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In 1989, Sir Sam Edwards made the visionary proposition to treat jammed granular
materials using a volume ensemble of equiprobable jammed states in analogy to ther-
mal equilibrium statistical mechanics, despite their inherent athermal features. Since
then, the statistical mechanics approach to jammed matter has garnered an extraordi-
nary amount of attention by both theorists and experimentalists. Its importance stems
from the fact that jammed states of matter are ubiquitous in nature appearing in a
broad range of granular and soft matter systems such as colloids, emulsions, glasses,
and biomatter. Indeed, despite being one of the simplest states of matter – primarily
governed by the steric interactions between the constitutive particles – a theoretical un-
derstanding based on first principles has proved exceedingly challenging. Here, we review
a systematic approach to jammed matter based on the Edwards statistical mechanical
ensemble. We discuss the construction of microcanonical and canonical ensembles based
on the volume function, which replaces the Hamiltonian in jammed systems. The impor-
tance of approximation schemes at various levels is emphasized leading to quantitative
predictions for ensemble averaged quantities such as packing fractions and contact force
distributions. An overview of the phenomenology of jammed states and experiments,
simulations, and theoretical models scrutinizing the strong assumptions underlying Ed-
wards’ approach is given including recent results suggesting the validity of Edwards
ergodic hypothesis for jammed states. A theoretical framework for packings whose con-
stitutive particles range from spherical to non-spherical shapes like dimers, polymers,
ellipsoids, spherocylinders or tetrahedra, hard and soft, frictional, frictionless and adhe-
sive, monodisperse and polydisperse particles in any dimensions is discussed providing
insight into an unifying phase diagram for all jammed matter. Furthermore, the connec-
tion between the Edwards’ ensemble of metastable jammed states and metastability in
spin-glasses is established. This highlights that the packing problem can be understood
as a constraint satisfaction problem for excluded volume and force and torque balance
leading to a unifying framework between the Edwards ensemble of equiprobable jammed
states and out-of-equilibrium spin-glasses.
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I. INTRODUCTION

Materials composed of macroscopic grains such as
sand, sugar, and ball bearings are ubiquitous in our ev-
eryday experience. Nevertheless, a fundamental descrip-
tion of both static and dynamic properties of granular
matter has proven exceedingly challenging. Take for
example the pouring of sand into a sandpile, Fig. 1a.
This process can be considered as a simple example of
a fluid-to-solid phase transition of a multi-particle sys-
tem. However, it is not clear whether this transition is
governed by a variational principle of an associated ther-
modynamic quantity like the free energy in equilibrium
systems. Granular materials do not explore different con-
figurations in the absence of external driving because
thermal fluctuations induce negligible particle motion at
room temperature and inter-grain dissipation and fric-
tion quickly drain the kinetic energy from the system.
On the other hand, the jammed state of granular matter
bears a remarkable resemblance with an amorphous solid
in thermal equilibrium: both are able to sustain a non-
zero shear stress; the phase transition from liquid to solid
states and the analogous jamming transition in grains
are both governed by one or a few macroscopic control
parameters; and, when using certain packing-generation
protocols, macroscopic observables, such as the packing
fraction, are largely reproducible.

Jamming transitions not only occur in granular media,
but also in soft materials such as colloidal suspensions
which may asymptotically reach jamming under centrifu-
gation, compressed emulsions, foams, glasses and spin-
glasses below their glass transition temperature and bio-
logical materials such as cells, DNA and protein packing.
Even more broadly, the jamming transition pertains to

a larger family of computational problems named Con-
straint Satisfaction Problems (CSP) (Krzakala and Kur-
chan, 2007). These problems involve finding the values
of a set of variables satisfying simultaneously all the con-
straints imposed on those variables and maximizing (or
minimizing) an objective function. For example, in the
problem of sphere packings, the goal is to minimize the
volume occupied by the packing subject to the geomet-
rical constraint of non-overlapping particles and the me-
chanical constraints of force and torque balance at me-
chanical equilibrium. In general, packing problems play
a central role in various fields of science in addition to
physics, such as discrete mathematics, number theory
and information theory. An example of practical inter-
est is the problem of efficient data transmission through
error-correcting codes, which is deeply related to the opti-
mal packing of (Hamming) spheres in a high-dimensional
space (Conway and Sloane, 1999). The common feature
of all packing problems is the existence of a phase transi-
tion, the jamming transition, separating the phase where
the constraints are satisfiable from a phase where they
are unsatisfiable (Müller and Wyart, 2015).

The existence of constraints in physical systems causes,
in general, a significant metastability. Metastability
is the phenomenon by which the system remains con-
fined for a relatively long time in suboptimal regions of
the phase space. It is related to the rough energy (or
free energy) landscape characterized by the presence of
many non-trivially related minima as a function of the
microscopic configurations (or the macroscopic states).
Metastability is, indeed, the leitmotiv in most complex
physical systems, whatever its origin. For example, in
granular materials metastability arises from geometrical
and mechanical constraints, but it is found also in spin
glasses, which are magnetic systems with competing fer-
romagnetic and antiferromagnetic exchange interactions.
In spin glasses, the emergence of metastability is due to
frustration, which is the inability of the system to satisfy
simultaneously all local ordering requirements. Notwith-
standing their differences, these two physical systems,
jammed grains and spin-glasses, exhibit a remarkably
similar organization of their metastable states, a fact
that stimulates our search for further analogies within
these systems and common explanations. It is, indeed,
this analogue approach, as best exemplified by the en-
compassing vision of Sir Sam Edwards (Goldbart et al.,
2005), that may shed new light on the solution to jam-
ming problems otherwise doomed to remain obscure.

