randomness. Here, coherent quantum mechanical 
backscattering, which may be viewed as the precursor of the exponential localization, 
gives rise to a rich variety of quantum transport phenomena, such as, for instance, the 
logarithmic increase of the resistance of thin metallic films with decreasing temperature 
when approaching absolute zero (Gorkov er al 1979). Coherent backscattering can be 
understood quite generally in terms of the interference of different, quantum mechanically 
allowed, paths of the particles that contribute to the transport process, and can be treated 
quantitatively by diagrammatic perturbational techniques. These so-called weak localizalion 
effects have been one of the important discoveries of the past decade. They not only initiated 
a whole new area of research concerning the phase-breaking mechanisms in metals, such 
as electron-phonon, spin-orbit and electron4ectron scattering, but were also of crucial 
importance for the development of one of the most fruitful, though recently also most 
heavily attacked, approaches to the disorder-induced metal-insulator transition, namely the 
one-parameter scaling theory (Abraham er al 1979). 

In the insulating regime, when the temperature is above absolute zero, transport is 
possible via thermal activation of charge carriers from localized into extended states. In 
contrast to the metallic regime, the conductivity in this case depends exponentially on 
the inverse temperature. At temperatures close to absolute zero the activation processes 
die out. Transport is then only possible via hopping of the charge carriers between 
localized states associated with the absorption or emission of phonon-like excitations (i.e. 
phonons, magnons, plasmons, etc). Hopping conduction is characterized by a most peculiar 
temperature behaviour of the transport coefficients, which is related to the statistics of the 
phonon-like excitations, and the energetic and spatial distribution of the localized states. 
Mott's 'T-'I4 law' (Moa and Davis 1979), in the case of the DC conductivity of amorphous 
semiconductors, is only one, though very characteristic, example, which provides a most 
convincing case for the existence of localized states in disordered solids. 

In addition to changing the temperature, the application of a magnetic field constitutes 
one of the most powerful probes, especially for the experimental investigation of localization 
effects. There are basically three discoveries of the past two decades which have initiated 
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considerable enhancement of the experimental efforts. First, application of a magnetic field 
induces characteristic changes in the phase of a wavefunction, thus producing pronounced 
changes in the interference of the quantum mechanical transport paths. These can be detected 
and systematically analysed to investigate the quantum mechanical coherence properties of 
the system. This was most strikingly demonstrated a decade ago when the experimental 
discovery of the Aharonov-Bohm-like oscillations of the magnetoresistance of thin normally 
metallic cylinders provided direct evidence for the existence of quantum interference in the 
presence of disorder (Sharvin and Sharvin 1981. In the second important discovery, the Hall 
conductivity of thin layers of charge carriers when subject to a strong magnetic field proved 
to be quantized in units of e 2 / h  at low temperatures (von Klitzing et al 1980). Although 
the theoretical understanding of this effect is still far from complete there is now good 
evidence that it can be used to investigate quantitatively the localization properties of quasi- 
two-dimensional electron systems subject to a strong magnetic field. The third discovery 
came when the metal-insulator transition mentioned above was associated with a second- 
order phase transition in the course of the development of the one-parameter scaling theory. 
As a consequence, the critical behaviour of the DC conductivity, i.e. how it  approaches 
zero when approaching the critical point by changing the disorder and/or the position of 
the Fermi energy, should be the same within certain universality classes of Hamiltonians. 
The universality properties of the system are dictated by its fundamental symmetries; for 
instance, whether or not there is time-reversal invariance. A magnetic field destroys time- 
reversal invariance. Thus, it constitutes a most simple tool for changing the universality 
class of a system experimentally, and, as a consequence, the critical behaviour at the metal- 
insulator transition. Experimental and theoretical investigation of the effects of a magnetic 
field on the transport properties, especially in the critical regime close to the metal-insulator 
transition, can therefore be expected to be of crucial importance in examining the validity 
of the one-parameter scaling theory. 

As a result of the statistical nature of the disorder-impurities are distributed more or 
less at random, atoms in a glassy structure sit at random positions-the quantum states are 
random objects. Their amplitudes and phase vary randomly in space. As physical quantities 
are represented by quantum mechanical expectation values of the operators representing the 
observables, they are also randomly distributed. 

Conventional statistical physics associates experimentally meaningful quantities with 
averages over a statistical ensemble of macroscopically different systems, For example, for 
a given macroscopic concentration of impurities there is an essentially uncountable number 
of possible arrangements of their positions in the host crystal. Different members of the 
statistical ensemble characterized by the macroscopic concentration have different spatial 
configurations of the impurity atoms. Although the results of measurements of a physical 
quantity, when performed on specific members of the statistical ensemble, will be different 
and dependent on the specific configuration of the impurities, or, more generally, on the 
specific realization of the disorder, the statistical fluctuations of the results will become 
vanishingly small when compared with, say, the ensemble average, provided the system is 
sufficiently large, i.e. macroscopic. 

Physical quantities are usually assumed to fulfil this criterion, namely that they 
effectively do not fluctuate within the statistical ensemble of macroscopically equivalent 
systems in the thermodynamic limit. They are often called self-averaging. Formally, 
the ensemble average of a self-averaging quantity and the most probable value within 
the ensemble practically coincide when the size of the system is assumed to be infinite. 
Self-averaging implies that, in practice, measurements done on specific samples-specific 
realizations of the disorder-can be described in terms of ensemble averages. 

B Kramer and A MacKinnon 
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A most striking consequence of quantum mechanical localization is that the transport 
properties of the disordered systems are not self-averaging at very low temperatures: there 
are experimentally accessible, and reproducible, stochastic fluctuations of the conductance 
(Fowler er al 1982), even in the asymptotic regime of weak localization, when an external 
system parameter, such as the strength of an applied magnetic field, is varied. The 
fluctuations are much larger than expected from the application of simple considerations 
borrowed from classical statistical physics, like random walk. In the insulating regime they 
even diverge in the thermodynamic limit. 

Besides providing insight into the quantum mechanical nature of macroscopic condensed 
matter systems at very low temperatures, such as in the limit of weak localization, the study 
of localization by theory and experiment offers, at least in principle, the unique possibility 
of investigating systematically the statistical properties of non-self-averaging quantities, and 
the related more general concepts like the ergodic hypothesis. 

In the following sections we will introduce the field of localization in more detail. We 
describe briefly the historical development in section 2 and review the key experimental 
results in section 3. The basic theoretical models and methods used in the description of 
random systems are described in section 4, and the variety of definitions of localization 
used in the past are summarized in section 5. The fundamental features of the strongly 
localized regime are discussed in section 6 which contains a summary of work done 
for one-dimensional disordered electronic systems where many aspects can be treated 
mathematically exactly. The physics of the weakly disordered regime is touched on in 
section 7, and the scaling approach to the disorder-induced metal-insulator transition is 
described to some extent in section 8. Section 9 contains as a specific example the 
treatment of localization in  the presence of a magnetic field with special emphasis on two- 
dimensional disordered systems, which are of outstanding practical importance in connection 
with the quantized Hall effect.' The problem of the reproducible stochastic fluctuations of 
the conductance and the resistance is described in section IO. 

Although, as we shall see, a complete understanding of the experimentally observed 
metal-insulator transition, especially in highly doped semiconductors, is not possible without 
taking interaction effects, as well as disorder, into account, these will not be considered 
in this reviewt. We refer the reader to the volume edited by Efros and Pollak (1985) 
which contains a number of carefully written reviews on the interplay between Anderson 
localization and interactions. 

2. The milestones 

In this section we shall provide a brief review of the history of the field of localization, 
together with the references that we think are relevant, although we cannot claim to achieve 
completeness. 

2. I .  The pre-scaling era 

Perhaps the first paper in which the problem of localization was discussed in connection with 
quantum mechanical diffusion is that of P W Anderson (1958) (figure 1). He formulated 
the problem and gave a first quantitative estimate of the strength of the random potential 
which is necessary for the absence of diffusion in certain random lattices. The relevance 

t In facf there are examples of MFTS that are induced by interactions instead of disorder, the Peierls Vansition which 
is due to electron-lattice coupling, and the MOR-Hubbard transition induced by electron4eclron interanion. 
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Figure 2. The concept of the mobility edge. Electronic states below and above the mobility 
edge are localized and extended, respectively. If the Fermi energy lies in the region of the 
localized states, the system is insulating at T = 0. In the extended-states region it is metallic. 

of localization with regard to the transport properties of amorphous semiconductors was 
discussed by Mott (1968). He proposed the concept of the mobility edge which separates 
the localized states from the extended states energetically (figure 2). 

Here the conductivity drops to zero for T = 0 and o = 0 such that the mobility 
edge represents the critical energy for the transition from a metallic to an insulating state 
(metal-insulator transition, MIT). In the 1970% Thouless and many others tried to clarify 
the quantitative aspect of the problem (Thouless 1974). It was in particular the idea of 
a connection between the DC conductivity and the sensitivity of the eigenvalues of the 
Hamiltonian of a finite (but very large) system to changes of the boundary conditions 
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(Edwards and Thouless 1972, Licciardello and Thouless 1975a. b) which formed the basis 
for the later reformulation of the problem in terms of the renormalization group and the 
corresponding scaling theory by Wegner (1976) that eventually culminated in the formulation 
in terms of the non-linear U model (Wegner 1979a, b, Hikami 1981, Efetov 1983). Thus, the 
link between the disorder-induced MIT and second-order phase transitions was established. 

2.2. The scaling theory 

The essential hypothesis of the scaling theory is that close to the transition between localized 
and extended states there is only one relevant scaling variable which is sufficient to describe 
the critical behaviour of the DC conductivity (on the metallic side) and the localization 
length (on the insulating side). Physically, this is equivalent to the statement that close to 
the transition it does not make any sense to distinguish between the various mechanisms 
for localization discussed below. 

In 1970 Landauer pointed out that since the DC conductivity is vanishing in the localized 
regime, and at T = 0, it  is no longer a useful quantity for the description of transport through 
fnite systems. Instead, the conductance must be considered. He proposed an alternative 
description of the conductance of ID disordered systems in terms of their transmission 
properties. The Landauer relation (Landauer 1970) gives explicitly the scaling properties 
of the conductance as a function of the length of the system. There have been several 
generalizations to quasi-ID systems (with many transmission channels) (Anderson et al 
1980, Langreth and Abraham 1981, Fisher and Lee 1981, Economou and Soukoulis 1981a, 
b, Thouless 1981, Anderson 1981, Biittiker etal 1985). The Landauer approach can also 
be considered as one of the precursors of the one-parameter scaling theory, especially with 
respect to the numerical implementations of the latter. 

Based on Wegner’s work in addition to the ideas of Thouless and Landauer, it was 
possible to formulate the one-parameter scaling theory of localization (Abraham et al 
1979, Gorkov etal 1979), in which the conductance itself was taken as the scaling variable. 
In this work, although intuitively, and in an ad hoc manner, for the first time an explicit 
description of the dependence of the conductance on the size of a disordered system was 
given, and an elementary description of role of the dimensionality was provided. 

In order to describe the conductance of a hypercube of the volume L d 3  g(L), its 
logarithmic derivative ,5’ was introduced: 

d l n g  ,5’=- 
d l n L ’  

It was assumed that it depends only on the conductance itself, and not on energy, disorder, 
or L separately. The qualitative behaviour of p ( g )  was obtained by interpolating from 
the asymptotic behaviour at large and small conductance assuming that ,4 is a continuous, 
monotonically increasing function (figure 3). 

This behaviour was subsequently corroborated by a quantitative extrapolation from the 
weak disorder limit (Vollhardt and Wolfle 1982) using standard diagrammatic perturbation 
techniques for the two-particle propagator. The role of interactions was studied by Hikami 
et al (1980), Finkelstein (1983a, b, 1984% b), Fukuyama (1985), Altshuler and Aronov 
(1979a, b, 1985), Castellani etal (1984), and Raimondi etal (1990). 

If ,5’ > 0 the conductance increases with the size of the sample, reflecting metallic 
behaviour. The metallic region may be characterized by the classical behaviour, namely 
@(g) = d-2 which may be obtained from the classical relation between the conductance and 
the conductivity. On the other hand, if c 0, g ( L )  decreases with L, eventually terminating 



1478 B Kramer and A MacKinnon 

Figure 3. The ,9 function for Ule zero-temperature conductance of a disordcrcd system for 
dimensionality d = I , .  . . , 3 .  g(L) increases with increasing L if j3 > 0. but decreases for 
,9 < 0. ,9 = 0 defines the critical point corresponding to the Anderson transition. It is only 
achievable in d = 3. 

in the localized regime where p(g)  = Ing. A fixed point is defined by p(gc) = 0. It 
corresponds to a disorder-induced MIT. One of the essential results of the one-parameter 
scaling theory is that such a MIT can only exist in three dimensions since this is the only 
dimensionality where ,3 can have positive and negative values. In one and two dimensions 
g ( L )  is always decreasing with L. Thus, the insulating regime is always eventually reached 
in the thermodynamic limit at the absolute zero of the temperature, for non-interacting 
electrons, and without magnetic scattering effects. 

During the time when the scaling theory of localization was developed, experimental 
techniques became available which made explicit tests of the theory possible. In the metallic 
regime the asymptotic (perturbation) theory for weak disorder (weak elastic scattering) 
predicted a disorder-induced logarithmic correction to the temperature dependence of the 
conductivity at very low temperature for 2D systems. The corresponding quantitative 
theory was formulated by Hikami et a1 (1980) and Altshuler er al (1980), and verified 
experimentally in a series of beautiful experiments done on very thin Mg films (Bergmann 
1982a, b, c, 1984). 

2.3. The critical behaviour 

A further important result of the one-parameter scaling theory concerns the critical behaviour 
at the MIT (Anderson transition). If, in analogy with second-order phase transition theory, 
the DC conductivity ad, and the localization length A near the mobility edge are assumed to 
behave according to 

respectively, then one obtains s = U from the scaling relations. The numerical value was 
evaluated by using the t expansion (Wegner 1985) or diagrammatic techniques (Vollhardt 
and Wolfle 1982), s = U = I .  

The critical behaviour of the conductivity near the MIT in doped semiconductors has  
been carefully investigated experimentally in recent years m o m a s  and Paalanen 1985, 
Thomas 1986, Katsumoto 1991). These experiments yielded a variety of exponents which 
group around s = U = 7 (standard example Si:P), and s = U = 1 (standard example 
AI,Gal-,As). Whereas it was generally believed that exponent 1 is due to an Anderson 

I 
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transition, i.e. described by the current theory of localization, the exponent was ascribed 
to the presence of local magnetic moments induced by Coulomb interaction. Although there 
have been several efforts to treat this effect theoretically (Belitz and Kirkpatrick 1989a, b, 
1991, Kirkpatrick and Belitz 1989, 1990a, b, Milovanovic er al 1989, Bhatt er al 1988) a 
generally accepted theory for this type of transition is not available at present. 

A different approach has been developed by Gotze (1981) by starting from the mode- 
coupling theory, and calculating explicitly experimentally observable quantities like the 
frequency-dependent conductivity, and the dielectric susceptibility, as a function of the 
various system parameters like the disorder and the Fermi energy (Gotze 1985). In this way 
a quantitative description of the Anderson transition was claimed. 

2.4. Numerical scaling 

The one-parameter scaling theory contains a number of assumptions, the most important of 
these being the one-parameter scaling hypothesis. In order to see whether or not this is really 
valid an explicit numerical test has been performed by the authors of the present review 
(MacKinnon and Kramer 1981, 1983a, MacKinnon 1985b) using a recursive technique 
which was developed in connection with the calculation of the conductivity of disordered 
systems by one of the authors (MacKinnon 1980,198Sa). A similar technique was developed 
simultaneously by Pichard and S a "  (1981a. b). Using a real space renormalization 
technique which was connected with the ideas of Landauer and Wegner, it was possible to 
establish numerically the existence of a scaling function for the exponential decay length of 
the transmission probability through the random medium (figure 4). However, the obtained 
critical exponents were only partially in agreement with the results of the other theories 
and the above mentioned experimental data. Also, the validity of the scaling concept was 
demonstrated only for the centre of the band (of the Anderson model). 
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The numerical values for the localization length near the critical disorder in three 
dimensions and for small disorder in two dimensions which were obtained in these 
calculations turned out to be macroscopically large. The question arises how the 
wavefunctions behave before the asymptotic exponential decay sets in. The idea of an 
inverse power law decrease as a function of the distance from some localization centre was 
introduced by Kaveh and Matt (1981). Some numerical resul& were found which seemed to 
be in favour of such a behaviour (Pichard and Sarma 1981a, b, Schreiber 1985). Power law 
localization has also been found recently in ID disordered systems subject to an electric field 
(Delyon eral 1984, Cota e t a /  1985, Leo and Movaghar 1988). However. such a behaviour 
would be in severe disagreement with the one-parameter scaling theory. Presumably, further 
theoretical and numerical studies are necessary in order to clarify the issue. 

3. Experiments on localization 

A large number of phenomena exist which can be explained in terms of localization of 
quantum states. A classical example is Matt's celebrated law for the low-temperature 
behaviour of the conductivity of amorphous semiconductors (Matt and Davis 1979). The 
existence of quantum interference has been demonstrated in thin metallic films (Bergmann 
1984). The metal-insulator transition has been investigated in a variety of systems including 
doped semiconductors and amorphous metal-non-metal mixtures (Thomas 1986, Katsumoto 
1990), and magnetic-field-induced transitions (Biskupski and Briggs 1988, Chen et al 1989). 
Conductance fluctuations as a result of disorder have been observed in  small systems at low 
temperature (Washburn and Webb 1986, Lee er a1 1987). The existence of the quantized 
Hall resistance in inversion layers was interpreted as a direct manifestation of the existence 
of localized states in the presence of a magnetic field (Aoki and Ando 1981). Classical 
waves, such as electromagnetic waves, and water waves, for instance, exhibit many of the 
localization phenomena predicted and investigated in quantum systems quite directly on 
a macroscopic scale (Etemad et al 1986, Akkermans and Maynard 1985, Lindehof et al 
1986). In this section we want to discuss the essential features of some of these phenomena 
in greater detail. 

3. I .  Hopping transport in amorphous semiconductors 

Figure 5 shows the DC conductivity of amorphous silicon as a function of the temperature. 
It can be seen directly from the plot that at low enough temperatures (Beyer 1974) 

over two orders of magnitude, with suitable constants 00 and To. At higher temperatures 
this behaviour changes into an activated one. 

The behaviour of the conductivity can be understood when assuming that the transport 
is mediated by phonon-assisted hopping processes behveen localized states which are 
energetically close to each other but with localization lengths that are small compared 
with the spatial distance between the centres of localization (figure 6). 

At low temperatures the hopping probability p between the states will be proportional to 
the overlap integral of the two wavefunctions which depends exponentially on their spatial 
distance R, and a Boltzmann factor containing their mean energetical distance A, 

p c( exp(-cuR - B A ) .  (4) 
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Figure 6. Hopping between states localized at different sites R. States that are close in normd 
space ( I  and 4) must be well separated in e n e w  E .  On the other hand, slats at almost the 
same energies are Far apm in R-space (I and 2). 

Here CY is proportional to the inverse of the exponential decay length of the states, and ,5 is 
the inverse temperature. For small hopping distances R. necessary in order to obtain a large 
hopping probability, the number of states which are available for a hopping process from a 
given state will be small on the average. Correspondingly, the mean energy separation of 
the states will be large. The Boltzmann factor will decrease the total hopping probability. 
On the other hand, when R is large, there are many states to which an electron can hop from 
a given site. A is small. The Boltzmann factor will enhance the total hopping probability. 
In order to maximize p one has to know how A depends on R .  

Assuming that the localization centres are distributed homogeneously in space we 
estimate (for a d-dimensional system) 

A c( [ R d n ( E ~ ) ] - l .  (5 )  

The distance R,, which maximizes p is then obtained by minimizing the exponent in (4), 
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Inserting this result into (4), and noting that p a U ,  yields the &dimensional version of the 
T-'I4  law, which should be valid as long as the density of states is approximately constant. 

More rigorous treatments of this remarkable idea to explain the low-temperature 
transport properties of many amorphous materials which is, as many others, due to Molt, can 
be found in the literature (Bottger and Bryskin 1985, Efros and Shklovskii 1975. Gogolin 
1982). 

3.2. Weak localization 

At low temperatures thin, weakly disordered metal films exhibit anomalies in the behaviour 
of the electrical resistance which can only be understood when taking into account the 
quantum mechanical nature of the electrons. These anomalies are found in the temperature 
dependence as well as in the magnetic field dependence of the resistance. In terms of 
the above mentioned scaling picture, they concern the regime of almost classical transport 
(large conductance, see figure 7) i n  a ?D system. Since the quantum corrections to the 
conductivity can be interpreted as being due to an interference of the electron wavefunctions 
which favours backscattering, and since the localization length considerably exceeds all of 
the other relevant lengths in the system, this is called the regime of weak localization. 

One of the most striking effects is seen in the temperature dependence. Many thin 
metallic films show a logarithmic increase of the resistance when the temperature is 
decreased. Some of the first results obtained are shown in figure 7. These and many 
other examples can be found in the review aticle by Bergmann (1984). 

Results of this kind were first taken as confirming the scaling theory of localization in 
the asymptotic regime of weak localization where the ,3 function appeared to be given by 
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constant 
k- 

B ( g )  = -- (7) 

in two dimensions. Integrating with respect to the system size L one obtains 

g -go = -constant x In(L/Lo) (8) 

where go and LO are constants of integration. For L < LO, g (> go) can be treated 
classically. For L > Lo the conductance decreases logarithmically with the length L. In 
order to obtain the temperature dependence the geometrical system size has to be replaced 
by an effective system size L,, the mean distance between successive inelastic scattering 
events suffered by the particle (Anderson eta! 1979, Thouless 1980, Altshuler and Aronov 
1985). With the (temperature-dependent) inelastic scattering time rj (phase coherence time) 
we have 

Taking si cx T-p ( p  = O( 1)) at low temperatures one obtains the desired log T behaviour. 
However, some time later doubts were shed on this interpretation since, based on earlier 

work on the density of states (Altshuler and Aronov 1979a, b, Altshuler et al 1980), it was 
discovered that the Coulomb interaction between the electrons leads to the same temperature 
dependence in the presence of disorder, except that the prefactor is different (Fukuyama 
1980, 1981). Thus. a tool was needed that could distinguish between localization and 
interaction effects. 