Due to their substantial metastability, these systems
are fundamentally out-of-equilibrium even in a macro-
scopically quiescent state. Nevertheless, the commonal-
ities with equilibrium many body systems suggest that
ideas from equilibrium statistical mechanics might be
useful. In this review, we consider theories for jammed
matter based on generalizations of equilibrium ensem-
bles. These statistical mechanics-based approaches were
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pioneered by Sir Sam F. Edwards in the late 1980s
(Fig. 1b).

Investigations of the structural properties of jammed
packings are much older. In fact, the related problem of
identifying the densest packing of objects has an illustri-
ous history in the mathematical literature (Kepler, 1611;
Weaire and Aste, 2008). Exact mathematical proofs of
the densest packings are extremely challenging even for
spherical particles. The Kepler conjecture of 1611 stat-
ing that the densest arrangement of spheres in three spa-
tial dimensions (3d) is a face-centered-cubic (FCC) crys-
tal with a packing volume fraction φfcc = π/(3

√
2) ≈

0.74048... remained an unsolved mathematical problem
for almost four centuries (Hales, 2005; Kepler, 1611).
Systematic experiments on disordered hard-sphere pack-
ings began in the 1960s with the work by Bernal (Bernal,
1964; Bernal and Mason, 1960). These experiments are
conceptually simple, yet give fundamental insight into
the structure of dense liquids, glasses, and jammed sys-
tems. Equally sized spherical particles were placed into
a container and compactified by shaking or tapping the
system until no further volume reduction was detected.
These experiments typically yielded configurations with
packing fraction φrcp ≈ 0.64, which is historically referred
to as random close packing (RCP).

In order to apply a statistical mechanical framework
to these jammed systems, it is first necessary to iden-
tify the variables characterizing the state of the system
macroscopically. Clearly, the system energy is not suit-
able, since it may either not be conserved (for frictional
dissipative particles) or not be relevant (for frictionless
hard particles). On the other hand, an obvious state
variable is the system volume. In fact, unlike in equi-
librium systems, the volume in jammed systems is not
an externally imposed fixed variable, but rather depends
on the microscopic configuration of the grains. Edwards
first extraordinary insight was to parametrize the ensem-
ble of jammed states by the volume functionW({ri, t̂i}),
as a function of the N particles’ positions {ri} and orien-
tations {t̂i}, as a replacement for the Hamiltonian in the
equilibrium ensembles (Edwards and Oakeshott, 1989;
Edwards, 1991, 1994; Mehta and Edwards, 1990).

A second crucial point in the development of the Ed-
wards granular statistical mechanics is a proper definition
of the jammed state. It is important to note that only
jammed configurations {ri, t̂i} are included in the ensem-
ble. A definition of what we mean by jammed state is
not a trivial task and will be treated rigorously in the
next section. Assuming that an unambiguous definition
of metastable jammed state can be expressed analyti-
cally, then a statistical mechanics approach to granular
matter proceeds by analogy with equilibrium systems. In
this case, the volume function allows for the definition of
a granular entropy leading to both microcanonical and
canonical formulations of the volume ensembles. This
implies, in particular, the existence of an intensive pa-

rameter conjugate to the volume. This temperature-like
parameter was called compactivity by Edwards.

The full Edwards ensemble is characterized by the
macroscopic volume and, further, by the stress of the
packing. Since analytical treatments of the full ensemble
are challenging, one typically considers suitable approxi-
mations. Neglecting correlations between the volume and
the stress leads to a volume ensemble under the condi-
tion of isostaticity (Song et al., 2008). The core of this
review will be devoted to elaborate on a mean-field for-
mulation of the Edwards volume ensemble that can po-
tentially lead to a unifying phase diagram encompassing
all jammed matter ranging from systems made of spher-
ical to non-spherical particles, with friction or adhesion
to frictionless particles, monodisperse and polydisperse
systems and in any dimension. Likewise, we describe
frameworks for stress and force statistics alone, such as
the stress ensemble (Chakraborty, 2010; Henkes et al.,
2007), force network ensemble (Bouchaud, 2002; Snoei-
jer et al., 2004; Tighe et al., 2010), and belief propagation
for force transmission (Bo et al., 2014).