The latter was provided by applying an external magnetic field (Uren et a1 1980). 
While localization leads to a negative magnetoresistance usually associated with an increase 
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Figure 7. (a) Logarithmic temperature dependence of the resistance of thin Au-Pd films (DoIan 
and Osheroff 1979), (b) thin Cu films (van den Dries el a1 1981) and (c) fine Cu pmicles 
(Kobayashi el 01 1980). 

of the localization length when a magnetic field is applied, Coulomb interaction gives a 
positive magnetoresistance. The interesting point that was made by Bergmann (1983a) 
is that localization effects may be switched of systematically by introducing spin-xbit 
scattering into the system (figure 8). Using the asymptotic theory of Hikami et al (1980) 
the experimental results may be used to determine the inelastic scattering time, the spin- 
orbit scattering time, and the magnetic scattering time (Bergmann 1982a, b, c, 1983a, b) 
(see also section 7). 

The fact that the regime of weak localization in the transport properties of disordered 
metals can be described within the picture of the interference between quantum mechanical 
probability wavw has been demonstrated explicitly by Sharvin and Sharvin (1981). When 
measuring the magnetoresistance of a Mg cylinder which was about 1.5 p m  in diameter 
and 1 cm long, they observed oscillations on varying the magnitude of an externally applied 
axial magnetic field. They were periodic with a period A@ = h/2e, half the normal 
Aharonov-Bohm period (figure 9). The results were in quantitative agreement with the 
theoretical predictions made a few months earlier by Altshuler et al (1981) who applied 
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FIyrc 8. The magnetoresistance A R  of thin Mg films. The clean film shows a negative 
magnemreskwnce indiotiog localiwim. When fhe film is mvered with a “all m o u n t  of 
gold atoms the magnetoresistance becomes positive due to inmasing spin-orbit scattering. The 
right scale shows the magnetoconductance AL. On the l e t  the ratio oflhc inelastic scattering 
time and the spin-orbit scattering lime is indicated (after B e r g m n  (1984)). 

the same technique which was used for the treatment of weak localization (see below) to 
describe the low-temperature magneto-transport properties of loops and cylinders. 

Figure 9. Aharonov-Bohm-like magnetoconductance oscillntions observed in normally 
conducting Mg cylinders of diameter 1.5 @m by Sharvin and Sharvin (1981). Left and right 
~sistmce scales corespond to samples I and 2. respectively. The periodicity of the oscillations 
corresponds to A@ = h/2e.  

Magnetoresistance oscillations were observed, and successfully treated theoretically, by 
several other groups in cylindrical systems as well as in  large ?D arrays of loops (Gijs et 
al 1984a, b, Pannetier et a1 1984, Washburn and Webb 1986, Aronov and Sharvin 1987). 
Thus, the asymptotic regime of weak scattering is physically understood and experimentally 
well confirmed. 

3.3. The Anderson transition 

There is a large body of experimental work concerning the metal-insulator transition 
(Thomas 1986). The most extensively studied examples are doped silicon, Si:P 
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(figures 10(a) and (b) (Paalanen and Thomas 1983)). as well as the persistent photoconductor 
AI,Gal-,As (figure IO(c), (Katsumoto eta1 1987)). In both cases both the insulating and 
the metallic sides of the transition were studied by measuring the dielectric susceptibility 
and the conductivity, respectively. In Si:P the tuning parameter was the magnitude of 
uniaxial stress applied to the sample (at fixed doping level), or the concentration of the 
doping atoms. In the persistent photoconductor the concentration of the charge carriers was 
tuned via optical excitation. 
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Figure 10. The metal-insulator transition. (a) Uncompensated Si:P. The square of the DC 
conductivity o (right scale) and the inverse of the dielectric susceptibility (lee scale) are plotted 
against the renormalized concentration nln, - I of the dopant (P) atoms. The upper scale shows 
the uniaxial stress S applied to the system in order to achieve the transition (&er Paalanen and 
Thomas (1983)). (b) Compensation dependence of the tnnsition in Ge:Sb. The DC conductivily 
is plotted as a function of the concenmtion of the dopant (Sb) atoms for different degrees 
of compensation (in %). The uppermost curve is the result obtained for Si:P. The critical 
exponent changes between about 0.5 and 1 depending on compensation (aner Thomas et d 
(1982)). (c) Persistent photoconductor Al1,.3Gaa~As.Si. The DC conductivity c extrapolated to 
rem temperature for zero magnetic field and H = 4 T is plotted against h e  light exposure 
time. The lamer is a measure of the density n of the charge rriers. The exponent is 1 (after 
Katsumoto er a1 (1987)). 

The critical exponents turned out to be equal on both sides. An absolute value close to 
was obtained for Si:P (and other uncompensated doped materials), whereas exponents of 

the order of I were obtained for AI,Cal-,As, and other amorphous materials, as well as 
compensated semiconductors. 

The three examples shown in figure I O  characterize completely the experimental 
situation concerning the critical exponent. One can distinguish two large groups of 
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transitions. On the one hand, there are uncompensated doped semiconductors. Here the 
transition is characterized by an exponent close to i. On the other hand, there is the large 
group of systems including amorphous metals, amorphous semiconductors, and compensated 
doped semiconductors where the exponent is close to 1. To our knowledge, there i s  up to 
now no experimental indication of a disorder-induced transition with different exponents on 
the two sides, as far as they have been determined. 

3.4. Scattering of light 
If quantum interference is the dominant mechanism for the localization of states in a random 
medium, localization effects should be of importance in other wave phenomena, too (Sheng 
1990). That this is indeed the case has been demonstrated in recent years theoretically (by 
considering classical wave equations) (John and Stephen 1983, John 1984, Azbel 1983, 
Kirkpatrick 1984, Flesia et al 1987, Akkermans and Maynard 1985, 1986, Guazzelli et al 
1983) as well as experimentally in light scattering experiments (Wolf and Maret 1985, Kuga 
nad Ishimaru 1984, van Albada and Lagendijk 1985. van Albada et a/ 1991). An example 
is shown in figure 11 (Etemad et ai 1986). 
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Figure 11. ( a )  Backscattering of light from B solid assembly of submicron Si% pmicles in air. 
(b )  with single.scattering component removed, (c )  ensemble averages of nine and (d)  sixteen 
scans (after Etemad el ol (1986)). 

The light of a 5 mW low-divergence He-Ne laser has been scattered from a solid 
sample made of colloidal silica particles which were produced by flame hydrolysis of 
silicon tetrachloride vapour, and deposited on various substrates as a solid layer of uniform 
thickness d ranging from a few microns to a few millimetres. Thus the full range of 
elastic scattering length e << d to e > d could be covered. The size of the particles 
was between 0.1 and 0.2 wm, the solid fraction of the as grown samples varied between 
0.05 and 0.12. Enhanced intensity in the backscattering direction was only observed after 
removing the single-scattering contribution and averaging over several noise-like spectra 
(speckle pattern). In experiments using a liquid sample instead of a solid sample enhanced 
backscattering is more readily observed because the Brownian motion of the particles carries 
out the averaging process very effectively Wolf and Maret 1985). 

There are indications that light waves may even be strongly localized if scattering is 
strong enough (Economou 1990, Sheng 1990). 
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3.5. Localizarion of wafer waves 

One of the elementary experiments showing the effect of localization of classical waves can 
be performed in the first year of a physics course (Lindelof et al 1986). It is the scattering 
of water waves at an assembly of scatterers (figure 12). 

Figure 12. Scattenng of water waves from a regular and a random assembly of scatterers (with 
the permission of the authors from Lindelof et a1 (1986)). 

A number of scatterers (for instance, metal nuts) is placed regularly or at random within 
the area of a bath of water. The bath is filled up to a level of about 5 cm. Surface water 
waves are excited. I n  the case of a regular assembly of scatterers the waves are spreading 
all over the whole area of the surface. When the scatterers are random, waves are generated 
only within some restricted areas. 

3.6. Conductance puctuations 

A phenomenon which is closely related to localization is the reproducible fluctuations of 
the conductance in mesosropic samples. These have geometric dimensions of the order 
of or less than the phase coherence length (inelastic scattering length), i.e. a few hundred 
nm when considering temperatures of the order of 1 K. Measuring the conductance or the 
resistance of thin wires as a function of the magnetic field in the case of metallic samples, 
and of quasi-ID inversion layers in high-quality heterostructures, one observes irregular 
but nevertheless (for a given sample) reproducible structures (Fowler ef a1 1982, 1988, 
Washburn and Webb 1986, Pichard and Sanquer 1990, Mailly and Sanquer 1991, Caro er 
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Figure 13. The reproducible fluctuations of the conductance r as observed at low temperatures 
in a quasi-ID inversion layer channel when changing the voltage V, applied to the AI gate on 
top of a Si-MOSET. as shown schematically in the len-hand pan (after Fowler er 01 (1982)). 

a/ 1991). Changing the gate voltage, i.e. the charge density in quasi-lD inversion layers in 
MOSFETS, similar random fluctuations are detected at low temperature (figure 13). 

These conductance fluctuations can be understood when assuming that at low enough 
temperature the transport takes place coherently within single quantum states throughout the 
whole sample. If the Fermi energy is such that it accidentally hits the energy of a quantum 
state the transmission probability (and hence the conductance) is very high (almost 1) as 
compared with the situation where the Fermi energy does not coincide with a quantum state 
energy. In this case the variance of the fluctuations is independent of the size of the sample 
and other parameters like the degree of disorder (universal conductance fluctuations, UCF, 
see figure 14). In this regime, which corresponds to that of weak localization since the stales 
are essentially assumed to extend throughout the whole sample, one can use perturbational 
techniques for the determination of the magnitude of the fluctuations. Random matrix 
theory is another useful tool for the mathematical treatment of the stochastic behaviour of 
the transport properties (see section 10). 

817 B17 B17 

Figure 14. The universal fluctuations of the magnetoconductance r of lhin metallic wircs 
(a) Mesoscopic Au ring of about 0.8 um diameter. (b) quasi-ID inversion layer channel in a 
Si-MOSFET and (c)  oumeriwl result for the Anderson model (see below). Although the thre 
sornplcs are microscopically differenL as one c m  judge from Lhe fact that the zeromagnetic 
field conductances are about an order of magnitude different, the fluctuations are about of the 
same magnitude (after Lee er ol (1987)). 

When the sample size is larger than the localization length, which is the case in the 
insulating regime, one expects a second kind of fluctuation, the variance of which increases 
exponentially with the length of the sample. These are due to the non-ergodic nature of 
the localized phase. To our knowledge they have not yet been unambiguously observed 
experimentally. They could, however, be connected with the above mentioned conductance 
fluctuations i n  the quasi-ID MOSFET channels (see also Orlov ef a1 1989a, Millikan and 
Ovadyahu 1990). 
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Indications of reproducible stochastic fluctuations are also seen in the above mentioned 
light scattering experiments (figure 11). 

4. Basic concepts 

4.1. Models of disorder 

The characterization of the properties of ideally ordered materials is comparatively easy. 
Due to the presence of the long-range order one has translational symmetry. The quantum 
objects (electrons, phonons, magnons, etc) are of the Bloch type. As a consequence, they 
are freely itinerant, and can move unrestrictedly throughout the whole system. In reality, 
however, there are no ideally ordered media. There are always distortions of the ideal order 
due to the presence of impurities, dislocations, vacancies and other defects. As long as the 
concentration of these is small, one may still use the concepts developed for translationally 
symmetric systems as a starting point for the understanding of the properties of the distorted 
systems. However, if the concentration of the distortions is large, it is necessary to leave 
translational symmetry, and to develop new methods. 

Starting from the ideal crystal, models of disorder may be constructed in various ways, 
as illustrated in figure IS. Models for glassy systems and amorphous semiconductors may 
be obtained by relaxing the lattice structure (structural disorder). A lattice with two or more 
different kinds of atoms distributed at random establishes the most simple model of an alloy 
(compositional disorder). 

A simple model for structurally disordered systems, such as amorphous metals, metallic 
glasses or heavily doped semiconductors, is provided by the Hamiltonian 

N P2 
2m j= l  

H = - + Y(r - Rj)  

where p is the momentum operator, m the effective mass of the particle and V, the potential 
energy of an atom at the site Rj ,  The distribution of the atomic potentials in space may 
be described by a (normalized) probability density distribution function P ( [ R j ) ) ,  In the 
simplest case of a completely random distribution of N statistically independent atoms 
within a volume C2 this is given by 

P ( [ R j ] )  = a - N .  (11 )  

This model has been used extensively in the theory of weak localization (Lee and 
Ramakrishnan 1985, Bergmann 1984, Vollhardt 1987, Vollhardt and Wolfle 1992). 

Also commonly used is the following model, which is defined on a lattice and is 
particularly convenient for the treatment of compositionally disordered solids, such as alloys: 

Here cj” are the energies associated with the states labelled by U at the sites j of the lattice, 
and the non-diagonal elements V j v , k F  denote the matrix elements between the states. The 
diagonal part of the Hamiltonian corresponds to the potential energy and the non-diagonal 
part to the kinetic energy in the continuous space description (IO) .  Disorder is introduced 
by taking the site energies and/or the hopping matrix elements at random, and assuming 
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( C )  (11 

Figure 15. Different SON of disorder that CM be modelled by starting from the ordered limit 
(0). Identical atoms sitting at random positions represent stmctural disorder (h). when the 
position are such that the number of the nearest neighbours is constant the system is called 
topdogicnlly disordered (c). Two different kinds of aoms sitting U the sites of M ideally 
ordered lattice represent the simplest case of compositional disorder (d), while an assembly of 
randomly arienled spins is a typical example of an orientationally disordered system (e). A 
regular lattice of identical atom connected with two different kinds of hopping matrix elements 
is the most simple case of a system with randomness in the kinetic energy. for instance induced 
by a random veuor potential (f). 

some probability distribution function for them. The simplest case is that of pure diagonal 
disorder, 

with statistically independent site energies 

Examples are the completely random two-component (A, B) alloy, 

P ( 6 j u )  = 4[6(6jv - EA) + 6 ( c j u  - 6B)l 
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and the Anderson model, 

(16) 1 1  
P ( € j L > )  = W W T W  - l 6 j ” I )  

which may also be considered as an alloy with infinitely many components. A common 
example of non-diagonal disorder is the local gauge-invariant model, 

~ ( { € j u ~ ,  { Y ~ , P @ L J )  = nSC€jv)  
;U 

(17) 
2[6(1.;,,,, - V) t 6 ( 5 u , k f l  t V)] j ,  k nearest neighbours 

x n ( ’  j ” . k f l  S ( V , ” . k W )  otherwise. 

Although primarily of theoretical interest because of its apparent simplicity, the local gauge- 
invariant model represents a physically rather peculiar and interesting situation. In order 
to see this, consider the case of nearest-neighbour non-diagonal matrix elements which 
fluctuate randomly between + V and - V> 

1.;~ = V exp(iSjjklr) (18) 

where Sj, = 0, 1 at random. As we shall explain below, the product of the phase factors 
of the bonds making up any closed loop gives the magnetic flux through that loop. For a 
single unit cell 4, = a4,o = BaZ (a is the lattice constant, B a fictitious magnetic field and 
4,o = h/e the magnetic flux quantum). Thus, depending on whether the sum of the s j k  

in the closed loop around a unit cell is even or odd, 4, = 0 or 4, = 1/200, respectively. 
Therefore, although the Hamiltonian is real and symmetric, it can be considered as describing 
the quantum mechanics of a spinless particle in the presence of a randomly oriented magnetic 
field, the magnitude of which fluctuates at random from unit cell to unit cell between the 
values B = 0 and B = h/(2ea2). Apparently the model is the most simple version of a 
so-called random phase model, where 

Vjt = V exp(i@;ji) (19) 

with 0 5 @;A 5 2 n  at random. The latter model represents a system with a magnetic field 
which varies at random from unit cell to unit cell. 

Let us now convince ourselves that it is indeed a magnetic flux which is represented 
by complex phase factors in the off-diagonal elements of the Hamiltonian. We start by 
asserting (Feynman 1965) that the transition probability amplitude between two sites z and 
9 of a quantum particle of charge e, when moving under the influence of a magnetic field 
of flux density B ,  acquires a phase factor 

Vx,(B) = V,,(O)exp ( i(e/fi) L A 4  (20) 

where A is the vector potential, B = V x A, and the line integral in the exponent runs 
over an arbitrary path between x and y .  When the path is closed the integral can be written 
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where the surface integral represents the magnetic flux through the enclosed area. In the 
above case of a discrete Hamiltonian, the integral must be replaced by a discrete sum over 
lattice points. Hence, the relationship of the local gauge-invariant model discussed above 
in a (fictitious) magnetic field becomes obvious. 

The special case of a homogeneous magnetic field is of particular interest since 
it  represents a very simple experimental tool for changing the fundamental symmetry 
properties of a system, which are very important for the critical behaviour at the Anderson 
transition, as we shall explain below. 

In the continuous model (IO) the influence of a magnetic field may be incorporated by 
replacing p by p - eA where A is the vector potential. For a homogeneous magnetic field 
B .  in the z direction convenient choices are 
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Landau gauge 
(22) 

A = B [  (0, - x ,  0) 
l /2(y,  --x. 0) Symmetric gauge. 

The corresponding tight-binding Hamiltonian can easily be deduced from (12) by using 
the discrete version of (20). In the Landau gauge, for instance, one obtains in three 
dimensions 

V l , . a m w , ( B )  = h"l" 'n ' , (O)  

x (exp(iZnincu)Si,~S,",.,*~S~," + & , . i + i L d n , .  + 6 i d m d . , , , * ~  I 
(23) 

where (lmn) denote the integer Cartesian components of the lattice points of a simple cubic 
lattice, and 01 = Ba2/Oo is the number of magnetic flux quanta in a unit cell. The magnetic 
field is introduced here via the so-called Peierls substitution (Luttinger 195 1). 

Although looking rather specialized at first glance, Hamiltonians of the type of (12) 
have many applications in various areas of the physics of disordered systems. They may be 
used to describe the vibrational properties (Dean 1972) as well as the electronic properties 
ofamorphous semiconductors (Kramer and Weaire 1979) and alloys (Elliott etal 1974) and 
spin glasses (Edwards and Anderson 1975). The n-orbital model, which is nothing but the 
Hamiltonian (12) with n states per lattice site, was used to establish the scaling theory of 
localization (Wegner 1979a, b, c, Oppermann and Wegner 1979). 

The Anderson model has been extensively used in numerical studies of the localization 
problem. Most of the results that follow are based on this model Hamiltonian. 

The most general single-particle Hamiltonian which may be used for the description of 
a disordered system is of the form 

H = Hkin + V (24) 

where Hun and V are the kinetic and the potential energies of the particle, respectively. In 
(IO) Hun corresponds to p2/2m and 1' is the (random) superposition of the potentials of 
the atoms. 

A convenient choice of the distribution function of V is the generalized Gaussian 

P ( [ V ] )  = Cexp(- j V(r)K(r,T')V(T')drdr' (25) 

The normalization constant C is determined by the functional integral 
The function K is the inverse of the correlation function of the potential (Papoulis 1984), 

D [ V ] P [ V ]  = 1. 
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A special case is the Gaussian white noise potential specified by 

such that K ( T .  T’)  = ( V ’ ) ~ ( T - T ’ ) .  The averages in (26) and (27) are defined as functional 
integrals, 

+m 
(.. .) = / D [ V ]  P [ V ]  .. . . 

-m 

This most convenient notation has been used in the derivation of the non-linear a models 
(Wegner 1979b, 1985,Hikami 1981, Levine etal 1984, Pruisken 1984, Weidenmuller 1987). 

4.2. Properties of the electronic spectrum 

In the case of an ideal crystal a characteristic feature of the density of states is the occurrence 
of van Hove singularities. which are due to the long-range order. There are sharp band 
edges, for instance. A disordered system does not have any long-range order. There are no 
singularities in the density of states. This can be proven rigorously for the tight-binding 
model considered above with the diagonal elements being given by a smooth distribution 
function (Wegner 1979b). In particular, there are no sharp edges, but smooth band tails 
instead. A number of theoretical approaches deal with their analytic form. The exponential 
behaviour of the band tails 

n ( E )  = Aexp(B[&(E: - (29) 

can easily be obtained for a random d-dimensional two-component alloy, and for the 
Anderson model with rectangular distribution of the site energies by using a famous 
argument that is due to Lifshitz (1965). E,” are the true upper and lower (Lifshitz) bounds 
of the spectrum in these cases, and A, B are model-specific constants. As the Lifshitz 
argument is physically extremely instructive we repeat i t  here in  brief. 

We consider the above tight-binding model (12) with diagonal disorder and the 
distribution function (15). Only two values of energy, say +$ W and -$ W ,  are allowed for 
the lattice sites, each of which is assumed to be surrounded by Z nearest neighbours. 
Then the electron states with energies close to the true band edges that are given by 
Eo * - - k ( Z V  + $ W )  will be localized within a potential fluctuation of a sufficiently large 
volume C2 = L d .  They will be standing waves with the (smallest) wavenumber - x / L .  
The lowest energy level is then given by (for the lower band edge, for instance) 

L 4  constant 
2m 

E = E r + -  

The value of the constant depends on the shape of the volume. Its minimum value is 
attained for a sphere. The probability for the appearance of such a spherical region is given 
by cR if c is the probability of having -+W at a lattice site (at the upper band edge it 
would be (1 - c)*).  Expressing now the volume in terms of the energy of the lowest level 
one obtains the above result for the density of states. 