Edwards statistical mechanical ensemble rely on two
assumptions: (i) Ergodicity and (ii) Equiprobability of
microstates. These assumptions have been scrutinized in
the literature, and the questions raised in this context
will be reviewed here. Despite these critiques, the Ed-
wards’ approach has been used to describe a wide range
of jammed and glassy materials. Early works adopted
the concept of inherent structures from glasses (Coniglio
et al., 2002; Coniglio and Herrmann, 1996; Coniglio and
Nicodemi, 2000, 2001; Fierro et al., 2002b) and effective
temperatures (Ciamarra et al., 2006; Cugliandolo, 2011;
Kurchan, 2000, 2001; Makse and Kurchan, 2002; O’Hern
et al., 2004; Ono et al., 2002) with applications to plas-
ticity (Lieou and Langer, 2012). More recent approaches
are based on replica theory for hard-sphere glasses (Char-
bonneau et al., 2017; Parisi and Zamponi, 2010). Valu-
able insight is gained from models that exhibit both jam-
ming and glass transitions (Ikeda et al., 2012; Krzakala
and Kurchan, 2007; Mari et al., 2009). In this review,
we emphasize that the Edwards ensemble can be recast
as a constraint satisfaction problems, which allows for
an unifying view of hard-sphere glasses and spin-glasses
through a synthesis applied at the foundation of granular
statistical mechanics.

This review is organized as follows. In Sec. II we dis-
cuss the foundations of the ensemble approach via the
rigorous definition of metastable jammed states, and the
construction of microcanonical and canonical ensembles
based on the volume function and stress-moment ten-
sor, which play the role of the Hamiltonian in jammed
systems. In Sec. III we collect empirical results on the
phenomenology of jammed states. Moreover, we review
results from experiments, simulations, and theoretical
models that test the ergodic and uniform measure un-
derlying the ensemble approach. In Sec. IV we consider
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(a) (b)

FIG. 1 (a) (Color online) Pouring grains into a sandpile is the simplest example of a jamming transition from a flowing
state to a mechanically stable jammed state. However, this simplicity can be deceiving. In this review we show that building
sandpiles is at the core of one of the most profound problems in disordered media. From the glass transition to novel phases in
anisotropic colloidal systems, pouring grains in a pile is the emblematic system to master with tremendous implications on all
sort of soft materials, from glasses, colloids, foams and emulsions to biomatter. Edwards’ endeavour to tame granular matter
is condensed in the courageous attempt of measuring the ‘temperature’ of the sandpile. (b) Sir Sam F. Edwards (February
1st 1928 – July 7th 2015) (Warner, 2017). S. F. Edwards first introduced the intriguing idea that a far-from-equilibrium,
jammed granular matter could be described using methods from equilibrium statistical mechanics. In the Edwards’ ensemble,
macroscopic quantities are computed as flat averages over force- and torque-balanced configurations, which leads to a natural
definition of a configurational ‘granular’ temperature known as the compactivity.

volume ensembles and their mean-field description, which
provides quantitative predictions for ensemble averaged
quantities such as the packing fraction of spherical and
non-spherical particles. In Sec. V we discuss a unifica-
tion between the Edwards ensemble of jammed matter
and theories based on ideas from glass/spin glass theo-
ries under the CSP paradigm. In Sec. VI we finally close
with a summary and a collection of open questions for
future work.

In recent years a number of reviews have appeared
dealing with more specific aspects of granular matter:
(Richard et al., 2005) (granular compaction), (Makse
et al., 2005) (jammed emulsions), (Bi et al., 2015;
Chakraborty, 2010) (stress ensembles), (Tighe et al.,
2010) (force network ensemble), (Cugliandolo, 2011;
Qiong and Mei-Ying, 2014) (effective temperatures). The
present review is also complementary to other reviews on
jammed granular matter, which do not specifically dis-
cuss the Edwards thermodynamics: (Alexander, 1998;
Borzsonyi and Stannarius, 2013; Charbonneau et al.,
2017; van Hecke, 2010; Jaeger et al., 1996; Kadanoff,
1999; Liu and Nagel, 2010; Parisi and Zamponi, 2010;
Torquato and Stillinger, 2010). Rather than replacing
these reviews, our work puts these topics into the general
context of Edwards statistical mechanics and provides an
overview of the immense amount of literature related to

Edwards ensemble approaches.

II. STATISTICAL MECHANICS FOR JAMMED
GRANULAR MATTER

In a jammed system all particle motion is prevented
due to the confinement by the neighbouring particles.
The transition to a jammed state is thus not controlled
by the temperature as conventional phase transitions in
systems at thermal equilibrium, but by geometrical and
mechanical constraints imposed by all particles in the sys-
tem. Therefore, jammed states can be regarded as the
set of solutions in the general class of Constraint Satis-
faction Problems (CSP), which we term Jamming Satis-
faction Problem (JSP), where the constraints are fixed by
the mechanical stability of the blocked configurations of
grains. From this standpoint, the jamming problem has a
wider scope than the pure physical significance, encom-
passing the broader class of CSPs: the unique feature
of the packing problem in the large universe of CSPs is
that this system allows for a direct and relatively simple
experimental test of theoretical predictions.
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A. Definition of jammed states

We consider an assembly of N (for the sake of simplic-
ity) monodisperse particles described by the configura-
tions of the particles {r1, t̂1; ...; rN , t̂N}, where ri denotes
the ith particle’s position (of its center of mass) and t̂i its
orientation. The first problem we address concerns the
definition of a blocked configuration of the particles, i.e,
the jammed states. To be jammed the system has to sat-
isfy both excluded volume and mechanical constraints.
The excluded volume constraint enforces that particles
do not overlap, and its mathematical implementation de-
pends on the shape of the particles. For a system of
monodisperse hard-spheres, this constraint takes on the
following form:

|ri − rj | ≥ 2R , (equal-size hard spheres) (1)

which means that the centers of any pair of particles i
and j must be at a distance twice as large as their ra-
dius R. The hard-core constraint in Eq. (1) is valid only
for monodisperse spheres, but it can be generalized to
polydisperse and nonspherical particles.

The excluded volume constraint is necessary but not
sufficient by itself to determine whether a configuration of
particles is jammed. Indeed, it has to be supplemented by
a constraint enforcing the mechanical stability of the sys-
tem, requiring that particles satisfy the force and torque
balance conditions. We denote by dia the vector con-
necting ri and the ath contact on the ith particle. At
this contact there is a corresponding force vector f ia on
particle i arising from the contacting particle. With this
notation we can formulate the conditions of force and
torque balances for a particle of general shape:

∑

a∈∂i
f ia = 0, i = 1, ..., N (2)

∑

a∈∂i
dia × f ia = 0, i = 1, ..., N (3)

where the notation ∂i denotes the set of contacts of par-
ticle i. Equations (2–3) apply to both frictional and fric-
tionless particles. In the latter case there is only one
single force component in the normal direction

f ia = −f ian̂ia (frictionless), (4)

where n̂ia denotes the normal unit vector at the contact
point, which depends on the particle shape. For frictional
particles, we can decompose f ia into a normal component
f ia,n and a force vector in the tangent plane f ia,τ (see
Fig. 2). Coulomb’s law with friction coefficient µ is then
expressed by the inequality

|f ia,τ | ≤ µf ia,n (frictional). (5)

If the interparticle forces are purely repulsive, as in most
of the cases treated in this review, we also have the con-
dition:

dia · f ia < 0. (6)

di
a

ri

f i
a,⌧

f i
an̂

FIG. 2 Parametrization of a jammed configuration involving
5 non-spherical grains. The tangential f ia,τ and normal force

vectors f ia,nn̂
i
a at contact a on particle i are shown. dia indi-

cates the vector from the center of particle i to the contact
point a between one of its neighbours. ri gives the location of
the center of particle i. The grey-shaded particle is mechan-
ically stable if all forces and torques generated at the four
contact points cancel (see Eqs. (2,3)).

Finally, Newton’s third law implies, that two particles
i, j in contact at a satisfy:

f ia = −f ja . (7)

B. Metastability of jammed states

Having defined the necessary and sufficient conditions
for a granular system to be jammed, we now provide a
finer description of jammed states, based on the concept
of metastability, i.e., their stability with respect to parti-
cles displacements. A characterization similar to the one
proposed here appeared already in (Torquato and Still-
inger, 2001), where the authors defined the concept of
jamming categories for metastable packings. The sim-
ilarities with the classification of the jammed states in
(Torquato and Stillinger, 2001) are discussed in parallel
with the classification presented next.

To define properly the metastable jammed states we
need to specify with respect to what type of displace-
ments they are metastable. More precisely, if we start
from an initially jammed state satisfying Eqs. (1)–(7)
and then displace a set of particles, how do we decide
if the initial state is stable under this move? A helpful
discriminant is the volume V or equivalently the volume
fraction of the packing φ defined as the ratio of the vol-
ume occupied by the particles to the total volume of the
system and the number of particles involved in the dis-
placement. Thus, consider an initially jammed state, and
assume you can displace only one particle at a time. If the
volume fraction of the packing is not increasing whatever
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particle you move, then we may assert that the packing
is stable against any single particle displacement. We
call this type of jammed state a 1-Particle-Displacement
(1-PD) metastable jammed state, which is defined as a
configuration whose volume fraction cannot be increased
by the displacement of one single particle, see Fig. 3a.
However, φ may be increased by moving a set of two or
more particles at the same time. The definition of 1-PD
metastable jammed states is the same as the definition of
local jamming in (Torquato and Stillinger, 2001), stating
that in a locally jammed configuration no single particle
can be displaced while keeping the positions of all other
particles fixed.

We can now extend this definition to jammed states
which are stable with respect to the simultaneous dis-
placement of multiple particles. Specifically, we define
a k-Particle-Displacement (k-PD) metastable jammed
state as a configuration whose volume fraction cannot
be increased by the simultaneous displacement of any
contacting subset of 1, 2, . . . , k particles. Again, we find
this definition quite similar to the definition of the collec-
tive jamming category in (Torquato and Stillinger, 2001),
which states that in collectively jammed configurations
no subset of particles can be simultaneously displaced so
that its members move out of contact with one another
and with the remaining set. Following the definitions
given above a ground state of the system is a configura-
tion whose volume fraction cannot be increased by the
simultaneous displacement of any finite number of par-
ticles. A ground state of jamming corresponds to the
k → ∞ limit of a k-PD metastable jammed state, the
∞-PD jammed ground state.