The Lifshitz result has  been rederived and extended to other distribution functions 
by various authors using variational (Zittarz and Langer 1966) and path integral methods 
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Figure 16. Qualitative picture of the density of states of the Anderson model. The states in the 
band tails are localized while those in the middle of the band are extended. EC and E& denote 
the mobility edges. 

(Friedberg and Luttinger 1975). For the Gaussian distribution one obtains (Houghton and 
Schafer 1979) 

n ( E )  = Aexp(-BIE/2-di2). (31) 

The density of states is shown qualitatively in figure 16 for a system with only one hand. 
Intuitively, and this can also be seen by using an argument due to Lifshitz, it is obvious 

that the states in the tails of the hand are localized within finite regions (of diameter L) of 
the (infinite) system. However, this does not mean that the localization length, which will 
be later defined as the asymptotic decay length of the states, is given by L. 

At energies far away from the band edges one may expect that a weak random 
potential cannot localize the states to finite regions of space. Instead, the amplitude of the 
states, although fluctuating more or less randomly, will be non-zero essentially everywhere. 
Consequently, these states will be called extended. Within the energy region of extended 
states no localized states can exist. To see this, let us assume that there is a localized state 
in the extended region for some configuration of the disorder. Then, by infinitesimally 
changing the disordered potential, coupling between the localized states and the extended 
states is introduced and the localized state hybridizes with the extended states into new 
extended states. As a consequence certain energies, denoted by E, and E: in figure 16 
must exist which separate the extended from the localized states. As we shall see later, 
localized states do not contribute to transport, even if they are situated energetically at the 
Fermi energy, whereas extended states do. Thus, E, and E: are denoted as mobiligv edges. 
In general, the mobility edges depend on the disorder. If the latter is large enough they will 
merge into the centre of the hand. The system becomes an insulator. 

This picture is due to Anderson (1958). The transition from a metallic to an insulating 
system induced by the disorder is therefore called an Anderson transition. The concept of 
mobility edges was introduced by Mott (1968). There is no rigorous proof that extended 
states must exist near the centre of the band. Establishing such a proof is one of the 
main subjects of the theory of localization. Up to now, the only mathematically rigorous 
statement concerns the existence of extended states in one dimension, namely that for any 
finite amount of disorder there are no extended states in d = I ,  a statement which was 
already made by Mott and Twose (1961). In two dimensions the present general belief is 
that there are also no extended states, even for infinitesimally small disorder. However, 
as this helief is based only on an approximate theory (the so-called one-parameter scaling 
theory, to he discussed later), this question must be considered to he still unsolved. The 
important lesson to he learnt at this stage is that the phenomenon of localization depends 
on the dimensionality. Below we shall see that this provides a possibility for experimental 
tests of the theory. 



Localization: theory and experiment 1495 

In order to understand the physical mechanisms leading to localization of the quantum 
states in random potentials better it is instructive to consider first a classical particle moving 
i n  a random potential V ( x )  in one dimension (figure 17). For simplicity, we take the 
potential to be restricted to values smaller than Eo. Then one can decide by simple energy 
considerations whether or not the particle is localized. If the total energy E is smaller than 
Eo the particle is confined to finite intervals, within the (accidental) potential wells. On the 
other hand, if E > EO then it can move along the whole x axis. 

p D O i l i 0 ”  

Figure 17. Classical particle in a ID random potential. The motion of the panicle is restricted 
to finite intervals far El i Eo. For E2 > Eo the motion is unrestricted. 

For a quantum mechanical particle it is more complicated to distinguish the character 
of the states. On the one hand, the potential barriers cannot absolutely confine the particle 
to a certain well because of tunnelling. This may even lead to complete delocalization 
of a classically localized particle. On the other hand, for E > Eo repeated scattering at 
the potential fluctuations may eventually lead to a superposition of destructively interfering 
waves in such a way that a classically extended particle may become localized. Besides 
potential localization it is the competition between tunnelling and interference which 
determines whether or not a state is localized. 

An example for localization via quantum interference is the above mentioned one- 
dimensional localization. An example for delocalization via tunnelling, although not related 
to disordered systems, are the Bloch states in a crystal, in particular those which correspond 
to the core states. 

4.3. Quantities of interest, ensemble averages 

The simplest quantity which may be considered is the spectral density of energy levels E,, 

(32) 
1 

n ( E )  = n C 6 i E  - E ” ) .  

This can be written in terms of the one-particle Green’s function (Economou 1983) 

G(T,  T ’ ;  E*) = ( T 1 E i i q - H  I 1.0 (33) 

as 

(34) 
1 
no 

n ( E )  = F- Tr{ImG(E*)J. 
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For the sake of simplicity we omit the explicit statement of the limit q -+ 0, here. and in 
the following. 

As mentioned above, the localization properties of the states influence the transport 
properties of the system. Therefore, the theory of localization is essentially a theory of 
the transport properties, i.e. the electrical conductivity U,  The latter i s  given by the Kubo 
formula, 
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(35) 

Here, f(&) is the Fermi function, Ea,@ are the energy eigenvalues corresponding to the 
eigenstates denoted by la), IB), and T and o are the temperature and the frequency of the 
electric field, respectively. p is the projection of the momentum operator onto the direction 
of the electric field. In the mean free path approximation one obtains the DC conductivity 
(Mott 1970), 

ezkge 
U& = - 

3n2h 
where e and kF are the mean free path and the Fermi wavenumber of the uniform system, 
respectively. A first restriction on the mean free path classical result is given by the 
1offe.-Regel criterion (Ioffe and Regel 1960) which states that e should be greater than the 
wavelength in order for the expression (36) to be valid. At least, if e is of the order of or 
smaller than the wavelength then a full quantum mechanical calculation of the conductivity 
is needed. 

In terms of the above mentioned one-electron Green's function the conductivity may be 
written as 

x Tr(pImC(Ef + ho)pImG(E+)}. (37) 

In this form we will use it in the later sections of this review. 
As we have replaced the system to be considered by astatistical ensemble by introducing 

a probability distribution in the preceding section all of the physical quantities have to be 
configurationally averaged. However, this will yield physically meaningful results only if 
the quantity considered is self-atmeraging in the usual statistical sense, i.e. if 

(A)  = lim A(C2). 
n-m 

In connection with localization this property is not trivially fulfilled, as we shall see below, 
even in the metallic limit where the conductivity is large, and may be approximated by the 
mean free path expression. If a quantity is not self-averaging, then, in principle, one has 
to consider its probability distribution function (Lerner 1991b), or, equivalently, all of its 
moments. 

5. Definitions of localization 

In this section we want to summarize some of the definitions of localization which have 
been used in recent years. Again, instead of being complete, we emphasize the main ideas. 
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5.1. Asymptotic behaviour of wavefunctions 

The wavefunctions in a random medium may be physically characterized by various 
parameters such as their average diameter, the fraction of the volume of the system which 
they occupy, spatial correlations between their amplitudes and phases, and their asymptotic 
behaviour, and, indirectly, by their transport properties. As we shall see, the latter are 
closely related to the spatial correlation of the amplitudes and to the asymptotic behaviour. 

The asymptotic behaviour of a localized state is usually described by the exponential 
decay length of its envelope, A, the localization length, i.e. 

@(r)  = f ( r ) e d A  (39) 

where f ( r )  is a randomly varying function. A + 00 corresponds to an extended state. In 
practice this definition is not very useful, since its application would require the calculation 
of single eigenstates. It is more convenient to define the localization length in connection 
with the transport properties. 

5.2. The inverse participation number 

In order to decide whether or not a state is localized it is often sufficient to consider the 
second moment of the probability density (Wegner 1980), 

This is the inverse participation number. It is a measure of the portion of the space where 
the amplitude of the wavefunction differs markedly from zero. It may also be considered 
as providing a measure for an average diameter R of the state via R = For plane 
waves one obtains that P = Ld,  i.e. equals the volume of the system, and diverges in 
the thermodynamic limit. Such a behaviour may be considered as being representative of 
extended states. 

One may define thefractal dimensionality d* of a state by (Aoki 1983c, 1986, Kramer 
eta1 1988) 

iim P = L ~ ' .  ( 4 0  
L+W 

For plane waves d = d*. For a general extended state d* may be different from the 
Euclidean dimensionality, i.e. d* 5 d. For a localized state P is proportional to the volume 
in which the state has a non-vanishing amplitude. This volume tends to a constant in the 
thermodynamic limit. Thus, the fractal dimensionality vanishes in the case of localized 
states. 

Considering the higher moments of the probability density one may correspondingly 
define higher fractal dimensions. If the latter are not given by integer multiples of d" the 
states show mulrifracral behaviour (Huckestein and Schweitzer 1991, Pook and Janssen 
1991). 

It is important to note that in general R # A. This can be seen by considering the case of 
the states in the exponential tails of a band. As discussed in the preceding section these are 
due to occasional potential fluctuations within macroscopically large volumes. Thus, their 
average diameter is macroscopically large. On the other hand, the asymptotic behaviour 
of the states is determined by their exponential decay into the space outside the potential 
fluctuations. The corresponding length is inversely proportional to the square root of the 
energy. Since we consider the asymptotic regime of the density of states the energy is very 
large. Consequently, the exponential decay length becomes very small (figure 18). 
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Figure 18. Localimion of a swfc WX) in U accidental potenlid well V ( x )  in the Lifshirz mil 
of a band. The localization length A is dificrent from lhe 'diameter' R of the state. 

5.3. Absence of diffusion 

The character of the states near a given energy determine the transport properties of the 
system near the absolute zero of temperature. In particular, one has a vanishing zero- 
temperature DC conductivity U& if there are only localized states near the Fermi energy 
EF. 

Inserting the momentum operator 

m 
P = z [ H .  rl 

into the Kubo formula (37), and taking into account that 

H = z - G - '  

yields 

(42) 

(43) 

2 2  1 
udc = -- Iim lim -Tr(2q2(G+(E)rG-(E)r) - iqr2{(G'(E) - G-(E)))]. 

h n-0n-m C2 
(44) 

As previously in the case of the momentum operator (39, r is the projection of the position 
operator T onto the direction of the electric field. 

The second term on the RHS is easily shown to be equivalent to Tr{(G+G-r2)] by using 
spectral representation. Therefore, and because 

( I ( T  I G + ( E ) I T ' ) ~ ~ )  = {IG'(~T - ~ ' 1 ;  E)I2) (45) 

due to homogeneity and isotropy, we obtain 

The expression on the RHS of this equation gives the square of the mean distance the 
electron-hole pair described by G+G- can diffuse within an infinite time interval (figure 19). 
If it is finite, the DC conductivity vanishes at zero temperature, The states are localized in a 
finite region of space. The convergence of the mean diffusion length in the localized regime 
can be used to define a characteristic length, the localization length, that characterizes the 
asymptotic behaviour of the electronic states at large distances. 
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Figure 19. The transmission of an electron between sites P and 7'. Classically there is one. 
and only one, path the electron can travel. It is given by the classical equations of motions and 
the initial conditions. Quantum mechanically all possible paths have to be taken into account. 

5.4. Transmission through random potentials 

The absolute square of a Green's function is the probability for the transition of an electron 
from the site r to the site T I ,  

r ( T , + ;  E )  = ( ~ ( r  I G ( E + ) / + ~ * ) .  (47) 

In the following t(r,r': E )  is often called the transmission probability. If t decays 
exponentially for large distances then the mean diffusion distance in (46) is finite. The 
localization length A may now be defined by using the exponential decay of the transmission 
probability as 

l n t ( r , r ' ;  E )  
lim 

2 
A I~- -~ ' l+cc /T - r'l ' 

_ = _  

If the states near the Fermi energy are asymptotically localized, as defined in (39), then the 
localization length is finite. This may be most easily seen by using the spectral representation 
for the Green's function. 

5.5. Absence of diffusion and inverse participation number 

The two-particle spectral function may also be related to the inverse participation number 
of (40). Defining the average return probability of a particle within a time interval q-' by 

1 
ACT, E .  17) = ~ ( 7  16,(E - r)' (49) 

where 6, is the Lorentzian definition of the 8 function, and the last equality presupposes 
homogeneity of the system. The average inverse participation number is given by 

where p ( E )  is the density of states. The inverse participation number conesponds to the 
probability that a particle will return to the same site after an infinite time interval (Thouless 
1974, Wegner 1980, Weaire and Williams 1977). 

If P remains finite in the thermodynamic limit, then the particle cannot diffuse away 
from a given point even within an infinite time interval. 
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Figure 20. Quasi-one-dimensional system of the size L x M x M used for the recursive 
ealeulatition of the Lyapunov exponents. 

5.6. Sensitivity to borrnda~y conditions 

Another possibility to investigate the localization properties of the states is the shift of the 
energy eigenvalues of a finite system due to small changes in the boundary conditions, as 
was proposed by Edwards and Thouless (1972). The average energy shift, 6E, in  second- 
order perturbation theory, is related to the conductivity by 

where A E  is the average energy spacing of the eigenvalues and f a numerical factor 
depending on the details of the model used (square or triangular lattice, for instance). g ( L )  
is called the Thouless number. The idea is that for localized states the mean energy shift will 
become very small for large system sizes such that g ( L )  vanishes exponentially whereas 
in the metallic regime the boundary conditions will always influence the energy levels, 
even for infinite systems. Although the assumptions made in  deriving (51). which concern 
the statistical behaviour of the energy differences in the system and the corresponding 
momentum matrix elements, do not seem to be very well satisfied in detail (Kiihl 1980). the 
sensitivity to boundary conditions has turned out to be very useful in practical calculations, 
see e.g. Licciardello and Thouless (1975a, b, 1978), besides being conceptually important 
for the formulation of the scaling theory of localization (Abraham er a1 1979, Wegner 
1976). 

5.7. Lyapunov exponents 

For I D  and quasi-ID systems the localization length may be calculated from the limiting 
behaviour of products of random matrices (Mehta 1967, Ishii 1973, Derrida er al 1987, 
Muttalib eta! 1987, Pichard and Sanquer 1990, Pichard 1991a, b, Feng and Pichard 1991). 
The simplest derivation of this fact is obtained by writing the Schrodinger equation of 
the tight-binding Hamiltonian (12) for a bar shaped system (figure 20) as an initial value 
problem. For a system of dimensions Md-' L 

~ L + I  = V- I (E  - H L ) ~ L  - (52)  

Here, H L  and V are M"-' x Md-l matrices, representing the Lth layer and the coupling 
matrix between two adjacent layers, respectively. aL is the Md-'-dimensional vector 
containing the coefficients of the states. 
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Using the transfer matrix notation 

E - H L  -V 
T L = (  0 

the evolution of the state is described by the matrix product 

such that we can write 

(53) 

The product matrix satisfies the theorem of Oseledec (1968), namely that there exists a 
limiting matrix 

with eigenvalues exp(yj), where ~ y j  denotes the characteristic Lyapunov exponents of QL. 

The smallest of these eventually determines the slowest possible exponential increase of 
the state for L + CO. Therefore, it may be identified with the inverse of the longest 
exponential localization length in the qUaSi-lD system of cross-sectional area Md-! This 
definition gives the same result as (48) when applied to the present situation. If we replace 
the vectors a, in (55) with Md-' x Md-' matrices a,, where a, = I and a,, = 0, then 

= G(1, L; E ) ,  the submatrix of the Green's function between the 1st and Lth slices. 
This may be seen by comparing (52) and (55) with the resolvent equation (z - H)G(z) = 1. 

The Lyapunov exponents may by used directly to calculate the conductance g of a 
quasi-ID system (in units of e 2 / h )  (Pichard 1984, Pichard and Andr6 1986), 

L 

QQt + (QQ+)-l + 2 
g = Tr (57) 

the trace being performed within the subspace of the states that correspond to the cross- 
sectional plane. Using the M"' = N eigenstates of the Lyapunov exponents one obtains 

* 2  
coshZ yj L j=l  

g=C 

This relation is very useful in numerical calculations of the conductance, and also for the 
investigation of its statistical properties. 

6. One-dimensional localization 

I D  disordered systems play a key role in the understanding of the properties of solids 
since many features of the electronic states, and of the related transport properties, can be 
discussed rigorously. We concentrate in this section on the localization of the states, the 
behaviour of the conductivity of the infinite system, the conductance and the resistance of a 
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finite system at the absolute zero of temperature. The statistical properties of the transport 
quantities will be discussed in section IO. 

We consider the tight-binding Hamiltonian (12), lattice spacing a 5 1 with only nearest- 
neighbour hopping and one state per lattice site, i.e. 
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N 

where V is the constant hopping matrix element. aj, ~ j * l  are amplitudes of the 
wavefunctions associated with the lattice sites, and E, are the corresponding energies. 
Only the case of statistically independent site energies is considered here (see (14)). The 
influence of statistical correlations has been discussed in the literature. The main result is 
that although interesting quantitative effects occur, such as a decrease of the localization 
length with increasing correlation length in certain energy and disorder regions (Johnston 
and Kramer 1986, Kasner and Weller 1986), the asymptotic behaviour in the weak disorder 
region is not changed. These results strongly support the common belieh namely that the 
critical behaviour close to a mobility edge does not depend on the microscopic details of 
the randomnesst. 

Particularly convenient distributions of site energies are the Gaussian and box 
distributions. A measure of the disorder is the width W of the distribution function. All 
necessary ingredients for a non-trivial description of localization are incorporated in this, 
under the circumstances, extremely simple model. 

6.1. The localization length 

In one dimension all eigenstates of a random Hamiltonian are exponentially localized in the 
asymptotic sense. An example obtained by numerical diagonalization is shown in figure 21 
(Czycholl and Kramer 1980). 

E=Q.OLIDV 
w;*.ov 1 

a '  r, "111 1, ; , , , 
. O . l  

4 0 0  I O 0  6 0 0  7 0 0  8 0 0  

1 

Figure 21. Amplitudes of a localized suite. a],  obtained by numerical diagonalhtion of he 
I D  Anderson model (59). Parameters are L = 1000, E = O.O89V, width of box distribution 
W = Z V .  j denotes the lattice sites. 

t Although there is no mobility edge in one dimension in the strict sense, one may consider the region near W = 0 
as the critical region. 
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The inverse exponential decay length of the eigenstates may be calculated from 

(60) - 2y = lim 7 1 2 2  h ( a j  + a,+,) 
I+m J :. 

with [uj] the solutions of the time-independent Schradinger equation. In general, it will 
depend on the particular realization of the random potential, y = y ( ~ ] ,  . . . , cL) .  However, 
as we shall discuss below, the localization length (and its inverse) are self-averaging 
quantities. Their configurational averages agree with the most probable values in the 
thermodynamic limit L -+ W. 

The calculation of the exponential increase of the wavefunction by means of the transfer 
matrix method (cf section 5.7) is in this case particularly simple. The transfer matrix reduces 
to a 2 x 2 matrix. There are only two Lyapunov exponents, which have the same magnitude 
but are of opposite sign. The eigenvalues of the limiting matrix r are thus inverses of 
each other. a, is for j + w exponentially increasing with a characteristic length y(E)- ' .  
Since this is again self-averaging one may assume continuity with E,  and identify y-' 
with the inverse localization length defined in (60). This conjecture can also be justified by 
constructing the eigenstates by fitting particular solutions, which are exponentially increasing 
from the left and the right end of the system, to each other. The eigenvalues of H are then 
defined as those energies at which a continuous fit is possible (Mott and Twose 1961). 

The identification of the localization length as a limiting property of a product of random 
matrices also immediately provides the proof that in a one-dimensional stochastic system 
all eigenstates are localized (Molcanov 1978, Kunz and Souillard 1980, Delyon et al 1983), 
independently of the magnitude of the disorder W (# 0), via the theorem of Fiirstenberg 
(Ishii 1973). 

Many calculations of the localization length have been performed using a variety of 
methods. Perturbational treatments (Thouless 1979, Kappus and Wegner 1981, Derrida and 
Gardner 1984, Lambert 1984, Johnston and Kramer 1986, Kasner and Weller 1986) were 
very successful in the weak disorder limit. More recently it has been possible to extend this 
well beyond perturbation theory to give an almost complete description (Pendry 1982a, b , 
1986, 1987, Pendry and Kirkman 1984, 1986, Pendry et a[ 1986, Slevin and Pendry 1988, 
Pendry and Barnes 1989). Numerical procedures (Czycholl and Kramer 1980, MacKinnon 
1980, Czycholl et al 1981, Thoules and Kirkpatrick 1981, Pichard 1986) were designed 
to treat even macroscopically large systems. We describe here briefly a recursive method 
which is very similar to the above described transfer matrix method and the result obtained 
by second-order perturbation theory. 

Identifying T and T' in (47) with the first and the last site of the lattice underlying the 
ID-tight-binding Hamiltonian we obtain for the inverse localization Iength (48) ( y  E l / A )  

where G:,(E) is the matrix element of G+(E) between the states that correspond to 
the first and Lth sites of the system. As mentioned above, it is also given by a;:1. 
r ( L ,  E )  = IGIL(E)I2 gives the transmission probability for a particle to be transferred from 
site 1 to site L.  Since y is always finite in one dimension, an infinitely long I D  disordered 
system cannot be transparent, even in the limit of very weak disorder. 

Writing 
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where 
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is the diagonal element of G at the end of a system of length m, we obtain 

L - 1  1 
L YL-I  + - I n  IgLL YL = - L 

This recursive equation for the inverse of the localization length is especially useful for 
numerical purposes. It can also be easily generalized to higher dimensions by using the 
bar-shaped geometry described in the preceding section in connection with the Lyapunov 
exponents (MacKinnon and Kramer 1981, 1983a). 