In the following section we will introduce the volume
function W(r) to parametrize the system volume as a
function of the particles’ positions. It is useful then to
classify the k-PD metastable jammed states in terms of
the minima of this function. More precisely, we identify
the k-PD metastable jammed states as those states that
satisfy the geometrical and mechanical constraints and
are local minima ofW(r). For example, 1-PD metastable
states are those configurations r∗ for which W(r) is con-
vex around r∗ under 1-Particle-Displacements, but non-
convex under k-Particle-Displacements with k > 1, see
Fig. 4a. Here, convex means that all the eigenvalues of
the Hessian of W(r) evaluated at the configurations r∗

are positive, while non-convex means that there exists at
least one negative eigenvalue in the spectrum of the Hes-
sian. Similarly, k-PD metastable states are those configu-
rations r∗ for whichW(r) is convex around r∗ under any
k′-Particle-Displacements with k′ ≤ k, and non-convex
under any k′-Particle-Displacements with k′ > k. A sim-
ple example of a 1-PD metastable jammed state is shown
in Fig. 3a.

Interestingly, in spin-glass systems the (energetically)
metastable states can be defined in a similar way, not
with respect to volume but with respect to energy. The

FIG. 3 (a) Example of a 1-Particle-Displacement jammed
state: no particle can increase the volume fraction by dis-
placing itself while keeping the others fixed in their positions.
It is assumed that a membrane is keeping the particles in
place or that they are surrounded and kept in place by a rigid
container. (b) The 1-PD metastable state in (a) is not sta-
ble under 2PD. Simultaneous displacement of two particles:
to escape the 1-PD metastable trap, two contacting particles
are displaced while keeping the others fixed in their positions.
(c) Higher order metastable jammed state: after the move in
(b), a new metastable jammed state is reached having higher
stability than the original one in (a).

analog of the 1-PD metastable jammed state is, for a spin
glass, the 1-spin-flip (1-SF) metastable state, defined as
a configuration whose energy cannot be lowered by the
flip of any single spin. Similarly the k-spin-flip (k-SF)
metastable state, akin to the k-PD metastable jammed
state, is a configuration whose energy cannot be lowered
by the flip of any cluster of 1, 2, . . . , k spins. Moreover,
for spin glasses, several rigorous results on metastable
states are known, including their probabilities, basins of
attraction, and how they are sampled by various dynam-
ics (Newman and Stein, 1999). These results are ex-
plained in detail in Section V along with their granular
counterpart. The analogy between grains, hard-sphere
glasses, and spin glasses has been reviewed in (Dauchot,
2007) and is described in Table I and Fig. 4a.

Protocols to generate jammed packings usually lead to
a non-zero fraction of particles (2 − 5%), which remain
mobile even though all other particles are∞-PD jammed.
These particles are called rattlers and can be displaced
within a cage without changing the volume function.

Now that we have a rigorous definition for the jammed
states and their metastable classification, we address the
crucial problem of how to describe their statistical me-
chanics. Consider a granular material undergoing ver-
tical tapping. After tapping, the system relaxes into a
jammed state. Subsequent tapping will allow the sys-
tem to explore other jammed states. An important ques-
tion arises: how does the tapping dynamics sample the
jammed states, or what is the probability measure for
jammed states obtained from tapping?
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Granular matter Hard-Sphere Glasses Spin-Glasses

Thermodynamic descriptor Volume function Density functional Hamiltonian

W(q) S[ρ(r)] H(σ)

Lagrange multiplier Compactivity X Pressure P Temperature T

Entropy Edwards entropy S(V ) Configurational entropy Σ Complexity Σ

Metastable states Minima of W(q) Minima of S[ρ(r)] Minima of H(σ)

+ jamming constraint at T = 0

Local metastable 1-Particle-Displacement 1-Spin-Flip (T = 0)

Collective metastable k-Particle-Displacement k-Spin-Flip (T = 0)

Global metastable ∞-Particle-Displacement φ ∈ [φth, φGCP) ∞-Spin-Flip (T = 0)

0 ≤ α < 1 0 ≤ α < 1

Ground state ∞-Particle-Displacement φGCP ∞-Spin-Flip (T = 0)

α = 1 α = 1

TABLE I Synoptic view of unifying framework to understand the thermodynamics, relevant observables and classification of
metastable states in granular matter, hard-sphere glasses and spin-glasses. The four categories of jamming are defined according
to their metastability: local metastable (1-PD/SF stable); collective metastable (k-PD/SF stable with finite 1 < k < ∞);
globally metastable (∞-PD/SF stable, but with 0 ≤ α < 1, where α = k/N for k,N → ∞); and the true global ground state
(∞-PD/SF stable and α = 1).

C. Edwards statistical ensemble for granular matter

In 1989 Edwards made the remarkable proposal that
the macroscopic properties of static granular matter can
be calculated as ensemble averages over equiprobable
jammed microstates controlled by the system volume
(Edwards and Oakeshott, 1989). The thermodynamics
of powders was created with this claim (Edwards, 1994):

“We assume that when N grains occupy a volume V
they do so in such a way that all configurations are
equally weighted. We assume this; it is the analog of
the ergodic hypothesis of conventional thermal physics.”

This idea is very suggestive because it turns a compli-
cated dynamical problem into a relatively simpler equi-
librium problem. Such an equilibrium sampling in a non-
equilibrium system has been recently also adopted by sev-
eral authors in the glass community to study the ground
state of amorphous packings as the infinite pressure limit
of metastable glassy states described by equilibrium sta-

tistical mechanics (Charbonneau et al., 2017; Parisi and
Zamponi, 2010). Here, in the so-called Monasson con-
struction (Monasson, 1995), a modified equilibrium av-
erage over metastable states is taken, supplemented by
the additional assumption that such metastable states
become jammed states in the infinite-pressure limit. In
such a limit, the states are sampled flatly and the Monas-
son construction reduces to the Edwards one. Even more,
it turns out that mean-field glass models relaxing at zero
temperature have exactly Edwards ergodicity property
(Kurchan, 2001): at long times any nonequilibrium ob-
servable is correctly given by the typical value it takes
over all local energy minima of the appropriate energy
density. The original idea put forward by Edwards is
basically to take the flat average at the end, i.e., in the
jammed state. After all we have no liquid state in gran-
ular matter, we just pour grains and they immediately
jam.

Therefore, granular matter should be amenable to an
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(a) (b)

Negative Training Set 
O’Hern           

Shattuck          
Frenkel

Positive Training Set        
Edwards        
Kurchan           
Makse

negative sentimentpositive sentiment

Machine learning to understand the Edwards controversy

FIG. 4 (Colors online) (a) Unification between Edwards statistical mechanics of jammed matter and the mean field picture
of spin glasses. Main panel: Edwards entropy S of the metastable states k-PD and ground state ∞-PD in the jamming model
as well as the analogous complexity Σ in the spin glass models in terms of the equivalent k-SF metastable and ∞-SF ground
state. The J-line corresponds to the ground states between [φth, φGCP] and are ∞-PD states with only positive eigenvalues
for the Hessian. This line is obtained by changing α = k/N between [0, 1] and k → ∞ and N → ∞ below the full replica
symmetry breaking transition as indicated. Top right panel: Schematic representation of the metastable states 1-PD and
ground state ∞-PD of jamming in the volume landscape (the analogous 1-SF metastable states and the ∞-SF ground state
in the energy landscape of spin glasses is a function of the spin configuration σ instead of r). Lower panel: Organization
of the k-PD metastable states into a hierarchy of successively nested k-PD cores (k-cores). (b) Machine learning applied to
the abstracts of 581 papers citing the original Edwards paper (Edwards and Oakeshott, 1989) to classify the sentiment of the
authors based on the positive and negative training sets of papers of authors as indicated. We use the same methods to predict
election outcomes from Twitter from https://arxiv.org/abs/1610.01587 and (Bohannon, 2017) (http://bit.ly/2nSjHuI).
The classifier identifies two well separated polarized groups with the positive sentiment going gradual from neutral to more
extreme. The same trends are found in the electorate.

equilibrium statistical mechanical treatment, where the
role of energy is played by the volume, and all the jammed
states at a fixed volume are equally probable. In granu-
lar assemblies consisting of dry particles in a size range
above a few microns, the thermal energy at room tem-
perature can be neglected and neither equilibrium en-
tropy nor free energy can be used as thermodynamic po-
tentials to describe the system. Nevertheless, for large
enough particle numbers, statistical ideas seem relevant:
Macroscopic observables such as the packing fraction are
robustly reproduced for a given protocol. If operations
manipulating individual particles are neglected, granular
assemblies are thus described by well defined macrostates
that correspond to many different microscopic configura-
tions. Instead of the energy, one can equivalently take the
volume as the key variable characterizing the macrostate
of a static assembly. S. F. Edwards insight has suggested
to consider the volume of a granular assembly analogous
to the energy of an equilibrium system: Unlike in typical
equilibrium systems, the volume is not an externally fixed
parameter, but depends on the microscopic configuration
of the particles including positions and orientations. This
suggests to introduce a volume function W({ri, t̂i}) giv-
ing the system volume as a function of the particles’ posi-
tions ri and orientations t̂i equivalent to the Hamiltonian
H({pi, ri}), i = 1, ..., N .

With this analogy, all concepts of equilibrium statisti-
cal mechanics can be carried over into the realm of non-
thermal static granular systems opening the door for the
use of thermal concepts for athermal systems, i.e., there
is a whole new statistical mechanics emerging from the
point which, in conventional, thermal, statistical mechan-
ics corresponds to T = 0, S = 0 (Edwards, 2008). For
an in-depth treatment of equilibrium statistical mechan-
ics we refer to standard textbooks (Huang, 1987; Landau
and Lifshitz, 1980; Pathria and Beale, 2011). In particu-
lar, one can introduce the concept of a granular entropy
S(V ) as a measure of the number of microstates Ω(V )
for a given fixed volume V

S(V ) = λ log Ω(V ), (8)

Ω(V ) =

∫
dq δ(V −W(q))Θjam. (9)

Here, we use the shorthand notation q = {ri, t̂i} and∫
dq =

∏N
i=1

∫
dri
∮

dt̂i. The parameter λ ensures the
correct dimension of S as volume (set to unity in the
following).