There is a relation between the spectral properties and the localization length which was 
discovered by Herbert and Jones (1971). It may readily be derived by calculating G ~ L  as 
the inverse of E - H, and using (61): 

where p ( E )  is the density of states. The diagonal elements of the Green’s function may 
be evaluated in second-order perturbation theory (Thouless 1979). In the limit of small 
disorder one obtains (IEI < 2 V )  

i.e. y(0)  = W2/96V2 for small W. 
The numerical results which were obtained by using (64) are consistent with y(0) = 

Wz/105V2 (Czycholl er al 1981, Pichard 1986). The difference in the prefactor is due to 
an anomaly in the band centre which originates in resonance effects leading to a breakdown 
of second-order perturbation theory (Kappus and Wegner 1981, Derrida and Gardner 1984, 
Lambert 1984). As mentioned above, the result that the localization length of a ID disordered 
system diverges at W = 0 as W-’ remains true also for the case of a spatially correlated 
potential. 

6.2. Localization arid transpoi? 

That the DC conductivity vanishes in I D  disordered systems has been shown analytically by 
Kunz and Souillard (1980) and numerically for the one-dimensional Anderson model with 
rectangular distribution of the site energies by MacKinnon (1980), Czycholl et al (1981), 
and Thouless and Kirkpatrick (1981) by using the DC Kubo formula (44) at the absolute 
zero of temperature in a recursive procedure similar to the one described above for the 
localization length. The results are plotted in figure 22. 

Within the accuracy of the calculation the conductivity scales as ( q  imaginary part of 
the energy) 

o(q, W )  = W-%(qW-Z, 1). (67) 

It is only for large disorder (W > 5 )  that one observes deviations from this behaviour. The 
scaling law allows for the necessary extrapolation with q + 0 for any fixed U’. For large 
q one has U - q-l (classical, Drude-like behaviour) whereas for small q the conductivity 
tends to zero linearly with q.  
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Figure 22. The DC conductivity of the one-dimensional Anderson model with rectangulw 
distribution of site energies as a function of the disorder, W. and the imaginasy pa3 of the 
frequency. q .  

6.3. Theory of the averages of resistance and conductance 

Classically, the conductance g ( L )  of a d-dimensional hypercube of volume Ld is related to 
the conductivity by 

g ( L )  = oLd-2. (68) 

Since the conductivity vanishes in the localized regime, it is no longer a useful parameter 
when considering the transport properties of a macroscopic, but finite, sample. One should 
have a theory of the conductance (or, equivalently, of its inverse, the resistance) without 
referring to the conductivity. 

A very simple equation for the resistance R(L)  of a ID wire of length L has been 
given by Landauer (1970). The basic idea is to consider the charge transport through the 
disordered wire, which is thought to be connected to ideally conducting wires on the left 
and on the right, as a quantum mechanical transmission problem. The voltage is generated 
by a difference in the charge densities on the left- and the right-hand sides of the wire. The 
current is given by the total number of particles transmitted through the wire at the Fermi 
velocity. The result is 

h 1 - t ( L )  
e2 t ( L )  

R ( L )  = -- 

where t ( L )  is the transmission coefficient. Generalizations to quasi-ID systems (many 
uansmission channels) have been discussed by several authors (Anderson et a1 1980, 
Langreth and Abrabams 1981, Fisher and Lee 1981, Economou and Soukoulis 1981a, b, 
Thouless 1981, Anderson 1981, Landauer 1985, Biittiker et a1 1985, Pendry 1982c, 1984, 
1989a, b, Pendry and C a s t ~ o  1988, Pichard 1984, Pichard and Andr6 1986, Carton et al 
1986, MaSek and Kramer 1988, 1989). 

A dimensionless resistance may be defined by r ( L )  = R(L)e*/h = t (L)- '  - 1. As the 
logarithm of [ ( L )  is statistically a well-behaved quantity (it obeys the central limit theorem) 
and its configurational average is asymptotically equal to - y L ,  one may expect that the 
resistance is an exponentially increasing function of L,  on the average. In addition, the 
probability distribution of r will not fulfil the central limit theorem. The exponential increase 
of the resistance has been proven for a variety of models by several authors (Abrahams and 
Stephen 1980, Andereck and Abrahams 1980, Stone et al 1981, Kree and Schmid 1981, 
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Sak and Kramer 1981. Kirkman and Pendry 1984a, b, Mel'nikov 1981). In the following 
we reproduce briefly the elementary derivation by Abraham and Stephen. 

In order to calculate the averagc resistance of a system of length L one has to consider 
the configurational average 
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UL = (Q'Q) = (Tj . . .TtTL..  .TI). (70) 

Since the transfer matrices are statistically independent this yields a recursion relation 

UL+I = (T~+~ULTL+I). (71) 

If one takes (6))  = 0 then UL is diagonal, and can be cast into the form UL =  ANT^ + 6' 
where T~ is the Pauli matrix. The largest eigenvalue of the recursion relation (71) is 

(72) I I 2 1/2 YI = p 2 + + ( 1 + p 2 )  

with UT = (€7). Thus, asymptotically one has 

(r(L)) = e x p { L l n y ~ )  =exp{qL/2 ]  =exp(y,L] (73) 

where y, In y~ = uz/2 is the inverse of a localization length which is characteristic for 
the exponential increase of the average of the resistance. 

The dimensionless conductance, g ( L ) ,  is defined as the inverse of the dimensionless 
resistance, r(L). The calculation of the corresponding configurational average is much more 
complicated than in the case of the resistance. It has been performed by Abrikosov and 
Ryzhkin (1978) in the limit of weak disorder. Kirkman and Pendry (3984b) have treated 
the general case. Elaborate numerical calculations have been done by MarkoS and Kramer 
(1993a). The result for weak disorder, and in the centre of the band ( E  = 0), is 

( g ( ~ ) )  0: ( ~ ~ ~ ) - ~ / * e x p ( - + u ~ i )  (74) 

i n  the limit of large L. Thus, ys = s / 1 6  is the inverse of the localization length which is 
characteristic for the exponential decrease of the average conductance. 

By comparison of (66) and ( 7 2 x 7 4 )  one observes that in the weak disorder limit there 
are relationships between the various localization lengths, namely 

That the three lengths do not agree with each other reflects the fact that the resistance and 
the conductance are not self-averaging in ID  disordered systems (Sak and Kramer 1981). 

In addition to the fundamental statistical effects in the DC transport properties, one can 
expect interesting and novel statistical features in time- and frequency-dependent transport. 
First studies were done for one dimension (Pendry et a( 1986, MaSek and Kramer 1988) 
and in the weakly disordered metallic regime (Falko 1989). 
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I. Weak localization and quantum interference 

The limit of a weak random potential was considered as rather unimportant for the 
localization problem until it was rediscovered (Abraham er a1 1979, Gorkov et a1 1979) 
that there exists a certain class of diagrams, the maximally crossed diagrams (Langer and 
neal 1966). in the perturbation expansion of the conductivity that could be summed exactly 
for non-interacting time-reversal invariant systems, and gives logarithmic corrections to the 
low-temperature and low-frequency conductivity in two dimensions. The conclusion was 
that the zero-temperature and zero-frequency conductivity of disordered systems without 
interactions and for zero magnetic field always vanishes for d 5 2, and consequently all 
quantum states must be localized. A considerable body of quantitative theoretical and 
experimental work followed this discovery. One of the important points was that the 
diagrams could be interpreted physically as quantum interference processes that give rise to 
an enhanced backscattering. This point of view could be verified directly using a type of 
Aharonov-Bohm configuration but with normal metal cylinders instead of superconductors 
(Aronov and Sharvin 1987). We will not repeat here extensively the formal theory. It has 
already been treated very elaborately in many review papers Wollhardt and Wolfle 1992, 
Lee and Ramakrishnan 1985, Altshuler and Aronov 1985, Fukuyama 1985, Kawabata 1985, 
Bergmann 1984). Instead, in the first instance, we will sbess the physical point of view of 
the quantum interference in deriving the main results. 

7.1. Quantum interference 

Let us consider the limit of a weak random potential V(T). Then the Born series may be 
used to evaluate the Green's functions. One notes that the zero-temperature conductivity 
can be written as an infinite sum of terms of the form 

where 

(77) * T') = G:(T, TI)V(TI)G:(TI~ TZ)V(TZ). . . V(T~)G;(T~, 7') 

is the probability amplitude for a transition from T to T' when n scattering events at the 
random potential V ( r )  at the sites r 1  . . . T. are encountered during the process. 

That (76) is a valid representation of the average transmission probability may readily be 
seen from (47) by considering the resolvent expansion of the one-particle Green's function 
(33) 

where G: = (E* - Hd-' is the resolvent of the unperturbed system, and V(r )  denotes 
the random perturbation. Writing (78) in position representation one obtains 
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from which (76) follows immediately. The symbolic summations over TI , . . T, have to be 
evaluated as integrals if working in continuous space. When using the lattice Hamiltonian 
(12) the summations are over the sites of the lattice. The total probability amplitude (79) 
may be interpreted as a superposition of  all of the amplitudes corresponding to the specific 
paths denoted by TI . . . P, in (77). The transmission probability may be considered as a 
superposition of all possible paths between T and P' (figure 23). 

Figure 23. Graphical representation of the msi t ion  probability of an 'electron-hole pair' 
between the sites r and r'. ?be electron ( A d  and the hole ( A ; )  are scattered at the sites I, Z 
3. 4, 5. 6,  and 5'. 4'. 3'. 2', 1'. respectively. 

The first term in (76) represents classical diffusion from T to T' .  Loosely speaking 
the electron, represented by the retarded propagator G:, and the hole, represented by the 
advanced propagator G;, are scattered at the same intermediate sites (figure 24(a)). The 
summations include the number of scatterings as well as the specific paths of the electron- 
hole pair. The second term in (76) is due to quantum mechanical interference between 
different paths. 

(at (bt 

Figure 24. D i f u m ~  (0 )  and covpemns (b) are the most important contributions to the total 
quantum mechvical retm probability in weakly disordered systems. In the example shown in 
the figure electron and hole are assumed to be scattered at the same s i t s  ( I ,  2.3.4,s). However. 
in the case of the diffuson electron and hole travel in the S a m  (clockwise) direction, whereas 
for the cooperon they travel in opposite directions. Diffusons describe therefore scamring in 
the 'electron-hole channel', cooperons in the 'electron4ectron channel'. Position space (top) 
and reciprocal space mottom) d i n g "  are related by Fourier mformntion. 
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Due to the configurational average most of the terms in (76) are vanishingly small except 
for those in which the sites PI . . . r,, T ;  . . . rk are close to each other. For a white noise 
potential (27) they must be at least painvise equal. If T # T' the interference terms are 
always smaller than the diffusion terms. For closed paths, T = T', however, there is a class 
of interference terms which conaibute to the total transmission probability with an amount 
equal to that of the corresponding diffusion terms if the system is time-reversal invariant, 
i.e. does not contain any magnetic effects. These interference terms are characterized by 
the condition that ~t = r;, TZ = . . ., T, = T; (figure 24(b)). Physically they 
describe an electron and a hole which move in opposite directions around the loop whereas 
the corresponding diffision terms represent an electron and a hole moving in the same 
direction. As a consequence of the presence of the former, backscattering is strongly 
enhanced and forward scattering is reduced. Thus there is a correction to the diffusive 
(classical) conductivity (36) which is due to quantum interference and which reduces the 
conductivity. 

Whereas the diffusion terms (E [A.[') describe the molion of electron-hole pairs 
(difisons), the interference terms involving the same intermediate sites can be considered to 
describe the motion of an electron4ectron pair, the second electron being nothing but the 
hole moving along the time-reversed path T A  . . . T I .  Therefore. these latter terms are often 
called cooperons (Vollhardt and Wolfle 1980% b, 1992). In momentum space the di#usons 
correspond to the so-called ladder diagrams, to be discussed in more detail below. The 
cooperons are represented by the maximally crossed diagrams already discovered in 1966 by 
Langer and Neal (1966) (figure 24(b)). We will consider the momentum space formulation 
of weak localization in more detail in the following. The position space formulation was 
treated elaborately by Stone (1992). 

7.2. Diagrammatic expansions 

In this section we sketch the essential steps for the quantitative calculation of the weak 
localization corrections to the DC conductivity (Edwards 1958, Langer and neal 1966, 
Gorkov er a1 1979, Abraham et af  1979, Vollhardt and Wolfle 1980a, b, 1992, Hikami et 
al 1980) and provide, using as an example the one-particle Green's function, the basic tool 
for their evaluation: the language of Feynman diagrams. 

The starting point is the expression (46) for the Dc conductivity at zero temperature. 
For convenience it is transformed from position into momentum space by using 

and 

ddr exp(iq. v)r2 = -ViS(q).  (81) s 
We obtain 

The technique used in evaluating the configurationally averaged product of two Green's 
functions is called partial summation. It is based on the resohnr expansion of the one- 
particle Green's function (78) as a power series in the random potential (Born series), 
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Formally one can decompose the configurational average of the right-hand side 
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(G*) = G t  + G$S*(G*) (84) 

such that 

(G*) = (E* - Ho - S*)-'. (85) 

S' is the operator of the self-energy which plays the role of a complex-valued, average, 
effective potential for the motion of the particle. For completeness we add that via 

(GI)  = G t  + Gt(T*)Gt  (86) 

the resolvent is related to the scattering matrix Ti: of the random potential 

From the Born series (83) one readily obtains a power series for the configurationally 
averaged product of the two one-particle resolvent% Formally, this leads to a Bethe-Salpekr 
equation 

(G'G-) = {G+)(G-) + (G+)(G-)U(G+G-) (88) 

with an irreducible vertex operator U which plays the same role with respect to the motion 
of the two particles as the self-energy operator does for one particle. 

In order to obtain relations which are useful in practice we consider the momentum 
representation. The random potential is written as a superposition of impurity potential 
u(r) located at random positions RI . . . RN 

In momentum space, 

N 

V ( k ,  IC') (IC IVI IC') = xexp[ i ( IC  - IC') Rj]u(k,  IC'). 
j=l 

For further simplification we shall assume in the following that U(T) is very weak and well 
localized in position space so that 

where we have introduced a very large but finite cut-off wavenumber KO in order to formally 
avoid divergences of integrations. Also, for convenience, the zero of energy is chosen at 
v(IC = 0) which corresponds to the spatial average of the impurity potential. 

In order to avoid clumsy multiple sum notations in the Born series conventionally the 
language of Feynman diagrams is used. As a simple exercise we consider the calculation of 
the averaged one-particle Green's function. The nth-order term in the Born series contains 
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multiple sums over the n positions of the impurities. Several of the latter may be identical, 
thus describing multiple scattering at a given impurity. In the configurational average these 
multiple scattering terms have to be treated separately such that the formally simple structure 
of the Born series is eventually transformed into a complicated assembly of mathematical 
expressions. Figure 25 shows the Feynman diagrams up to the fourth order for (G+). The 
rules for the evaluation of the diagrams are 

free-particle Green's function 

2 U@) potential scattering 
pd2-k' 

-.... .&.- . 
.a-. : ; .. *. N 

c2 p, .: : .. pm = -8@1 + pz + . . . + p,)  m-fold scattering. 
U') ' ._ 
A k summation is associated with each free-particle line that connects two scattering 

lines. The configurationally averaged one-particle propagator is a sum of all possible 
diagrams containing n potential scattering lines and (n + 1) free-particle propagators. Each 
nth-order term is decomposed into multiple scattering contributions that are characterized 
by the number of connected scattering lines. 

First, there are diagrams 
which can be completely disconnected by cutting single frwparticle lines. These are 
called reducible diagrams. They represent simple algebraic products of more complicated 
diagrams. The latter are represented by the second class of diagrams, which cannot be 
factorized and are therefore called irreducible. It is easy to see that the irreducible diagrams 
are diagonal in k and that the average propagator is 

Generally we can distinguish two classes of diagrams. 

6(k - k') 
(G*(k.  k')) = 

E* - h2k2/2m - C*(k) (93) 

where E*(k) denotes the sum of all irreducible terms plus all terms of the same topological 
structure (skeleton diagrams) but with all of the internal free-particle propagators replaced 
by the full averaged one-particle Green's function. Whereas the real part of C*(k) gives 
the shift of the unperturbed energy h2k2/2m due to the perturbation, its imaginary part can 
be interpreted as an inverse mean free time r 

hj2s = *ImC*(k). (94) 

Since we have incorporated the mean of the impurity potential in the zero of energy the 
lowest non-trivial order of the self-energy is given by . 

and its imaginary part is 
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Figure 25. ( 0 )  The Feymmn diagrams for the one-electron Green's function in the presence 
of disorder up to fourth order in the random potential. Diagrams that can be factorized into 
independent pm by cutting lines that correspond to the Green's function of the free eleclron 
are called reducible dingrom (A). If this is not possible. the diagram is called irreducible (B). 
Skeleton diagrams do not conlain lerms appearing in the averaged Green's function between 
two scatrerings 21 the same atom. For inslance. diagrams (D) can be reduced lo the same 
skeleton ( S )  by removing all of the internal scatterings. (b) Geometrical series representing the 
configunt iodly averaged Green's function in lowest non-trivial order of penurbation theory 
where the electron is successively scattered only twice at each of the impurily potentials. 

with the density of states n ( E )  = x I , 6 ( E  - h2k2/2m) .  The mean free time is thus 

r = h/(2itu&(E)) (97) 

and the corresponding mean free path e is obtained by multiplication with the Fermi velocity 
up = 
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e = uFr. (98) 

For a metallic system the Fermi energy is situated well inside a region of high density of 
states, where y is approximately constant. For the purposes of demonstrating the effect 
of weak localization it is therefore sufficient to consider the limit of very weak scattering 
where the dominant effect of the disorder on the one-particle propagator is to introduce a 
finite mean free path at energies well inside a band. Thus it  is justified to assume in the 
following that the average one-particle Green’s function has the form (figure 25(b)) 

The Bethe-Salpeter equation for the configurationally averaged two-electron Green’s 
function (88) can be written as 

(Gf(k + q, k‘+ q)G- (k ‘ ,  k)) = (@(k + q)) (G-(k) )S(k  - k’) 
+ (G*(k + q)J(G-(k)J c U ( k ,  k”){G’(k”+ q, k‘+ q)G-(k’, k”)). 

IC” 

(100) 

7.3. The diffuson approximation 

7.3.1. Electron-hole diagrams. As for the averaged one-electron Green’s function, the 
diagrammatic formulation can also be used for the average of the product of two Green’s 
functions required for the calculation of the DC conductivity, ( G + ( k .  k ‘+q)G-(k ,  k -9)). 
In order to distinguish between the retarded and advanced Green’s functions, G: and 
G;, respectively, opposite directions are assigned to the corresponding free-particle lines. 
Typical examples of the diagrams are shown in figure 26, 

We identify several classes. The first contains only terms in which scattering lines are 
connected solely within the retarded (electron) or the advanced (hole) channel, respectively, 
but not between the channels. These are easily seen to be summable formally. They yield 
the product of the averaged one-particle Green’s functions on the right-hand side of equation 
(100). In the second class, scattering lines are connected to both the electron and the hole 
channels. Physically, these diagrams describe the coherent scattering of the electron-hole 
pair at the potentials of the impurities. Effectively, the coherent pair scattering events 
introduce an interaction between the electron and the hole. They represent the physical 
origin of the vertex operator U in (88), and prevent the decomposition of the averaged 
product into a product of the averages of the electron and the hole propagators. It is 
precisely this vertex operator which provides the physical scattering mechanism for the weak 
localization correction to the classical DC conductivity. Before calculating this correction 
we shall discuss the structure of the diagrams in more detail, and derive the classical mean 
free path expression for addc. 

Firstly, we note that the diagrams can again be separated into reducible and irreducible 
classes. The diagrams belonging to the former can be factorized by cutting single-particle 
lines into products of expressions which are given by the irreducible diagrams. The sum of 
all irreducible diagrams constitutes the vertex operator in (100) in momentum representation. 
Furthermore, there are infinitely many of each vertex diagram of a given topology. They can 
be obtained by replacing the free-particle propagators in a given vertex diagram structure 
by all possible diagrams that contribute to the average one-particle Green’s function. Partial 
summation then leads eventually to the replacement of all of the free-particle propagators 
by the averaged one-particle propagator. 
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Figure 26. (a)  Feynman diagram representing Ule configurationally averaged two-eiecuon 
Green's function. Diagrams of the type (A) lead to the classical result for the DC conductivity 
(ladder approximation (b)). while those of the type (B) represent maimally crossed quantum 
interference term that lead 10 the lowest-order quantum correction to the classical conductivity 
(cooperan approximation (c)). 

732.  The ladder approximation. In lowest approximation the irreducible vertex operator 
is given by the square of the impurity potential 

By inserting (101) into (lOO), and replacing the free-particle propagators by the averaged 
one-pm'cle Green's function (99), a geometrical series for LG+(k, k'+ q)G-(k', k - q)) ' 
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is obtained, which can be summed (figure 26(b)). The result of this ladder approximation 
is 

with 

f (q)  = C ( G + ( k  + n))(G-(k)) 
k 

which has to be evaluated for small q (cf (82)). Using 

and the lowest-order result (99) for (G*(k))  one obtains 

with & = 4rr, 2rr. 2 for d = 3 ,2 ,  1, respectively. By inserting (105) into (102) and (82) 
and then performing the derivatives with respect to q and the limits q + 0 and q + 0 in 
the correct order, one eventually obtains the conductivity 

e2h2n& E n ( E )  
h dm y 

Ob = 

which, for d = 3, can be shown to be precisely the result (36) when y is replaced by the 
mean free path (98). 

7.4. The cooperon approximation 

The classical conductivity obtained in the previous section is the zeroth-order term of an 
expansion in powers of (kFt)-'. The first-order correction can be obtained by considering 
a summable class of irreducible vertex diagrams, namely the maximally crossed diagrams 
of figure 26(c). It is straightforward to see that the summability of the m i m a l l y  crossed 
diagrams is a consequence of time-reversal invariance in the absence of a magnetic field. 
Hence, the sum can be obtained from the sum of the ladder diagrams (102) by replacing 
k' by -k' in the hole channel; thus replacing a hole with momentum hk' by an electron 
with momentum -hk'. In the following, the essential steps will be performed to obtain the 
correction to the classical conductivity (106) due to the weak localization induced by these 
diagrams. The effect of this cooperon correction corresponds to the enhanced backscattering 
described above. 