The function Θjam in Eq. (9) is crucial. It is there to
admit only microstates in the ensemble that are jammed
by enforcing the excluded volume and mechanical stabil-
ity constraints in Eqs. (1)–(7). Only these rigid states
lead to a static assembly at fixed volume. While this

https://arxiv.org/abs/1610.01587
http://bit.ly/2nSjHuI
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function has been treated lightly in earlier studies of Ed-
wards thermodynamics, it contains most of the interest-
ing physics of the problem and therefore will be treated
carefully in the remaining of this review. More precisely,
Θjam admits only the solutions of the Jamming Satisfac-
tion Problem (JSP), which reads for monodisperse hard-
spheres:

Θjam =

N∏

i,j=1

θ
(
|ri − rj | − 2R

)
hard− core (spherical)

×
N∏

i=1

δ

(∑

a∈∂i
f ia

)
force balance

×
N∏

i=1

δ

(∑

a∈∂i
dia × f ia

)
torque balance

×
N∏

i=1

∏

a∈∂i
θ
(
µf ia,n − |f ia,τ |

)
Coulomb friction

×
N∏

i=1

∏

a∈∂i
θ
(
−dia · f ia

)
repulsive forces

×
∏

all contacts a

δ(f ia + f ja) Newton 3rd law .

(10)

Implicit in this microcanonical description is again the
underlying assumption of equiprobability: The distribu-
tion of jammed configurations q at a given volume is
uniform:

Pmic(q) = Ω(V )−1δ(V −W(q))Θjam. (11)

The definition of Θjam deserves a crucial clarification.
According to the classification of metastable jammed
states given previously, when constructing the volume
ensemble we have to specify what type of metastable
jammed states we are considering at the fixed volume
V. The crucial point is that k-PD jammed states are
fundamentally different for different values of k, and
hence there is no reason, in principle, to assign them
the same statistical weight across all the values of k.
In other words, when we fix the volume V , we consider
as equiprobable only the jammed state corresponding to
the same metastable class, i.e., with the same k. This
is evident in the language of jammed categories: a lo-
cally jammed state (=1-PD) is substantially different
from a collectively jammed state (=k-PD), and it can-
not be claimed, a priori, that they are found with equal
probability in a tapping experiment, even if they may
have the same density. An identical situation applies
to metastable states in spin-glasses and disordered fer-
romagnets where the equiprobability of the metastable
states has been rigorously studied (Newman and Stein,
1999).

This clarification is very important, and indeed it is at
the origin of many headaches when trying to prove or dis-
prove Edwards conjecture. In the absence of a first prin-

ciple derivation of Edwards statistical mechanics, there
has been a long standing controversy on it validity, as il-
lustrated in Fig. 4b. Even if this condition did not appear
in the original formulation by Edwards, it is nevertheless
a quite obvious requirement, especially in light of analo-
gous exact results in spin-glasses and hard-sphere glasses
(Newman and Stein, 1999; Parisi and Zamponi, 2010).
The reason to not make explicit this further condition
was presumably the feeling of Edwards that the jammed
states that only matter in granular media are the ones
corresponding to k = ∞, i.e. the “ground states” (see
however (Edwards et al., 2004) for a more detailed dis-
cussion). Here, we extend Edwards idea also to jammed
states with k < ∞. Summing it up, the correct reading
of the assumption about the probability measure over
jammed states must take into account the restriction
to the states within the same k-PD class, a condition
that must be included in the definition of Θjam as an
additional constraint. In practice this can be done af-
ter having defined the volume function of the system,
which provides an unambiguous definition of mechan-
ically metastable states via its convexity, much in the
same way as for spin-glasses, the Hamiltonian allows one
to properly define the energetically metastable states, i.e.
its local minima (Newman and Stein, 1999). This topic
will be discussed in detail in Section V.

In principle the Edwards conjecture can be correct or
not, and a case-by-case analysis is required to establish its
validity. In granular systems, Liouville’s theorem for the
conservation of phase space volume under time evolution
(the cornerstone of conventional equilibrium statistical
mechanics) does not hold, leading to nonzero phase space
compressibility. The reason is the strongly dissipative
nature of granular assemblies, which are dominated by
static frictional forces; although an intuitive proof for the
use of W in granular thermodynamics has been sketched
by the analogous proof of the Boltzmann equation (H-
theorem) (Edwards et al., 2004).