7.4.1. The Ward identity. Firstly we note that, since we are going to change the 
approximation for the vertex operator U, it is not possible to use the same approximate 
form for the averaged oneelectron Green's function as before, (99). This is due to an exact 
relation between the one-electron self-energy Z*(k) ,  and the irreducible vertex function 
U ( k , k ' )  defined in (IOl),  namely 

AZ(k) sz Z + ( k )  - C - ( k )  = C U ( k ,  k')((C+(k')) - (C-(k ' ) ) ) .  (107) 

This identity was proven earlier (Vollhardt and WolRe 1980b) and accounts for the fact 
that the irreducible vertex can be generated systematically from the self-energy Zcc(k)  
by differentiation with respect to (G*(k)) .  As a consequence, we have to allow for the 
self-energy to be different from y = nn(E)ui in (99), i.e. (G*(k, E ) )  to be given by (93). 

k' 
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7.4.2. The irreducible verrex function. The calculation of the sum of the terms visualized 
in figure 26(c) is straightforward. A geometrical series is obtained, which can be summed. 
The result is 

B Kramer and A MacKinnon 

4 
1 - f (k + k')ui 

U ( k .  k') = 

where f ( k  + k') is defined in (103). As U ( k ,  k') U ( k  + k') diverges for q + 0 and 
Ik + k'l + 0, k' e -k yields the dominant contribution to the solution of (100). Thus it 
is indeed sufficient to consider the lowest orders o f f  (k + k'). Inserting (105) into (log), 
and assuming in lowest order that C*(k)  F i y ,  we obtain 

UiY U ( k  + k') e 
q +  h D d k  + IC')' 

where we have used the Einstein relation for the classical conductivity (106), uo = 
e2n(E)Do, such that 

1 hE& Do = 
2 dmy 

7.4.3. The configurationally averaged Into-electron Green's function. From the B e t h 5  
Salpeter equation (100) one can obtain the averaged two-electron Green's function by 
inserting (109) and iterating. The resulting geometrical series may again be summed to 
give 

The product of the averaged one-electron Green's function may be written as 

Power expansion with respect to q yields in lowest approximation 

where 
t l + Y  

( E  - h2k2/2m)2 + y2 
p(k. E )  = (114) 

is approximately, for sufficiently small y ,  the spectral function corresponding to (93). It is 
strongly peaked at E = h2k2/2m such that we can write 

where n ( E )  5 C k p ( k ,  E ) / n  is the density of states and h(lk1) is a smoothly varying 
function of Ikl. 
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7.4.4. The weak localization correction to the conductivity. In order to evaluate the weak 
localization correction to the conductivity we have to insert ( 1  13) into ( I l l ) ,  perform the 
differentiation with respect to q, and take the limit q + 0 retaining only terms w r)'. The 
result is 

In the derivation we have used the Ward identity (107) and the fact that, in lowest order, 
A C ( k )  % -2iy as well as that the sum over Q is dominated by the conhibution from 
Q % 0. Finally, the correction to the Drude conductivity is given by 

4e2 1 80 = ---hDo 
h q+hDoQ2' 

Note that the sum on the right-hand side of this equation diverges for r )  -+ 0. Therefore, in 
order to guarantee that 8u << 00, r )  may not be taken very small. Furthermore, although we 
have used the sum of all the diagrams in figure 26(b). including the lowest-order diagram 
which on its own yields uo, nevertheless our calculation only gives 8u since we have 
considered only the Q % 0 contribution. 

7.4.5. The temperature dependence of the weak localization correction. The quantum me- 
chanical correction 8 f f  of ( I  17) allows us to discuss the low-temperature dependence of the 
DC conductivity of weakly disordered metallic systems. We introduce phenomenologically 
a phase coherence time r+ induced by inelastic phase-breaking processes, such as electron- 
phonon and electron-dectron scattering (Thouless 1977, 1979, 1980, Anderson et a1 1979, 
Altshuler and Aronov 1985) by assuming 

r )  = -h/Q (118) 

where r+ depends on the temperature, for instance, as T+ cx T-p ( p  of order unity). The 
corresponding diffusion length is then given by 

ti = Doy. (119) 

Introducing these definitions into (117) we obtain 

1 
& u ( T )  = 

e;Z  + Q 2 '  

Evaluation of the integral gives 

d = l  

d = 2  (121) 
(I/a*)(e-' - e-' 4 0 )  T d = 3 .  

It is seen that at low temperatures the quantum interference correction decreases the 
conductivity in one and two dimensions, whereas in three dimensions it eventually becomes 
unimportant when e+/! >> I .  The striking logarithmic correction in two dimensions has 
been clearly identified in many experiments, and was the starting point of the scaling theory 
of localization at the Anderson transition (cf sections 2, 3 and 8). 
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7.5. Negative magnetoresistance 

The influence of a magnetic field on the transport can be studied quantitatively by using 
the diagrammatic approach. The qualitative features are most easily obtained by employing 
the real space picture (cf figure 23). As a staxting point consider the transition amplitudes, 
which acquire additional phase factors in the presence of a magnetic field: 
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A ( T ,  T' )  = A'(,, r')exp (i I" A .  ds) 

In the w e  of a closed loop the phase is 4 = J A .  d s  = Zz@/@c,. 0 is the magnetic flux 
through the loop and @O the flux quantum hje.  The return probability for a given path n,  
t.(r, T ) ,  is now 

The second term arises from the interference between the two time-reversed paths discussed 
above. For small fluxes the cosine may be expanded. The return probability decreases with 
increasing magnetic field. Consequently, the transmission probability between two points 
must increase, and this induces an increase of the conductivity. This is the mechanism for 
the negative magnetoresistance observed for a long time but explained only in the course 
of the development of the theory of weak localization by Kawabata (1980) and Altshuler 
e f  al (1980). 

The complete quantitative theory of the magnetoresistance of 2D systems, including the 
effects of spin-orbit scattering, was formulated by Hikami et ai (1980), and by Altshuler 
et al (1980). and belongs to the few items in the theory of localization that are repeatedly 
verified quantitatively in many experiments (see section 3) (Dumpich and Carl 1991, Carl 
et al 1989a, b, 1990, 1993). 

7.6. Oscillations of magnetoresistance 

Equation (123) shows an interesting feature. For a given path the contribution to the 
magnetoresistance oscillates as a function of the magnetic flux with a period that is given 
by A@ = h/2e = @0/2. If it were possible to select experimentally only those paths 
whose areas are the same when projected onto a plane perpendicular to the direction of the 
magnetic field these oscillations should be observable. This effect was predicted to occur 
in thin metallic cylinders, when placed in a magnetic field parallel to the cylinder axis, by 
Altshuler et al (1981). Experimentally, the oscillations were first observed in thin-walled 
Mg and Li cylinders by Sharvin and Sharvin (1981) (see section 3). The experiment was 
repeated on Mg cylinders and AI cylinders by Cijs et al (1984a, b). A few additional results 
fitted quantitatively to the theoretically obtained formulae are shown in figures 27 and 28). 

Another possibility of selecting paths of a given area is to use small metallic rings 
(Webb er ai 1985a, b, Chandrasekar et ai 1985) and networks (Pannetier et al 1983, 
1984a. b, Pannetier 1991, Licini er a1 1985). Whereas the dominant period in the cylinder 
experiments is @&, the ring and network experiments also show periods of Q. This can 
easily be understood by evaluating, according to (122), the phase difference between two 
paths entering a ring structure on one side and leaving on the other, but following the left 
and the right branch, respectively (figure 29). In the cylinder geometry the oscillations with 
period 00 are suppressed by averaging along a cylinder. Each contribution involving two 
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H 

Figure 27. The negative magnetoresistance AR (len scale) 3s observed in a thin Mg film 
at different temperatures (lee-hand part of the figure). Different tempentures correspond to 
different inelastic scattering times ri. They can be e x m i e d  from the experimental data by 
fitting to the theoretical results (right-hand side of the figure) (Bergman" 1984). 

I I 

Figure 28. The osciliations of the magnetoresistance AR of an AI cylinder at different 
temperatures. Dots denote experimental dam. curves "e the fits to the theory of Altshuier 
et01  (1981) (after Gijs era1 (1984a)). 

different sites ( T ,  r') sustains an additional phase factor exp(&) which, when averaged 
over (r, r') gives zero. 

The important point in all of these interference experiments is that the electrons must 
be able to behave coherently around the circumference of the cylinder or ring. Therefore, 
the mean distance Lg = fi between phase-breaking processes must be of the order 
of or larger than this circumference. This condition restricts the experiments to low 
temperatures and diameters of the order of 1 pm, As L+ enters the theory as a parameter, 
the phase-breaking length and its temperature dependence may be determined by fitting to 
the experimental data. 

Reviews of the work up to now have been given by Washburn and Webb (1986), Aronov 
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Figure 29. Paths lhat lead to magnetoresistance oscillations with periodiciries of IQ" (let?) and 
Qu (right). 

and Sharvin (1987). and van Haesendonck et a1 (1991). 

8. The scaling approach 

The basic problem in the evaluation of the critical properties of the conductivity and the 
localization length at the Anderson transition is that the closer one approaches the critical 
point, the larger the system size has to be chosen, in order to obtain meaningful results. More 
precisely, the calculation of the critical properties requires us to perform a thermodynamic 
limit in a controlled way. One possibility to achieve this goal is to apply scaling laws. That 
there are scaling laws in the present problem which can be successfully exploited can be 
seen by considering the limit of weak localization discussed in the previous section. The 
quantum correction to the mean free path result of the conductivity turned out to depend 
on the various parameters only via ef t+ .  By considering the phase coherence length e, as 
an effective system size and noting that the mean free path e is a measure of the disorder, 
one observes that changes in the size of the system can be compensated by changes in the 
disorder. On the other hand, in the asymptotic limit of strong localization (see section 6) 
the conductance turned out to depend only on the ratio L/A3 the ratio of the geometrical 
system size and the localization length. 

It is natural to assume, as a hypothesis, that, as in the asymptotic regions, scaling 
behaviour can also be found in the vicinity of the transition. If this were the case, information 
about the critical behaviour could readily be obtained by exploiting the corresponding scaling 
law, as we shall see below. A much more difficult question to answer is whether or not 
scaling is in fact a valid concept. Up to now this latter problem, and the related problem 
of universality, has only been attacked, with some success, by using numerical methods. 

8.1. Single-parameter scaling 

Thouless (1974) introduced an argument which suggests that the conductance GZL of a 
block of size (2L)" is related solely to the conductance G L  of the Zd blocks of size L 
which are combined to build the larger block. We discuss here the most general form of 
such an argument, in order to derive some general conclusions and to arrive at some idea 
of the limitations. 

We consider a set of properties of a system of size L" which we represent by a vector 
aL,  whose elements are chosen to be dimensionless. It is often useful to think of L as an 
effective system size, such as the inelastic scattering length Li or even the resolution with 
which an external observer could measure the system. We assume that the set a is complete 
in the sense that we can write 

a(bL) = F(a(L) ,  b). (124) 
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The set a may well have to be infinitely large. In fact, in order to describe the distribution 
of values required for a full description of a disordered system it must be so, except in 
special cases. 

At this point we make the first approximation, namely that equation (124) can be 
rewritten in differential form 

This approximation may not always be valid. Indeed, in the closely related problem of 
quasi-crystals the fact that the mapping remains discrete is fundamental to the physical 
properties (Kohmoto e t  a1 1987). Neverthe[ess, many of the results are independent of 
this approximation and the use of a discrete mapping would only lead to unnecessary 
complications. 

Equations such as (125) have been extensively studied in the context of non-linear 
dynamics, chaos, etc. from which much of the language is derived, as well as in more 
conventional phase transitions. The most important property of such equations is that for 
increasing L the vector a tends towards a simple subspace, often a line or even a point. 
Such subspaces or points, a’, are called attractors or &ed points, respectively. They are 
defined by the condition f(a’) = 0. Asymptotically we can describe the behaviour of the 
system completely in terms of the properties of the attractor. It is important to remember, 
however, that this is really a description of the behaviour of almost infinite systems. It is 
not clear a priori whether any given real or numerical experiment is sufficiently close to 
the attractor that the deviations from it may safely be ignored. 

Close to a fixed point (125) may be linearized to 

d a  
d l n L  
-- - f’(a - a*) 

where f‘ is the matrix of derivatives o f f  at a*. The solutions of (126) are of the form 

where f[ and ai are the eigenvalues and eigenvectors off’. The constants of integration 
have been written in terms of length scales which contain all the information about 
scattering rates, energy, etc. This guarantees that all terms are dimensionless as originally 
assumed. Consider now the effect on a of changing some parameter r from its value at the 
fixed point r*. To linear order the second term in (127) must obey 6 a  - (7  - r*) ,  which 
implies that 5 must obey 

<, c( 15 - r’l-”’ (128) 

where vi = -]/A!. The exponents U; can be divided into two groups, termed relevant and 
irrelevant, according to whether &‘fi’:O, and the flow in the corresponding direction is away 
from the fixed point or towards it, respectively. In fact, for large L the behaviour will be 
dominated by the component with the largest 8‘ (figure 30). 

0. 
This corresponds to the case where (125) has a I D  attractor. A theory based on this property 
is often called a one-parameter scaling theory. We then have a single relevant L’ which we 
can identify as the critical exponent. 

For the moment we consider only the case where there is a single exponent 8‘ 
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Figure 30. 2D flow diagram of a scaling procedure. The fixed point o*  is alvactive and repulsive 
with respec1 10 components aj and aj of the s d i g  variable, respectively, 

The attractive line may be parametrized in several different ways. Conventionally 
the original suggestion of Thouless is followed and the single parameter used is the 
dimensionless conductance, g = (h/e2)G,  or more precisely its arithmetic mean, {g). In 
the following paragraphs we will use the abbreviation g instead of ( 8 ) .  

The equation describing the flow along the line is (Abraham et al 1979) 

On the other hand, most numerical simulations use the ratio of the localization length on a 
ID strip to the width of the strip, A = A M / M  (MacKinnon and Kramer 1981). 

This approach will only be valid as long as the effective system size L is larger than 
any other length scales associated with the irrelevant contributions in (127). In particular, 
the mean free path e constitutes a lower limit for L .  

Once we have identified a single parameter several results follow from quite general 
considerations. Firstly, the general solution of the ID scaling equation (129) has the form 

g = g ( L / t ) .  (130) 

Everything is defined in terms of a single length scale t .  Note, however, that the function 
g(x) may be multi-valued. There may be several values of g corresponding to the same 
value of x. Secondly, for very strong disorder, g << 1, we expect exponential localization, 
i.e. 

g - exp(-ZL/h) P(lng) - In g. (131) 

By comparing (130) with (131) we identify 
weak disorder we expect classical Ohmic conductivity, 

as the localization length A. Thirdly, for very 

g - c Ld-2 p(1ng) - d - 2. (132) 

Again, by comparing (130) with (132) we find that t is related to the conductivity U by 

6 - , y I / ( d - Z ) ,  (133) 
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The p function can now be sketched as shown in figure 3. Note in particular that, for 
,9 > 0, g tends towards case (133), extended behaviour, whereas for ,9 c 0, g tends 
towards the localized state. ,5 = 0 represents a fixed point. In one dimension B is almost 
certainly always negative. The flow is always towards small g, i.e. localized states. In 
three dimensions p must cross zero. There is always a fixed point and a metal-insulator 
transition. Two dimensions represents the marzinal case. It is impossible to tell whether ,9 
crosses zero without further information. 

It follows from (128) that the exponent U is independent of which side of the fixed point 
it is derived from. Hence, by using (133) we obtain a relationship between the conductivity 
exponents in 

U - 15 - r*v (134) 

and the localization length exponent v in 

of the form 

s = (d  - 2 ) ~ .  (136) 

This relation, originally derived by Wegner (1976), was earlier interpreted by many authors 
as a prediction of a minimum metallic conductivity, s = 0, for d = 2. Note, however, that 
this interpretation presupposes the existence of a fixed point on the ID attractor. 

8.2. Perturbation Theory 

As described in the previous section, it is possible to calculate corrections to these results 
using diagrammatic perturbation theory. These corrections are equivalent to taking into 
account enhanced backscattering. From the quantum corrections to the classical conductivity 
one can derive the following form of the B function for the conductance: 

Abrahams et a1 (1979) noted that this implies that p is always negative in two dimensions 
and hence that all states are localized even for infinitesimal disorder. 

Using (137) and ignoring higher order terms in l /g  it is found that 

s = u = l  (138) 

in three dimensions. In fact, in the case of systems containing magnetic impurities or spin- 
orbit coupling (Schafer and Wegner 1980, Hikami 1980, 1981. 1984a, b, 1986, Oppermann 
and Jiingling 1980, Jiingling and Oppermann 1980) the coefficient b in (137) may be zero. 
This leads to a more general result. When the leading term in an expansion in l/g is (I/g)" 
then, again by ignoring all higher-order terms, we find 

In two dimensions on the other hand the solution of (137) can be written as 

g = g o - b l n L  or - b In(L/f). (140) 
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Clearly both forms are equivalent to that given for two dimensions in (121). The weak 
logarithmic dependence is often termed weak localization. It was discussed in the previous 
section. 

In one diemnsion it is well known that all states are exponentially localized (see 
section 6). By combining this with the formula derived by Landauer (1970) connecting 
the conductance with the transmission coefficient (cf equation (69)) 
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where T = exp(-yL), it is possible to derive a complete expression for the p function: 

The perturbation theory results are expected to be valid as long as the effective system size 
L, usually the inelastic scattering length, is larger than the mean free path e. However, 
in one and two dimensions the correction to the classical Ohm’s law behaviour increases 
with L so that eventually the theory must break down. We expect the length scales for this 
breakdown to be of the order of the localization length, which can be written as <;: x rrl 
and 6;: X texp($rrkpt). These are perturbative estimates (Lee and Ramakrishnan 1985). 
In three dimensions the correction to U goes as (t-’ - L-’) which is small but significant 
since statistical finite-size fluctuations go at least as L-3/z. 

8.3. Bound for the critical exponent 

There have been various attempts to estimate bounds for the critical exponents at the 
Anderson transition. Mott(1976, 1981). arguing from a model exhibiting minimum metallic 
conductivity, concluded that v < 2 / d .  Otherwise, fluctuations of thJ wavefunctions would 
smear out the transition. On the other hand, Harris(1974) used similar arguments and came 
to the conclusion that U > 2/d in order for fluctuations to be irrelevant. Recently Chayes 
er al (1986). starting from the assumption of the validity of a one-parameter scaling law for 
a somewhat abstractly defined ‘scaling’ event, derived rather rigorously for a system with 
statistically uncorrelated randomness that v > 2/d. Note the contradictions in the sign of 
the inequality. 

In the following we shall give an explicit derivation of the lower bound starting again 
from the assumption of the existence of a one-parameter scaling law, but for a self-averaging 
scaling variable, and presuming randomness which may be statistically correlated (Kramer 
1993). 

In order to generalize the lower bound it is assumed that a positive scaling variable 
A ( M )  = A ( M ,  E ] , .  . . , E N )  exists. It is supposed to depend on a set of N = N ( M )  random 
variables. M denotes the size of the system. Physically, the random variables may represent 
the values of a potential energy at certain sites, the positions of impurities, the values of 
exchange or bond matrix elements, or, more generally, N of the matrix elements of the 
Hamiltonian of the system when taken in a complete orthonormal basis. 

[ E , ,  , , . , E N )  are the members of a statistical ensemble described by a normalized 
distribution function P ( W ,  €1. , . . , E N )  = W - N  f ( E I I W , .  . . , E N / W ) .  W is the disorder 
parameter. P is assumed to be sufficiently rapidly decaying at infinity for each of the 
variables to be continuously differentiable, and bounded, such that all of its moments exist. 
For simplicity, it is also assumed that the odd moments vanish, and that the second moment 
of each of the variables is given by W2. 
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Specifically, the correlation The random variables may be statistically correlated. 
function 

is supposed to be homogeneous, K ( j ,  j ‘ )  = K ( j  - j ’ ) ,  and to decay sufficiently rapidly for 
( j  - j‘l 4 m so that & K ( j  - j ’ )  exists. Consequently, 

p(W,Elr .... € N ) = P j ( € j ) P N - I ( W , E l ,  ...,€j-lrEj+I...,,€N) (144) 

whenever lcj - 
Consistent with experience from numerical scaling studies (MacKinnon and Kramer 

1981, 1983a, Kramer et al 1990) the scaling variable is assumed to be self-averaging, i.e. 
its configurational average 

--+ 00 (i = 1, . . . , N, i # j ) .  

A ( M ,  W) ( A ( M ,  €1 , .  . . ,  EN)^ (145) 

is identical to its most probable value in the thermodynamic limit. This implies that the 
configurational average of a function of A is the same as the function of its configurational 
average. 

A further crucial assumption is that there is a one-parameter scaling function 

A(M, W )  = h( t (W)/M) (146) 

which can be expanded near the critical point, W,, A(M, W) = Ac - a(W - WJMY, (Ac 
and a positive). The scaling parameter must diverge at W, as IW - Wcv,l-” with U = l / y .  

From (145) dA(M, W)/dW may be expressed by the derivative of the distribution 
function. Since A is positive, and self-averaging, an upper bound for IdA(M, W)/dWI at 
W, can be derived by using the Cauchy-Schwartz inequality, 

The first term on the RHS is the result for independent variables. The second is due to 
statistical correlations. If the latter does not increase faster than N 

with a constant B < 00. Proportionality with respect to N is ensured by homogeneity, 
convergence with respect to the summation over j’ by the above requirements For the 
properties of the distribution function. 

The statement of (148) is that, independently of the nature of the randomness, and of 
whether or not the system is interacting, there is an upper bound for the derivative of the 
scaling function at the critical point, if it exists. It is proportional to the square root of the 
number of random variables, provided the distribution function i s  bounded, continuously 
differentiable, with all of its moments existing, and the correlations are of finite range. 

Near the critical point the dependence of the scaling variable on the size of the system 
is given by MY. On the other hand, the number of the random variables must increase with 
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M ,  say as M". In general, one cannot assume U to be smaller than d ,  the dimensionality of 
the system, otherwise the 'concentration' N / M d  would vanish in the thermodynamic limit. 
Because of (148) we have y 5 +U, or, equivalently, v 2 vo 5 2 / ~ ,  consistent with the 
earlier result for the uncorrelated randomness and K = d .  

It should be noted that the above derivation is valid as long as a IW - W,l MY (< A,. 
This will automatically be satisfied for the above bound close to U;, with the choice 
M 5 M w  = IW - WcI-z'x. 

All of the presently available numerical data on the critical behaviour at the Anderson 
transition are consistent with this lower bound. On the other hand, the perturbative results 
obtained by using the non-linear U model in connection with the E expansion seem to suffer 
from extremely bad convergence properties of the series in E (= d - 2 ) .  When only the 
corrections to the lowest-order results (m E )  are taken into account the exponent does not 
satisfy the lower bound (Wegner 1989, Hikami 1990, 1991). 

8.4. Field theoretical formulation 

Shortly after the pioneering works on the scaling hypothesis (Wegner 1976, Abrahams et al 
1979) considerable effort by many researchers was devoted to a formal justification of the 
underlying assumptions. Certain analogies between the present problem of the Anderson 
transition, an essentially quantum mechanical phenomenon, and classical phase transitions 
led to a considerable body of formal field theoretical approaches which culminated in a 
non-linear sigma model. Here we attempt only the briefest introduction to these ideas. For 
a full discussion we refer the reader to the review by Efetov (1983) and the lecture notes 
by Wegner (1979~).  
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Consider the integral form 

+m i x  
D@'D@exp{i(@t[E + iq - E ] @ ) ]  = 

E + iq - c '  

Note that this is a 2D integral, because we integrate over @ and @t separately. Note, also, 
that the integral only converges when q > 0 because the real part of the exponent is - q @ t @ ,  
(149) can be generalized, 

The proof of this relation is most easily performed by transforming to the complete system 
of eigenstates of the Hamiltonian, Hla) = Emlor), 

@ . = ( '  I - I I @) = I I 6) (151) 
CI 

and recalling that the N-dimensional volume elements in the integral are invariant 
under unitary transformations. Using (149) we see that the integral is proportional to 
n,"(E + iq - Ea) - ' .  which is nothing but the result (150) since the determinant is also 
invariant under unitary transformations. 

Using the same technique it is possible to show that the following relation for the matrix 
elements of the Green's function holds: 



Localization: theory and experiment 1527 

Note that this is nothing but the statistical average (&@A) where the integral in (150) 
represents a thermodynamic partition function. 

The disorder enters the left-hand side of (152) only via the exponential function. 
Performing a configurational average would therefore be relatively straightforward, at least 
as long as the distribution of the matrix elements of the Hamiltonian is Gaussian (cf 
section 4). Unfortunately, such an average would not give the average of the Green’s 
function since the right-hand side of (152) contains the determinant as well. 

There are various tricks for getting rid of this problem (Schafer and Wegner 1980, 
Wegner 1979a, Efetov et al 1980, Efetov 1980, 1983, Houghton eta1 1980, McKane and 
Stone 1981). The replica trick (Schafer and Wegner 1980, Wegner 1979a) consists in 
applying the above procedure to m equivalent systems (replicas). The result will include 
the unwanted factor raised to the power m. If we then take the limit m -+ 0 we obtain 
(det[. . .])O = 1 and are left with the desired configurational average of the Green’s function. 

In the supersymmetric method (Efetov et al 1980, Efetov 1980, 1983) one introduces 
Grassman, anticommuting or fermionic variables. When the integral is evaluated using 
Grassman instead of normal bosonic fields, the determinant appears in the numerator and 
there are no problems with the convergence of the integrals (see below). By using fields 
with both commuting and anticommuting parts, supersymmetric fields, the problem of the 
determinant can be completely eliminated (Efetov 1983). 

A calculation of the conductivity requires quantities like G+G- (see section 5) ,  which 
cannot be calculated from the same partition function because the G- part violates the 
condition for convergence of the integral. Instead, one calculates (@L@/’@,$$;*) using the 
exponent 

(153) 

which can be written as EO + %I. ‘Ho is invariant under a global transformation which 
leaves 

unchanged. ‘HI is invariant under the unitary group U(2n) but, because of the minus sign, 
which comes from the requirement that the integrals converge, the symmetry group of EO 
is the non-compact group U(n, n),  sometimes termed pseudo-unitary. Note that q plays the 
role of a symmetry-breaking field, analogous to a small magnetic field in a ferromagnet. 
The field conjugate to q is 

where p ( E )  is the density of states. Note the peculiar aspect of the analogy with the 
ferromagnet. In the problem of the mobility edge the order parameter is finite on both sides 
of the transition. 
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When the Hamiltonian is real the real and imaginary parts of the 4 are independent 
variables. This additional symmetry means that instead of the group U(n, n)  we have the 
pseudo-orthogonal group 0 ( 2 n ,  2n). If spin-flip scattering is introduced in the form of a 
constant or a random magnetic field, time-reversal symmetry is broken and the symmetry 
group reverts to U(n, n). However, when the spin-flip scattering is due to spin-orbit 
coupling time-reversal symmetry is preserved and the group becomes symplectic Sp(n. n ) ,  
Thus the Hamiltonians may be classified into four universaliry classes (see table I). 

Table 1. Universality classes and s y m m e y  groups 

Without spin With spin 

Time-reversal symmeuy Onhoganal Symplectic 

No time-reversal symmetry Unitary Unitary 
O(2". 2n) S p ( n . 4  

U ( n . 4  U(". 4 

8.5. Results of the non-linear a model 

After considerable algebra (153) is transformed into the form 

.&Q) = dr(fgTrg(VQVQ) + qTrg(QA)] s 
where the Q are 2n x 2n matrices, which are derived from the combinations of the 4 fields 
of the form q5fw#!l, and A is a diagonal matrix with 1s in the positions corresponding to 
s = 1 and -Is elsewhere. The function L(Q) is the effective Lagrangian for the so-called 
non-linear U model. It has been the subject of a large body of work by field theorists and 
its properties are generally well understood. However, i t  cannot be solved exactly, so that 
the results are effectively expressed in terms of an expansion in the coupling constant g-' 
and E = d - 2 (compare (137)). 

Until recently the situation was as follows. To leading order the critical exponents 
are s = U = 1 for the orthogonal case and s = v = for the unitary and symplectic 
cases (Brkzin e t a )  1980. Hikami eta1 1980, Wegner 1981. Jiingling and Oppermann 1980, 
Hikami 1980, 1983) in three dimensions. These exponents show a superficial agreement 
with experiment (see section 3). where exponents 1 or 1 are found. However, it is difficult 
to understand how the degree of compensation of a semiconductor could be related to the 
presence of spin-orbit or magnetic effects. There have, however, been attempts (Lee et a[ 
1987, Milovanovic et nl 1989) to explain the effect in terms of the magnetic properties of 
a half-filled band. 

In two dimensions the result of (137) survives for the orthogonal case. However, in the 
symplectic case (spin-orbit coupling) the coefficient b in  (137) is negative (Jiingling and 
Oppermann 1980, Oppermann and Jiingling 1980) so that (140) now takes the form 

g = go + Ibl In L. (157) 

Thus the conductance (or conductivity) increases logarithmically with increasing L .  This 
is called weak anti-localization and has been confirmed experimentally by Bergmann (see 
section 3). 
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Until recently it appeared that these results remain unchanged by higher-order terms 
(Hikami 1983, 1985) until fourth-loop order. This includes the strange result that there 
is no fixed point (and hence no transition and no localization) for the 2D symplectic case. 
Evangelou and Ziman (1987) investigated this point numerically and found a small fraction 
of localized states. Liebert (1989) showed that the mobility edge coincides with a very 
rapid. possibly discontinuous, fall in the density of states, which has a tiny tail out to the 
Lifshitz limit (Englisch and MacKirinon 1990). Recently there have been some attempts to 
calculate the critical exponent for the 2D symplectic case (MacKinnon 1990, Ando 1989, 
Fastenrath 1992a, b). 

However, it has been shown that the field theoretical result is flawed (Bernreuther and 
Wegner 1986, Wegner 1989) and that the corrections to fourth-loop order are of the same 
order as the previous terms. This was confirmed by Hikami (1990, 1991) in a different 
formulation by using superstring theory. Thus it seems that the series has clearly not yet 
converged. 

Doubts about the validity of the one-parameter non-linear U-model formulation of the 
metal-insulator transition problem, which is based on a theory for the average of the 
conductance, have also been raised by using more general arguments (Kravtsov and Lerner 
1984, 1985, Kravtsov et al 1988, 1989, Shapiro 1986, 1987, Lerner 1991a, b). Since 
the statistical distribution of the conductance does not fulfil the central limit theorem (see 
section IO) the average of the conductance is not representative of the statistical ensemble. 
At least all of the higher moments of the distribution must be considered in order to 
formulate a scaling theory, which could then be of multi-parameter type. There is also 
an explicit calculation for an exactly solvable model (Bethe lattice) which seems to indicate 
that the one-parameter non-linear o-model formulation of the problem of the disorder- 
induced metal-insulator transition is incorrect (Efetov er a1 1980, Efetov 1984% b, 1987a, 
b, 1990, Zirnbauer 1986a). 

8.6. Results from numerical scaling calculations 

Using the Anderson model with diagonal disorder, the present authors formulated a 
numerical scaling procedure for the average of the logarithm of the quantum mechanical 
transmission probability, log t ,  through d-dimensional strips and bars of finite cross section 
and essentially infinite lengths (MacKinnon 1980, MacKinnon and Kramer 1981, 1983a). 
The transmission probability corresponds to the conductance through the system. Since the 
log f is a statistically well-behaved quantity and its configurational average is representative 
of the ensemble (see section IO),  the above mentioned problems with the higher moments 
are avoided in the thermodynamic limit. 

The method of computation is a generalization of equation (64) to matrices. 
Equivalently, one can use the transfer matrix formulation (see section 5.7) (Pichard and 
Sarma 1981a, b, MacKinnon and Kramer 1983a). 

The systems considered are quasi-one-dimensional. For any finite cross section the 
localization length, tM = IimL-- -2L/  logr, is finite, and its statistical accuracy can be 
controlled by increasing the length L of the system. A set of raw data obtained for the 
zD and 3D Anderson models with rectangular distribution of the site energies is shown in  
figure 31. 

In order to be able to extrapolate to infinite system size (M + m) it is necessary to 
investigate the scaling behaviour of &,,. In the centre of the band, and close enough to the 
transition, it turned out to be possible to establish a scaling function within the accuracy of 
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Figure 31. Raw data for the renormalized locdization length. h = ~,w.wlM, of an infinitely long 
bar of cmss.sectiond area M d - ’  (cf figure 20) described by the Anderson Hamiltonian with box 
disuibution of the diagonal elements. (a) Striplike (zD), (b)  bar-shaped (3D) geometry Values 
of the disorder (widths of the distribution function) are as indicated. Energy is in the band 
Centre. 

the raw data, 

p(%) 6M 

that depends on the dimensionality for a given universality class, and not on the disorder. 
The scaling function has the properties that were claimed in section 8.1 to be necessary 
for one-parameter scaling. Examples for the numerically determined scaling functions are 
shown in figure 32. The scaling parameter Cm is a function of the disorder. It corresponds 
to the localization length, and to the inverse of the conductivity in the localized and the 
metallic regimes, respectively. 

-1 1 
- 1  0 I 2 

l W S l M )  - loe(i!M) - 
Figure 32. Numerically determined Scaling functions for the ID (a)  and the 3D (b) Anderson 
models with recmgular distribution of the site energies. cm = c(W) is the scaling panmeter 
necessary to scale the raw data of figure 31 onto the same curves. 

For several orthogonal models, including the ZD and the 3D Anderson models with 
rectangular distribution of the site energies, and for the 3~ Anderson model with Gaussian 
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distribution of the site energies, the scaling function, the phase diagram of localization 
(figure 331, and the critical exponents for the localization length and the conductivity were 
determined (MacKinnon and Kramer 1981, 1983a, MacKinnon 1985a, 1990, 1993, Butka 
er al 1985, 1987, Schreiber er al 1989, Kramer et al 1990) (figure 34). Calculations far 
away from the band centre were also performed (Schreiber and Kramer 1987, Kramer et al 
1990) (figure 35). 

EIV - 
Figure 33. The phase diagram of localization, W ( E c ) ,  for the Anderson model with box, 
Gaussian and Lorentzian disbibulions of site energies. Energy E is in units of V ,  the off- 
diagonal element of the Hamillonian. W ( 0 )  = Wc are the critical disorders for the Anderson 
transition. 

W N  - 
Figure 34. The scaling parameters 
Gaussian distribution (right curve) of the site energies as functions of the disorder W I V .  

of the 30 Anderson model with box (len curve) and 
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30 box distribution 

I I I /  0 1 

. I  - 
- 1  

log(5sM) - 
Figure 35. The swling function of the JD Anderson model with diagonal disorder and energies 
IEl 5 6 V .  

The results may be summarized as follows. 

1 .  Within the statistical accuracy of the raw data (I%),  in almost all of the cases the one- 
parameter scaling function can be established when sufficiently close to the transition. 
There is a quantitative criterium for the validity of the scaling behaviour. 

2, The method yields complete localization in two dimensions with an essential singularity 
at zero disorder, and an Anderson transition in three dimensions. 

3. Box and Gaussian distributions of the site energies yield the same scaling function. This 
is the explicit demonstration of the universality of scaling in the orthogonal class. 

4. The localization phase diagrams show re-entrant behaviour near the unperturbed band 
edges. There are two transitions. One, at low disorder, corresponds to delocalization 
due to a strong increase in the density of states when increasing the disorder for a 
given energy. The other, at higher disorder, corresponds to localization due to quantum 
interference when increasing the disorder. 

5. The critical exponents near the centre of the band ares = U = 1.5 kO.1 for the box and 
the Gaussian distributionst. This is consistent with other numerical estimates (Sarker 
and Domanyi 1981, Economou er a1 1985, Pichard and Andri 1986) but disagrees with 
the results of perturbation theory (Vollhardt and Wolfle 1982, Kroha et a! 1990, Kroha 
1990) and c expansions (Wegner 1985) discussed above. 

These are at present the only available quantitatively controlled results for the critical 
behaviour of the orthogonal class. They are consistent with one-parameter scaling for the 
average of the logarithm of the conducrance instead of the average of the conductance 
close to the transition. At present there exists no direct theoretical possibility of treating 
the average of the logarithm of the conductance theoretically with the methods described 
above. Thus the numerical scaling method establishes, at least until now, the only source of 
information when the critical behaviour at the Anderson transition is to be investigated, and 
when comparisons with experiments have to be done. It seems, at least at this stage, that 
none of the experimentally observed metal-insulator transitions, provided that the analyses 

t The disagreement between the exponents for the box and the Gaussian distributions reported previously (Kmmer 
e t d  1990) has been shown to be caused by the statistical error bars later obtained for the Gaussian model. Recent 
nlculalions in which the statistical error was taken as 0.1% con6rmed thal the models with diagonal disorder have 
the same exponents within the errors (MacKinnon 1993, Hofstetter and Schreiber 1993, GruDbach and Schreiber 
1992). 
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of the critical exponents were correctly performed (Mobius 1988, 1989) can be explained 
by the orthogonal model without taking into account additional physical effects. 

9. Localization in a magnetic field 

The motivation to study localization i n  a magnetic field is two-fold. First of all, the 
application of an external magnetic field constitutes the most simple and controllable 
method of changing the universality class of a system. As a consequence, experimental 
investigations of the metal-insulator transition in the presence of a magnetic field were 
performed (Biskupski and Briggs 1988, Chen era/ 1989, Katsumoto et a/ 1987, Kobayashi 
et al 1980, Hopkins et a/ 1989) (cf figure lO(c)). Secondly, in order to understand the 
quantized Hall effect (cf figure 36) (von Klitzing et a/ 1980, von Klitzing 1986), some 
knowledge of the basic localization features of the electronic states in 2D disordered systems 
is unavoidable (Aoki 1987). 

Figure 36. The quantized Hall effect as observed in AIGaAdGaAs heterosvuctures of lower 
( a )  and higher (b) electron mobility. The Hall resistivity pry as a function of the magnetic field 
B shows, at low temperature. distinct plateaux that are given by inleger (a )  and ntional (b) 
fractions of hie2 .  Simultaneously, the dissipative parl of the resistance. piS. shows pronounced 
minim.  Chaoging the magnetic field is  equivalenl to changing the filling factor Y = net l jh .  
The Hall plateaux occur at integer (0 )  and rational (b) filling factors (after Paalanen era1 (1982) 
(n) and Chang eta1 (1984)). 

The presence of a magnetic field introduces as an additional complication the non- 
trivial nature of the energy spectrum, and the states, in the limit of vanishing disorder. 
In the simplest case of an electron described in  the effective mass approximation and 
moving in a 2D plane we have the degenerate spectrum of the discrete Landau levels and 
the corresponding Landau states. The discrete model (23) has an even more complicated 
spectrum. The magnetic subbands are broadened by the inherent periodic potential (Harper 
1955) and show chaotic and self-similar features depending on whether the number of flux 
quanta per unit cell is rational or irrational (Hofstadter 1976, Wannier et al 1979). In three 
dimensions the bands are additionally broadened due to the kinetic energy in the direction 
of the magnetic field. 
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9.1. Summary of results for MO dimensions 

The random potential is specified as described in section 4. Especially in connection with 
the Landau model it is useful to consider a Gaussian correlated potential energy 

(v(P)v(P’)) = (v’) exp(-lr - T‘Iz/az). (159) 

The special case of a Gaussian white noise potential (a = 0) as well as the more general 
case of a spatially correlated potential (a # 0) has been used in perturbation theories, and 
in the recently developed field theoretical treatments. In the asymptotic limit where a > e,, 
where e, = (h/e[BI)”’ is the cyclotron length, the electronic problem is equivalent to a 
classical percolation problem. In this case one can use the results of percolation theory 
in order to discuss the localization properties of the states. However, as we shall see 
later, it is imperative to study the influence of quantum mechanical effects (tunnelling and 
interference). One possibility is to put in these effects by hand, as has been done by Chalker 
and Coddington (1988) in a very interesting study. It would certainly be more satisfactory 
to have a model which is able to cover both of the limits ale,  -+ 0 (white noise limit) and 
ale ,  -+ M on an equal footing. A first attempt to develop such a model has been made 
by Huckestein and Kramer (1989, 1990), Miel; (1990), Ono et a1 (1991) and Huckestein 

Besides the size of the system which has to be taken to be infinite anyway, the physical 
situation described by the Hamiltonian is characterized by the magnetic length e, ,  and the 
spatial correlation length, a,  of the potential. In the lattice model, (23), there is still another 
length scale, namely the lattice distance, which is usually taken as unity. A priori, it is 
not obvious whether or not these additional length scales are important. The validity of the 
one-parameter scaling hypothesis would imply that the spatial correlation of the potential 
energy is no longer of importance when the critical regime is approached (Sajeev and 
Stephen 1983, Johnston and Kramer 1986). One could then start without loss of generality 
from the Gaussian white noise potential. For non-vanishing magnetic field it was not clear 
until 1990 whether or not this is allowed, The fact that numerical data available at that 
time seemed to indicate a breakdown of the one-parameter scaling theory, according to the 
conclusions of the authors (Ando and Aoki 1985a, b, MacKinnon and Kramer 19836, Ando 
1985, MacKinnon 1989a. b, 1992) made it necessary to investigate the influence of a finite 
correlation length. In addition to the disorder W it was necessary to take ale ,  as a physical 
parameter (Pruisken 1988). 

The main results for the problem of localization in a strong magnetic field in two 
dimensions are obtained from perturbational, numerical and field theoretical treatments. 
The conductivity, the localization length, the Thouless number and the participation number 
were considered. In the limit of extremely high magnetic field percolation arguments have 
been used (Kramer et a1 1989). 

9.1.1. Perturbational appmach. Most elaborate studies have been carried out using 
perturbation theory (Ono 1982% b, 1983, 1984, 1985, Hikami 1984a, b, 1986, Hikami 
and Brizin 1985, 1986, Singh and Chakravarty 1986). The starting point was the density- 
density correlation function 

(1992). 

which can be evaluated systematically as a perturbation series for weak randomness by 
using diagrammatic techniques. The localization length is obtained from the static density 
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response function x (9.0) (Fourier transformed density correlation function) according to 

The explicit result for the critical behaviour of the localization length for the case of 6- 
function-like impurity potentials is 

h(E) =constant x exp(A/(E - E N ) * ) .  (162) 

The constant A is of the order of the square of the disorder-induced bandwidth, and E N  
is the energy of the unperturbed Landau level. There is an essential singularity of h in 
the band centre in this approximation. Although there are a number of assumptions in this 
approach which are not easy to justify, this was the first hint obtained from theory that 
extended states might exist only at a single energy in each of the Landau bands in the 
quantum mechanical high-magnetic-field limit. The limit of high Landau level index was 
considered in extensive studies stressing the importance of quantum interference corrections 
for the diffusive transport in the quantum Hall effect regime (Benedict and Chalker 1986, 
Carra 1987, Chalker eta! 1988, Carra e ta!  1989). 

9.1.2. Thouless number study. One of the earliest numerical studies of localization was 
performed by Ando (1984, 1985) by applying the Thouless number criterion to the random 
Landau model (23). Calculations were done for &function potentials, as well as for impurity 
potentials of a finite range and for as many as three Landau bands. An inverse localization 
length y ( E )  was defined via the exponential behaviour of g ( L )  (see section 5.6), 

g ( E ,  L )  = goexp(-y(E)/L). (163) 

In order to be consistent with the definition in the previous section we have to identify y with 
2 /h .  The results for the case of short-range scatterers were consistent with a divergence of 
the localization length only at the centres of the Landau bands, but y ( E )  a IE - E N ] ”  with 
U -= 2 in contrast to the essential singularity obtained from the renormalized perturbation 
expansion. In the case of finite-range potentials ( a  = O(&)) no conclusive result about the 
critical exponent could be obtained due to the error bars in the numerical data being too 
large. 

9.1.3. The percolation limit. For IBI + 00 the quantum mechanical problem can be 
replaced by a classical percolation problem provided that the random potential has a finite 
correlation length. The basis of the percolation argument has been formulated by Tsukada 
(1976). It can be shown that the Schrodinger equation in the single-band approximation, 
which is justified in the high-field limit, can be written as 

V(X, Y)C(X) = ( E  - Eo)C(X) (164) 

where X, Y are the centre coordinates of the cyclotron motion defined by X = ke: and 
Y = -ia/ak, respectively. k is the wavenumber of the Landau state and C(X) is the 
expansion coefficient of the eigenstate with respect to the Landau basis. (164) holds in 
the limit of e, << a .  It is seen that all Landau states that correspond to the equipotential 
line V(X, Y )  = ( E  - Eo) contribute with an equal amplitude to the eigenstate at energy 
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Figure 37. Numerically determined electronic eigenstate mar  the centre of B Landau band of a 
model with a Gaussian correlated random potentiill with correlation length n = L,. Equipotential 
lines are shown on the left and the probability density of the eigenstlte is shown an the right 
in a grey scale representation. Dark areas correspond to very small and light area3 to high 
probability density. It is seen that the regions of high probability density are eerentidly given 
by the equipotential lines (courtesy of T Ohtsuki). 

E (figure 37) (Tsukada 1976. Iordansky 1982, Kazarinov and Luryi 1982. Ono 1982a, 
Trugman 1983, Luryi and Kazarinov 1983. Apenko and Lozovik 1985). 

The question whether or not an eigenstate is localized may be decided by investigating 
the percolation problem for the equipotential lines (Trugman 1983). An intuitive insight 
is obtained by considering the analogy with a hi l ly  landscape (potential energy) that is 
gradually filled with water, the water level corresponding to the energy E .  For very low 
water levels the water runs into the deep valleys. All shore lines (equipotential lines) are 
closed paths, i.e. the states are localized. The same is true for very high water levels. Only 
a few mountains are high enough to reach above the water level. The shore lines are again 
closed paths. It is clear that in between there must he one water level at which it is possible 
to travel either by boat or on foot from one side of the system to the other. This corresponds 
to an extended state. Percolation theory says that there is exactly one percolating path. The 
length t of an equipotential line is given by 

t = IE - EoI-”“ (165) 

with U = 36/91. The diameter 6 of the area covered is 

6 = IE - Eel-" (166) 

with v = f (Kramer et al 1988). 
Equations (165) and (166) may be used to estimate the critical behaviour of the states. 

If we identify the localization length with 6 then the corresponding critical exponent is U. 
Identifying the area covered by the cluster with t! ,  gives the possibility of deriving the 
critical behaviour of the participation number. 
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9.1.4. The participation number. The (inverse) participation number (ratio) has been studied 
for the random Landau model in different geometries using a variety of methods (Kramer 
et a f  1988, Hikami 1986, Hikami and BrCzin 1986, Aoki 1983b. 1984a. 1986, Kunz and 
Souillard 1982, Zirnbauer 1986h, Ohtsuki and Ono 1989). The shape of  the wavefunctions 
were studied numerically (Aoki 1983a. 1984h. 1986, Ohtsuki et a! 1992, Ono et al 1989, 
1991). The spatial properties of the states turned out to be rather peculiar showing a 
remarkable self-similar network structure (figure 37). Fractal behaviour has been inferred 
near the critical energy. The fractal dimension d* of the states near the centres of the  Landau 
hands was estimated from the behaviour of the amplitudes of the wavefunction, d' xz 1.6 
(Aoki 19861, and from the behaviour of the inverse participation number upon changing the 
system size (Ono et a1 1989). It turned out that it was rather complicated to draw definite 
conclusions because of the limitations in the sizes of the systems considered. In any case, 
the fractal dimension of the states near the band centre seemed to be much smaller than 
d = 2. The extended states, if they existed. had therefore to be of the spaghetti rype, i.e. not 
space filling. This conclusion was supported by percolation theoretical arguments (Kramer 
et ai 1988). In this case one can derive the fractal dimension exactly, d' = 1.75. 

In a recent numerical study multi-fractal behaviour of the states near the centres of the 
magnetic bands was established for both the disordered Landau model and the Peierls model 
(figure 38) (Pook and JanBen 1991. Huckestein and Schweitzer 1991, 1992a. Fastenrath er 
a[ 1992). 

Figure 38. 30 plat of an eigenstate of the disordered Peierls model. Again the probability 
density is shown. It c m  be charnctenzed a.. a multi-fractal (courtesy of B Huckestein and 
L Schweitzer). 

The critical behaviour of the inverse participation number has been systematically 
studied for the lowest Landau level by Hikami using large-order perturbation theory (Hikami 
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1986, Hikami and Brizin 1986). Taking 
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P-'  = A IE - Eel" 

he obtained z = 3.8*0.4. Assuming P to be given by the localization length, i.e. P % A", 
this can be used to estimate v = 1.9 i 0.2. However, as mentioned above, this relation 
between the participation number and the localization length is not necessarily fulfilled. 

9.1.5. Non-linear a model. Field theoretical methods were successful in treating the 
localization problem B = 0. For B # 0 these methods have been used for the white noise 
limit (Pruisken 1984) and for the correlated potential (Zirnbauer 1986a, Weidenmiiller 1987). 
The results are qualitatively consistent with the existence of singularities in the localization 
length as a function of the energy near the centres of the Landau bands. The essential point 
here is that an efective Lagrangian is derived by evaluating the configurational average over 
the randomness exactly (this is possible due to the assumption of a Gaussian distribution). 
and subsequently performing the remaining integration over the fermion fields approximately 
by using the saddle-point method after a transformation to boson coordinates. The effective 
Lagrangian contains two terms, one being related to the magneto-conductivity, and the the 
other to the Hall conductivity. The second of these is due to the topological properties of 
the model, and, according to the authors, not accessible to perturbational treatments. The 
two-parameter scaling picture (Khmelnitskii 1983, Pruisken 1984. Chalker 1987, Chalker 
and Daniel1 1988), which can be derived by considering the two conductivity components as 
scaling variables, eventually leads to singularities in the centres of the Landau bands which 
are identified with a non-vanishing magneto-conductivity and divergences of the localization 
length. 

9.2. Numerical scaling in the quantum Hall regime 

The scaling properties of the asymptotic exponential decay length of the modulus of the 
Green's function, (33), with respect to energy, disorder and the width of the system 
have been studied for both the lattice model (Schweitzer et a1 1984. MacKinnon et a1 
1984, MacKinnon and Kramer 1983b. Kramer and MacKinnon 1984) and the random 
Landau model. In the latter, &function potentials as well as Gaussian potentials have 
been considered (Ando 1982, 1983, 1985, 1987a. b, 1988, Aoki 1982, 1983c, 1985, 1987, 
1988, Ando and Aoki 1985a, b, Aoki and Ando 1987). In a recent study the equivalent 
in Landau space of a Gaussian white noise potential was considered in a high-precision 
numerical scaling study (Huckestein and Kramer 1989, 1990,Miek 1990, Huckestein 1990, 
1992). Numerically, the latter have been the most elaborate studies of the localization 
problem. The main results are described in the following. 

9.2.1. Universal one-parameter scaling. The early attempts to apply this method to the 2D 
localization problem in the presence of a magnetic field were based on the lattice model. 
Attempts were made to find a one-parameter scaling relation of the type (158). This turned 
out to be successful to a certain degree. However, due to the smaIl system sizes, localized 
states could only be established in the outermost parts of the magnetic subbands. In the 
centres of the bands finite energy regions were found where the states are larger than the 
diameter of the systems considered. No serious attempt was made at that time to extract the 
critical exponent, although the data seemed to be consistent with results obtained from the 
Thouless number study. There are theoretical reasons for the belief that the one-parameter 
scaling relation, (I%), has to be replaced by a two-parameter scaling law in the presence of 
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a magnetic field. An attempt has been made to establish such a relation on the basis of more 
refined numerical data for the lattice model (MacKinnon 1989a. b). The data seemed to be 
consistent with a singularity of the localization length near the band centres, and U = 2. 
There are, however, still inconsistencies that have to be removed by future work. 

The application of the scaling method to the random Landau model yielded the most 
precise and reliable information on the nature of the singularity in the centre of the band, 
although here the situation is more complicated due to the large number of coupling matrix 
elements between the Landau states. For the equivalent in the Landau space of the Gaussian 
white noise model, the attempt to establish a one-parameter scaling relation 

for the logarithm of the transmission probability through a system of length k (+ CO) and 
width M 

was successful (Huckestein and G a m e r  1990) (figure 39). This was achieved due to the 
possibility of treating larger system sizes than before and using a new evaluation procedure 
for the data, borrowed from metrology (Huckestein 1990). The critical exponent for the 
lowest Landau band was extracted with an accuracy of better than 2%, U = 2.34 * 0.04. 
Comparison of the data with those obtained from different models (Huo and Bhatt 1992) 
including the quantum mechanically treated quasi-classical percolation limit (Chalker and 
Coddington 1988, Milnikov and Sokolov 1989) indicates that this result being independent 
of the microscopic details of the potential is truly universal. Thus, these numerical studies 
represent the second case in which the universality of the critical properties could be 
explicitly demonstrated. 
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Figure 39. (a) Scaling in the quantum Hall regime, The renormalized exponential decay length, 
I M I M .  is shown for a correlation length of the potential n = e, and various energies E .  (b) 
I M J M  for a = 0, a = ec and a + m (Chalker and Coddington 1988) scaled onto a single 
function. The inset shows the scaling parameten t ( E )  for n = 0 and a = P, necessq 10 
achieve the fit. The critical exponent is U = 2.35 f 0.03 (Huckestein et a1 1991a). 
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9.2.2. Comparison with experiment. The results of the scaling approach can be compared 
with experimental data when identifying the size of the system with the temperature- 
dependent phase coherence length L+ (see sections 3 and 7). This idea (Wei er a/ 1988, 
1990), although not being particularly well supported theoretically for systems in the 
localized regime, yields a striking agreement with the results of temperature- and frequency- 
dependent measurements of the transport properties in the quantized Hall regime (Ebert et 
al 1982, Wei er a/ 1988, Lim et a/ 1990). 

Since the scaling function of (168) depends only on the variable x = E M ' / "  near the 
centre of the band, the derivatives d"f/dE" cx Mn'" near E = 0. Near the band centre 
E a B - B" for fixed particle density, where B' is the magnetic field at half-integer 
filling. Letting M = L + ( T )  cx T-P'', i t  follows that if the nth-order derivative of the 
scaling function has extrema at B' they must diverge according to T-"', where K = p/2v. 
Assuming further that the magnetoresistance and the Hall resistance depend on the same 
variable x ,  then by comparison with the measured temperature dependences (figure 40) 
which can be fitted with K = 0.42. one obtains p = 2.0 k 0.2. 

B Kramer and A MacKinnon 

1 2 3 4 
log(T:mK) 

Figure 40. The derivative of the Hall resistivity of an InCaAdlnP sample. dpxvldB. and inverse 
of the widths of the corresponding pc&s in pI,. A, 35 a function of the temperature 7. The 
double logarithmic plol shows linear behaviour of all of lhe data with lhe same slope. K i; 0.4. 
Lines b and g are obtained from an AIGaAdGaAs sample at filling factor 4. All other lines an 
far integer filling factors (after Wei el nl (1988) and Engel er a1 (1990)). 

The result for p is presently theoretically not understood, but experimentally it  seems 
to be sample dependent. The exponent v of the localization length was recently confirmed 
directly experimentally (Koch el al 1991). 

Experimentally, the above value of K was obtained for a variety of magnetoresistance 
peaks corresponding to integer filling factor as well as a number of fractional fillings (Engel 
et al 1990). This strongly suggests that the above scaling picture may also be valid in the 
regime of the fractionally quantized Hall effect. 

The temperature dependence of the width of the plateaux corresponding to integer 
quantization of the Hall resistance has also been determined (Huckestein er al 1991b). 
Noting that the phase coherence length introduces effective (temperature-dependent) 
mobility edges into the system (figure 41), the plateau widths as a function of the temperature 
can be calculated from the number of states between the two successive mobility edges 
belonging to two successive Landau bands (Huckestein and Kramer 1990). The result is 
shown in  figure 42. 
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E 

Figure 41. Model for the explanation of the tempemure dependence of the Hall plateaux. 
The phase coherence length Lo(T, m) introduces effective mobility edges Ec and E; into the 
system. They are defined by the condition C ( E )  = L e ( T , w ) .  Only elecvons with > La 
convibute to transport p ( E )  is the schematic density of states. 
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Figure 42. Width of the i = 4 Hall plateau in AlGaAsIGaAs as a function of the temperature 
T. Experimental data are represented by dots. The theoretical c w e  was obtained by t&ing 
I = 0.4 and adjusting To (Huckestein et 01 1991b). 

It seems that a first step towards a quantitative and predictive understanding of the 
quantized Hall effect has been made-via the, at the first glance, rather abslract realm of 
the scaling picture. 

9.3. Magnetic-field-driven metal-insulator transition 

As mentioned above, quite a variety of experimental efforts have been devoted to the 
investigation of the MIT in 3D systems in the presence of a magnetic field. Clear experimental 
evidence has been produced for the existence of an MIT driven by the magnetic field 
(Biskupski et a! 1984, Spriet et a1 1986, Biskupski and Briggs 1988). It has been 
demonstrated that the mobility edge trajectory shows re-entrant behaviour for small B .  
There are two transitions, insulating to metallic and metallic to insulating, when B is 
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increased. Some of the experiments seemed to indicate a change in the critical exponent 
for B # 0 (Shafarman et al 1986, Castner et a1 1987). Others were consistent with a 
critical exponent that remained constant when switching on the magnetic field (Mansfield 
et a[ 1985, Katsumoto et al 1987, 1989, Katsumoto 1991). As mentioned previously (see 
section 8) field theory, on the basis of the E expansion, yielded that s should change from 
1 (orthogonal class) to f (unitary class) when a magnetic field is applied. To make the 
story complete, in the presence of interactions the corresponding scaling theories predicted, 
again on the basis of the E expansion, that s ( B )  = s(0) = 1 (Finkelstein 1984c, Castellani 
et a1 1984, Raimondi et al 1990). Thus, whether or not the critical exponent changes when 
applying a magnetic field could be an indication of whether or not interactions are important 
at the MIT. 

Using the numerical version of the scaling theory, the scaling properties of the logarithm 
of the transmission probability of a model that is a combination of a Landau model (for the 
motion of the electron within ZD planes) and a tight-binding model for the electronic motion 
perpendicular to the planes, in the direction of the magnetic field, was performed (Ohtsuki et 
al 1992, 1993). It turned out that again, when close enough to the critical point, the various 
raw data obtained for different combinations of the system size, the energy and the disorder 
obey a one-parameter scaling law (figure 43) that is very similar, even in its quantitative 
aspects, to the one obtained for B = 0. The phase diagram for localization turned out 
to be consistent with re-entrant behaviour for not too large B that can be traced back to 
density-of-states-induced delocalization, as obtained previously for the Anderson model (see 
section 8). Moreover, the critical exponent obtained, s = U = 1.3 & 0.2, was, wilhin the 
errors, the same as obtained for the orthogonal model. This result was corroborated in a 
recent study for the 3D Anderson-Peierls model (Henneke et a1 1993). 
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Figurc 43. The scaling function of a ID disordered system in the presence of a strong. quantizing 
magnetic field. 6- = F m ( E , f )  is the scaling parameter, t denotes the off-diagonal element of 
the Hamiltonian parallel to the magnetic field. The inset shows the phase diagram of localization. 
E&). close to the edge of the band. r is the bandwidth induced by the disorder alone (Ohuuki 
era1 1992). 

Thus, ifscaling exists and is universal for B = 0 there is no reason to belierje that the non- 
interacting orthogonal and unitary classes give different critical exponents on the basis of 
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the presently available numerical data, in contrast to the analytical results mentioned above. 
However, as the latter suffer from the fact that the approximations involved (perturbation 
expansion, E expansion) are at present not very well controlled (Wegner 1989), and that 
the validity of the scaling approach seems questionable for the average of the conductance 
(Lerner 1991a, b), there is, in our opinion, presently a small imbalance in favour of the 
numerical scaling method. Although still suffering from relatively large errors (% 20%) in 
the determination of the exponent, it has been successful in establishing scaling-but not 
for the conductance-and is in principle, as well as in practice, quantitatively controllable. 

If the numerical results are correctly interpreted, namely that they indicate no essential 
difference between the critical exponents in the orthogonal and the unitary classes, then 
there is a high probability that the experimental data that are consistent with s ( B )  = s(0) 
(Katsumoto er al 1987, 1989, Katsumoto 1991) indicate the presence of a generic disorder- 
induced MIT in the AI,Gal-,As system. It should then be of extraordinary interest to 
measure the critical behaviour of doped semiconducting systems like Si:P in  the presence 
of a magnetic field (Stupp 1992). 

10. Fluctuations 

We have seen above that the average conductance and the inverse of the average resistance 
of I D  disordered systems do not agree with each other (75). They are not self-averaging 
in the sense of statistical physics, namely, that their relative fluctuations vanish in the 
thermodynamic limit as the square root of the number of degrees of freedom. As in one 
dimension, the localization length is always finite, irrespective of the energy and disorder, 
and it is tempting to conclude that non-self-averaging of transport is an intrinsic property 
of the localized regime in two and three dimensions also. 

In the metallic limit the conductivity may be calculated from a configurational average 
of a quantum mechanical transition probability, as we have seen in section I .  Due to the 
configurational average, most of the interference terms do not contribute to the transition 
probability (76). If we consider the conductance of a given sample, however, the interference 
terms dominate the total transition probability in a random. manner. As a consequence, 
microscopic changes of the random potential in an impure metal of finite size should result 
in large changes of the (coherent) conductance. Thus, even in metals it is by no means 
guaranteed that quantum coherent transport is self-averaging. 

It is also not clear what the consequences of non-self-averaging for the nature of the 
Anderson transition would be. The study of the distribution functions of the physical 
quantities of interest is therefore of crucial importance for a thorough understanding of 
Anderson localization. 

10.1. The statistics of transport in I D  disordered systems 

The central limit theorem for the localization length has been shown to be valid for the 
disordered harmonic chain by O’Connor (1975). Approximate treatments for the electronic 
problem have been given by Anderson et al (1980) using a Landauer-type approach, and by 
Mel’nikov (1981) by estimating the distribution function of the resistance, and calculating 
from that the distribution function of its logarithm. The case of a Gaussian white noise 
potential has been treated by Abrikosov (1981), and by Kree and Schmid (1981). Numerical 
results have been obtained by Andereck and Abraham (1980), Sak and Kramer (1981). and 
by Kantor and Kapitulnik (1982). Tankei and Takano (1986) present somewhat different 
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results in the limit of large disorder. The method of OConnor can be directly applied to 
the Anderson model by identifying 
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In(aftl +a,”) = In(tj+,) = x j + ]  (170a) 

a, Jaj-1 = tan 0, y j .  (170b) 

x j ,  y, obey the recursion relations 

(171a) 

yj+, = ( E  - E j )  - y-1 (171b) 

This yields the most important result that the logarithm of the resistance (or of the 
conductance, alternatively) is a statistically well-behaved quantity, i ts  limiting distribution 
function being approximately a Gaussian with a finite variance. The corresponding relative 
average fluctuations can be calculated explicitly by using approximative methods (Kree 
and Schmid 1981, Mel’nikov 1981, Abrikosov 1981, Tankei and Takano 1986), and by 
numerical procedures (Andereck and Abraham 1980, Kantor and Kapitulnik 1982). They 
decrease with increasing length of the system, i.e. 

I ‘  

where the notation is as in section 6. This holds for small y (Sak and Kramer 1981, 
Abrikosov 1981, Tankei and Takano 1986). In the limit of large y .  however, there seem to 
be deviations from this behaviour (Sak and Kramer 1981, Tankei and Takano 1986, Shapiro 
1990, Slevin and Pendry 1990, Slevin 1991). The reasons are not yet fully understood, but 
they seem to be associated with the localization length becoming smaller than the lattice 
constant (Slevin and Pendry 1990, Slevin 1991). 

As the distribution of In! is asymptotically well behaved, it is intuitively clear that 
the resistance as well as the conductance must have statistical distributions which yield 
asymptotically divergent fluctuations, This can be verified by considering the average of 
the square of the resistance (r(L)’) which is given by 

{ r ( L +  I )? )  a (CrrULtI)’) = ( T r U r i i ) .  (173) 

U?+, is given by the recursion relation 

The asymptotic behaviour of the average square of the resistance is, as in the case of the 
average resistance, determined by the largest eigenvalue of this recursion relation, A=,  i.e. 

( r (L)? )  a exp(L In A’). (175) 

For small disorder a straightforward calculation gives 

A z = l + o z f i .  (176) 
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Thus, the second moment of the resistance grows more rapidly with the length of the system 
than the averaEe resistance itself (Abraham and Stephen 1980, Stone and Joannopulos 
1982). Similar conclusions can be drawn for the higher moments of the resistance and 
for large disorder. A full account of the asymptotic behaviour of all the moments of the 
resistance and the conductance has been given by Kirkman and Pendry (1984a, b), and by 
Abrikosov (1981) and Mel’nikov (1981) by using approximative methods. 

The result (175), together with (176), implies that the root mean square (RMS) 
fluctuations of the resistance grow exponentially with the length of the system. The 
resistance is not self-averaging. The physical reason for this behaviour is the exponential 
increase of the resistance in the localized regime when increasing the size of the system. 
Small statistical fluctuations of the localization length in the exponent will thus cause 
exponentially large changes of the resistance. Similar statements hold also for the 
conductance. 

:. \ 
0 1 0  20 30 

z 

Figure 44. The probability distribution of the inverse localization length, P(x) .  1 = ZyL, of 
a one-dimensional disordered system. It behaves approximately as a Gaussian around the most 
probable value and is linear for x + 0 (inset) (MarkoS and Knmer 1993a). 

Recently, it has been shown that the fluctuations are governed by the equation (Pendry 
et al 1990, 1992) 

where L is the length of the system and t is the (current amplitude) transmission coefficient. 
This result has been interpreted in terms of maximalfluctuations. Naively, C, should tend 
to zero. However, if ttt only takes the values 1 or 0 then C, would be unity. That C, 
is finite suggests that this is in fact a very good approximation to the truth, and that the 
fluctuations are the maximum compatible with (rtt). The result (177) may also be obtained 
by employing a different point of view, starting from the numerical observation (MarkoS 
and Kramer 1993a) that the probability distribution of the inverse localization length y ( L )  
(cf section 6) for large L is given by (figure 44) 
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where 
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YO = ( Y X l  +0(1 /L))  (179) 

and the variance A2 

2 Y d  A' = ---(I + O(l/L)) 
L 

where a is a constant of order unity Evaluation of the configurational average of the 
moments of the conductance 

(Pichard 1984) by the method o f  steepest descent around the maximum ym a L-' of the 
integrand (a2 > f )  

P F ' ( y )  cosh-'"(yL) (182) 

yields 

with 

C. a n-'" cosh-'"(2). (184) 

This agrees for n = 1 with the result obtained analytically originally for weak disorder 
(Abrikosov and Ryzhkin 1978) and later more generally (Kirkman and Pendry 1984a. b, 
Roberts 1992) and confirms (177) for n > 1. Thus the 'maximal fluctuations' are seen 
to bz related to the linear vanishing of the probability density of the inverse localization 
length for y + 0 since ym m L-I .  This strikingly demonstrates that the moments of 
the conductance are only determined by a vanishingly small fraction of the samples of the 
ensemble. These samples are very unrepresentative and have a conductance which is orders 
of magnitude larger than the most probable value, go m exp(-Z(y)L), which represents the 
experimentally accessible value. 

Although there are important quantitative aspects to be resolved in the future there is 
a probability that the reproducible conductance fluctuations observed originally in quasi-ID 
confined inversion layers in Si-MOSFETS (see figure 13) (Fowler et a/ 1982, Kaplan and 
Hartstein 1988, Hartstein 1988) can be identified with the fluctuations induced by strong 
localization described above. 

If  the theoretically predicted resistance and conductance fluctuations exist in the regime 
of strong localization they should also be observable in hopping transport (see section 3) (Lee 
1984. Serota et a1 1986, Medina er al 1989, Medina and Kardar 1992, Nguen et a/ 1985a, 
b, 1986, Raikh and Ruzin 1987, 1989, 1991, Shapir and Wang 1987). In recent experiments 
done on short but wide inversion layers in GaAs field-effect transistors (Orlov er a1 1989a, 
b), and on Inz03-, films (Millikan and Ovadyahu 1990) reproducible fluctuations that are 
consistent with the hopping picture have indeed been detected, and an attempt was made to 
analyse them quantitatively. They are, however, not yet very well understood, especially in 
their quantitative behaviour (figure 45) (Kramer et a1 1992, MarkoS and Kramer 1993a, b). 
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Figure 45. The fluctuations of the logarithm of the conductance in the hopping regime of a 
GaAs field-effect transistor as a function of the tempemure. Data points are taken from figure 6 
of Orlov et a1 (1989a). Triangles denate theoretical results obtained by Orlov er a1 using a 
model of inhomogeneous barrier structures (Raikh and Ruzin 1989). DOS we the experimental 
data. The straight line is a fit obtained by assuming that the effective system size is given by 
the Molt hopping length ford = 2 (see section 3) such that 6(logg) a a T - ' i 6 ,  

10.2. Fluctuations in the metallic limi? 

The experimental and theoretical investigations of recent years have revealed a most 
surprising feature of the transport properties of metallic systems which are defined by the 
condition that the mean free path e is much smaller than the system diameter L, with L 
much smaller than the localization length (Wheeler et al 1982, Umbach etal 1984, Skocpol 
et al 1984, 1986, Licini eta[  1985, Washburn and Webb 1986, Webb e?al 1988, Popovic et 
al 1991, Ciao etal 1989, Mailly etal 1989, Mailly and Sanquer 1991, Car0 eta1 1991). At 
very low temperatures, when inelastic scattering processes are frozen out to such a degree 
that in a sample of finite size almost no phase randomization takes place, sample specific 
statistical fluctuations of the conductance occur as a function of the Fermi level, an applied 
magnetic field, or the configuration of the impurities. They were larger than expected. They 
were well reproducible for a given sample. For a slightly modified sample (for instance 
by heating up and cooling down again) their behaviour changed in its details (figure 46). 
However, the root mean square deviation turned out to be approximately a constant, 

6g = f = O(1) ( 185) 
and universal within certain limits in the sense that it did not depend on the average 
conductance of the sample. 

There is a simple theoretical argument, borrowed from the theory of random matrices 
(Mehta 1967), which not only gives the correct order of magnitude of these 'universal 
conductance fluctuations' (UCF) but also sheds some light on their physical origin (Imry 
1986b). 

The basic idea is easily understood. The starting point is the generalization of the 
relation between the conductance and the quantum mechanical transmission properties, 
equation (181), to the metallic limit (Pichard 1984), 

2eZ 1 
g = k z c o s h Z y j L '  (186) 

exp(y,L) are the eigenvalues of the product of random transmission matrices, QQt (see 
sections 5 and 6), of a quasi-io system of length L and finite cross section cx N .  For 
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I I I I 

BIG - 
Figure 46. (e) Reproducible fluctuations of the magnetoconducmce in units of e z l h  at 
T = 45 mK of a SiGaAs wire after heating and cooling down again (46 cyclcs). (b)  'The 
mm value of Ihe 46 CUNU and B ID we& localiwtion fit (Le = 3 gm), (c )  The vziiance of 
the 46 curves in units of 10-'(ez/h)z (afler Mailly md Sanquer (1991)). 

very weak disorder, which can safely be assumed in the metallic limit, only a finite, 
but nevertheless large, number of the Lyapunov exponents yj. say N c ~ .  contribute to the 
conductance. Terms for which L >> y;' are exponentially small. On the other hand. if 
L << y;' coshZy,L % 1, Therefore in the metallic regime to a good approximation 

sz N~R. ( 187) 

If all of the non-vanishing contributions t o g  were statistically independent one could expect 

that the relative fluctuations of g behave as for large N,n. This is apparently not the 
case. Therefore the contributions of the y, cannot be statistically independent. 

The matrix Qat as a product of random matrices is again a random matrix, and one 
may ask whether or not the theory of random matrices is applicable in  this situation where 
the matrix elements are not uncorrelated, as required in standard random matrix theory. 
However, there are strong analytical arguments Omry 1986b, Mello 1987, Pichard 1991a) 
and numerical evidence (Markox and Kramer 1993a, b) that this is indeed the case to some 
extent, at least in the asymptotic regions of weak and strong localization. In the metallic limit 
yj are not statistically independent but strongly correlated (figure 47). As a consequence, 
the change in the conductance induced by a small microscopic change in  the randomness, 
e.g. due to the change in position of a single impurity, cannot be arbitrarily small. Either 
Neif is unchanged, and the conductance will be the same, or Ne# changes by unity such that 

The exact theory yields that there is only a small dependence of the fluctuations on the 
dimensionality and the geometrical shape of the sample. There is also a striking dependence 

I 

6g= 1. 
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Figure 47. Qualitative level spacing distribution$ P ( s )  for spears of uncomlated (Poissonian 
distribution. left) and correlated energy levels (Wigner surmise. wthogonal case, right). 

of the magnitude of the fluctuations on the universality class of the system. These very 
interesting aspects of the UCF are well accessible to experimental investigations. In the 
presence of a magnetic field the amplitude is reduced by a factor a for a system without 
spin-xbit scattering (figure 48). All of these findings were well supported by numerical 
and analytical calculations (Stone 1985, 1988, Lee and Stone 1985, Stone and Lee 1985, 
Altshuler 1985, Altshuler and Khmelnitskii 1986, Imry 1986% b, Muttalib er al 1987, 
Zanon and Pichard 1988, Giordano 1987, 1988, Mello 1987, 1988, Mello et at 1988a, b, 
1989, 1991, Kamien er al 1988, MaSek and h e r  1988, Kramer and Schreiber 1989, 
Pichard and Sanquer 1990, Pichard et al 1990% Pichard 1991% Iida er al 1990% b). The 
conductivity is related to the conductance by the classical relation g = oLdd2,  therefore 
the relative fluctuations vanish only according to 6g f g  cx La-d in contrast to what one 
would expect from classical statistical physics, 6g/g cx L-d/2. This means that even in 3~ 
metallic systems the zero-temperature conductance and resistance (and hence conductivity 
and resistivity) are not, strictly speaking, self-averaging when the system is coherent. 

10.3. Fluctuations and one-parameter scaling 

From the results of the studies of both of the asymptotic limits we can conclude that a 
complete theory of Anderson localization must necessarily be a theory of the distribution 
functions of the relevant quantities, and not only the configurational averages. This 
viewpoint has been stressed during the last few years by an increasing number of researchers 
(Kravtsov and Lerner 1984, Altshuler et al 1986, 1989, 1990, Kumar and Jayannavar 1986, 
Shapiro 1986, 1987, Efetov 1987a, b. 1988, Lemer 1988,1991b, Cohen era1 1988, Kravtsov 
et a1 1988, 1989, Chase and MacKinnon 1987, Schreiber and Kramer 1987, 1988). The 
theory is presently far from being complete. 
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Figure 48. The conductance fluctuations Sr in a modulation doped A1GJAsIGaA.s 
heterosuucture. (8) 6r as a function of the voltage V, applied to a gate for three different 
magnetic field strenglbs. The change of b; is equivalent to changing the Fermi energy EF, 
(b) Variance of dr (B)  as a function of the magnetic field. Inset: ‘magneto-fingerprint’ for 
Vr = 10 V (aRer Debray er a1 (1989)). 

Numerically, the results obtained so far indicate that the lognritkm of the conductance, 
lng ,  is self-averaging at least in the localized regime (figure 49). It is distributed according 
to a Gaussian with a variance A that is a unique function of the average of Ing (figure 50). 
at least in the limit -(lng) + 0. The statistical behaviour of the scaling variable introduced 
in  section 8 is thus determined only by one quantity, namely its average. In this sense one- 
parameter scaling theory is valid even in the metallic limit where the distribution of Ing 
becomes universal, i.e. independent of the disorder and the system size (figure 51) (h.larkoS 
and Kramer 1993a, b). 

Unfortunately, this does not tell us anything about the behaviour of the average of the 
conductance except that its distribution function must have extremely long tails. In the 
localized regime the distribution of g must be asymptotically of the form 

From the similarity of the distribution function we expect that the relation between the 
averages of Ing and g is similar to the one obtained in one dimension (section 6). g ( L )  is 
exponentially decreasing but with a decay length that is larger than the localization length 
(MarkoS and Gamer  l993a, b). 

In the metallic regime we observe (figure 51) 

at least approximately within a certain region. This universality of the distribution of g 
bears a close resemblance to the universal conductance fluctuations discussed above and to 
the distribution discussed recently by Shapiro (1990). 

An alternative view is the generalization of the concept of maximal fluctuations 
introduced in (177) above. In more than one dimension (177) becomes 
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Figure 49. Distribution P of lhe logarithm of the transmission probability, logg, of bar-shaped 
systems (see section 8) described by the Andenon Hamiltonian in the localized regime. The 
diagonal elements of the Hamiltonian are distributed according to a box function with width 
W = 20 V. System sizes M x M x L are M = 8 (e), 16 (C) ,  32 ( x ) ,  64 (*), 128 (e). The data 
are scaled such that they can be htted to a Gaussian (full curve). Since the data scale within the 
limit of accumcy logg is self-averaging ( m e r  and Schreiber 1989). 

O 
0 1 2 3 4 5 6 1 8  

<,L> 

Figure 50. The variance of the logarithm of the transmission probability, A'. as a function of 
its avenge. (yL ) .  for box and Gaussian distributions of the diagonal elements of the  Anderson 
Hamiltonian in two and t h e  dimensions with widths U' = 2. 5. IO. 20 (2D) and W = IO. 12, 
14, 16, 18.20, 22,24,26,28 OD). System sizes are M x L with L = 10. M = 6, IO. 20.40.60 
(2~. for W = 20 only ,!4 = 20.40.60 are considered). and L x M x M with L = IO, M = 8, 10, 
13 (ID). Energy and lenglh units are nearest-neighbour hopping matrix elements and the lanice 
distance, respectively (Kramer el ul 1992). The universal asymptotic behaviour for small ( y L )  
is indicated by the straight line with the slope I. At larger values of ( y L )  deviations from the 
universal behaviour are observed. 

Again this may be interpreted in terms of open and closed channels as in one dimension 
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Figure 51. The logarithm of the distribution P of the logxithin of the tmsmission probability 
log8 far the Anderson model 31 the band centre. E = 0. in the metallic regime. Disorder and 
system sizes L Y M x M (M = IO) W = 2. L = I O  ( x ) ;  L = 20 (0); W = 6. L = 10 (t), 
L = 20 (0);  W = IO. L = IO (*), The fact that rhe data scale indicates universality (the scatter 
ofthe data in the xymptotic regimes is B purely numerical effect) ( h e r  and Schreuber 1989). 

(Pendry era1 1992). This behaviour can be readily understood by considering the disordered 
system repeated many times to form a ID crystal with a large unit cell. In this case tt’ = 1 
in a band and ttt = 0 in a gap (Chase and MacKinnon 1987, MacKinnon 1991). Figure 52 
shows that this concept continues to be valid even in the case of a single disordered system 
with perfed leads. ;;rq 

0 1  ._ .- - .. 
’ 7  . 4 ,  

E 

I 
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I* 
*.YO a.,> * I ,  *U ,U . i s  e,## I I ,  1111 1.11 .il 1.21 

I’Lenglh 1,Lcnglh 

Figure 52. ( a )  (Tr(iit)”)/(Tr(iit)) plotted against inverse length for squares of size4 5, L 5 256 
and E = 1.0 and W = 3.0 using thc Anderson Model (16) avenged over 128 sampler. (b )  As 
before but for cubes of size 4 5 L 5 20 and E = 1.0 and W = 10.0 (Pendry ela l  1992). 
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11. Summary and conclusions 

In this review we have tried to summarize the present status of the field of localization of 
quantum states in random systems from the experimental as well as the theoretical point of 
view. We have attempted not only to review the results of the literature, but also to treat 
some. of the key concepts like hopping transport, asymptotic behaviour of the density of 
states, ID localization, and the bounds for the critical exponents in a self-contained way. 

After a brief review of the history of the field in the second section, which provides 
insight into the way the fundamental concepts have developed in the course of time, a 
concise description of the main experimental evidence is given in the third section. Here 
we have again concentrated on the key experiments, which are characteristic of the different 
regimes of interest. In most cases we have reported the first experimental evidence, 
such as the logarithmic weak localization correction to the low-temperature behaviour of 
the resistance of 2D metallic films, and the Aharonov-Bohm like quantum interference 
oscillations of the magnetoresistance of thin metallic cylinders. Ne have summarized the 
status of the experimental results concerning the critical behaviour at the disorder-induced 
metal-insulator transition, while emphasizing the fact that the agreement between theory 
and experiment is far from satisfactory. Needless to say, we consider this topic to be one of 
the most important problems for future research, especially in the experimental area. The 
connection between quantum localization and other areas of physics such as classical wave 
phenomena has been made using the two examples of water waves subject to scattering 
from a random assembly of obstacles, and enhanced backscattering of coherent optical 
radiation from a random assembly of glass spheres. An important consequence of quantum 
coherence and localization is the occurrence of reproducible stochastic fluctuations of the 
transport properties upon variation of external parameters of a system, such as an applied 
magnetic field, andlor a gate voltage, at very low temperature. We have discussed a few 
experimental observations in this rapidly developing field of current research at the end of 
the third section. 

The basic concepts and models have been introduced in detail in the fourth section. The 
quantities of interest, and the concepts of self-averaging and the configurational average, 
have also been explained here. The vast number of partially differing definitions of 
localization including the asymptotic behaviour of quantum mechanical wavefunctions and 
Green’s functions and multifractality of quantum states, and the connection between these 
and the transport properties were summarized in the fifth section. As a key example, 
localization in I D  disordered systems was covered in the sixth section in a self-contained 
way, including the theory of the averages of the resistance, the conductance, and the 
localization length. Here, the first explicit indication of the non-self-averaging property 
of transport was obtained. 

In section seven we have treated the weak localization approach in some detail, again to 
some extent self-contained, explaining the essential steps and the approximations involved 
in such a way that they can be followed and controlled without resorting too heavily to 
the original literature. It is consistent that in  the weak localization approach, which is a 
perturbative approximation method for the quantum corrections to the conductivity, non- 
interacting free electrons are used as a starting point for the mathematical treatment. In 
addition we have given a comprehensive picture in position space which serves to illustrate 
the basic physical content of the approach, and which can even be traced by experiment. 

Section eight contained a concise treatment of the scaling approach for the Anderson 
transition. Though definitely not aiming to be self-contained, we have tried to summarize 
the recent status of the results of this method which, as it is now becoming more and 
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more apparent. cannot yet be considered as the ‘solution of the problem of the disorder- 
induced MIT’. Besides outlining the concept of scaling from a general point of view at the 
beginning of the section, we have provided a short summary and critical discussion of the 
field theoretical formulation. We have also placed considerable emphasis on the numerical 
results obtained by investigating the scaling properties of the transmission properties of 
quasi-ID disordered systems of finite cross section. This includes results fur the critical 
exponents as well as explicit demonstration of the existence of a universal scaling function 
in the critical regime, and a short discussion with respect to experimental data. 

As an illustrative example, we have discussed localization in the magnetic field in 
the n in th  section. The reason for this is threefold. Firstly, ZD disordered systems in the 
presence of a magnetic field are of considerable interest i n  connection with the quantum Hall 
effect. Secondly, universality has been explicitly demonstrated for this limit, the critical 
exponent has been determined with extraordinary precision, and has been confirmed in a 
direct experiment. Thirdly, there are many experiments concerning the MIT in 3D systems 
subject to a magnetic field with different and partially contradictory results. Astonishingly 
enough, recent numerical work suggests that the critical behaviour is not changed when a 
magnetic field is applied. Further experimental and theoretical work is definitely needed in 
order to substantiate this first indication that the conventional scheme of universality classes 
for the Anderson transition is incomplete. 

Section ten has been devoted to a summary of the field of reproducible conductance 
fluctuations. As this is presently an open and still growing area, the discussion is necessarily 
incomplete and exemplifies only specific points, such as the universal fluctuations in the 
metallic regime, which can be considered to be more or less understood, at least in its 
basic aspects, and the fluctuations in the regime of hopping transport, which is the subject 
of thorough and extensive current investigations. The validity of the one-parameter scaling 
approach, i n  particular, relies heavily on the choice of quantity to use as the scaling variable, 
which should be self-averaging. It is one of the main objectives of the theory of the 
fluctuations i n  the transport properties to contribute to the clarification of this question, i.e. 
to clarify which quantity is measured in a transport experiment done on a disordered system 
at very low temperature in  the regime where quantum effects dominate. 

Theory and experiments in  the field of localization have matured considerably since the 
early days when the problem was formulated by proposing the absence ofdiffusion in certain 
random lattices. However. i n  contrast to the common folklore in the past decade most of 
the questions are far from being solved. Despite all of the efforts, the nature of most of the 
experimentally observed metal-insulator transitions must be considered as not understood. 
The determination of the critical behaviour turned out to be a forbiddingly complicated 
enterprise. The situation in the theoretical section is not much better. It is presently not 
clear whether or not the widely celebrated scaling idea can be used for the conductance. It 
seems that i t  is the logarithm of the conductance that must be used as a scaling variable- 
numerical works and theoretical considerations have yielded many hints in this direction. 
If this is the case, then all of the moments of the conductance must be evaluated in order 
to understand the nature of the disorder-induced metal-insulator transition. 

It is, however, completely open how this is affected when interactions have to be taken 
into account. 

Although the problems are not yet solved, the situation is nevertheless encouraging for 
the following reasons. Firstly, in the metallic limit a number of quantitative theoretical 
results are available that allow for experimental tests of the main ideas, such as quantum 
interference. Secondly, powerful methods, analytical as well as numerical, have been 
devised that should, at least in principle, be capable of treating some of the open questions, 
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such as the critical behaviour. Thirdly, experimental techniques have improved considerably, 
especially in connection with low temperatures. sample preparation and characterization, 
and measuring methods. Finally, the field of localization, originally restricted to solid state 
physics, has widened by adopting new ideas from other fields, such as optics and classical 
waves. 

Altogether there are good reasons to believe that the field will be alive and extremely 
active in the coming years, and that eventually the long-standing problem of the metal- 
insulator transition in condensed matter can be solved. 
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