In this ensemble, statistical averages of observables are
assumed to be equal to time averages over single trajec-
tories, provided the actual dynamics is ergodic. This
can be induced by external drive, such as infinitesimally
small tapping or very slow shearing. Since the drive in-
duces fluctuations of the packing configuration, and thus
fluctuations of the volume, one can similarly introduce
a canonical picture (without change in particle number).
The analogue of temperature is called compactivity X,
whose inverse is the derivative of the granular entropy

X−1 =
∂S(V )

∂V
. (12)

For a real granular system, the compactivity can be
thought of as a measure of how more compact the sys-
tem can possibly be. Large values of X indicate a loose
or “fluffy” (but mechanically stable) configuration, whose
volume could be reduced further under rearrangement.
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The canonical distribution follows from the maximiza-
tion of the Gibbs entropy just as in thermal equilibrium
under the constraint of a fixed average volume

V =

∫
dqW(q)Pcan(q) , (13)

and has the standard Gibbs form and canonical partition
function:

Pcan(q) =
1

Z e
−W(q)/XΘjam, (14)

Z =

∫
dq e−W(q)/XΘjam. (15)

If we follow the analogy with equilibrium thermody-
namics, the concepts of granular entropy and compactiv-
ity translate into postulated laws of a granular thermo-
dynamics (Edwards et al., 2004):

Zeroth law. A consistent picture of compactivity as a
temperature-like parameter requires the notion of equili-
bration: Two systems in physical contact should equili-
brate to the same compactivity. The required “volume”
transfer is achieved by the external drive, but needs to
avoid any mixing of the particles.

First law. The analogy with granular matter is not
clear as a distinction between heat and work is not useful
for jammed granular materials.

Second law. In any natural process, the granular en-
tropy always increases. The second law forms the basis
of Edwards statistical mechanics.

Third law. Our qualitative discussion of compactivity
suggests that entropy should thus be a monotonically in-
creasing function of X: Loose packings at high X can be
realized in many more configurations than dense packings
at low X. In the limit X → 0 we can thus postulate that
S(V )→ const. The limiting entropy will be finite for any
disordered arrangement, while S(V ) = 0 is only achieved
for a fully ordered non-degenerate crystal structure.

Up to now we have considered only the volume V as
the relevant variable to characterize the jammed state of
a granular system. However, this is not the general case.
Indeed, when the system is shaken the grains will fill a
volume V and exert a stress Σ̂ on the boundary. Shak-
ing after shaking, the system explores presumably typi-
cal configurations in the configuration phase space, which
are subject to the constraint on V and also on Σ̂. Con-
sequently, the entropy of the system S(V, Σ̂) must then
be computed as a function of those observables, which in
the microcanonical ensemble can be defined as

S(V, Σ̂) = log

∫
dq δ(V −W(q))δ(V Σ̂− Φ̂(q))Θjam

(16)

where

σ̂i =
∑

a∈∂i
dia ⊗ f ia (17)

is the stress tensor associated with particle i and the sum

Φ̂ =

N∑

i=1

σ̂i =

N∑

i=1

∑

a∈∂i
dia ⊗ f ia (18)

is the macroscopic force-moment tensor.
In analogy to the volume ensemble, there should thus

exist a temperature-like Lagrange multiplier associated
with the stress. Since Σ̂ is a tensor, this quantity is also
a tensor, which can be defined as

Λ̂ij = V
∂Σ̂ij
∂S

. (19)

The tensor Λ̂ is referred to as angoricity from the Greek
word ankhos for stress (Blumenfeld and Edwards, 2009).

A simplification occurs if the stress Σ̂ is a simple hy-
drostatic pressure Σ̂ = p. In this case the angoricity
degenerates to the scalar quantity Λ = V ∂p/∂S.

Considerable progress in a theoretical description of
granular matter could be achieved from pure volume and
stress/force ensembles, which appear as limits of the full
description Eq. (16). We discuss these in detail in the
following. On the other hand, it has been suggested that
volume and stress ensembles are necessarily interdepen-
dent, which would require more sophisticated approaches
to deal with their correlations (Blumenfeld et al., 2012;
Pugnaloni et al., 2010).

D. Volume ensemble

Pure volume ensembles neglect the force degrees of
freedom. This is reasonable, e.g., in isostatic systems,
where all forces are uniquely determined from the config-
urational degrees of freedom. In this case, the statistical
volume ensemble is fully specified by the volume function
Eq. (14), which relies on a suitable space tessellation.

1. Conventions for space tessellation

In the case of a Hamiltonian there is a unique way to
define the energy as a function of the particle configura-
tions, typically in terms of a superposition of all particles’
individual kinetic and potential energy plus the energy
contribution due to interactions. Such a decomposition
is not straightforward in the case of the volume function.
Nevertheless, it is natural to express W in the form of a
superposition

W(q) =

N∑

i=1

Wi(q) (20)

of non-overlapping volume elements that tesselate the
space occupied by the packing. Wi is the volume associ-
ated with each of the N particles. Crucially, this volume
is not a function of the configuration of the ith particle
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only. Naively, one could imagine that Wi depends solely
on the configurations of particles in the first coordina-
tion shell. However, such a restriction is mathematically
not sufficient and does not apply in general, e.g., in the
Voronoi tesselation. The collective nature of the systems’
response to perturbations induces dependencies on par-
ticles further away. Moreover, even if one considers only
particles in the first coordination shell as a first approxi-
mation, a precise definition of Wi is not straightforward.
The key problem is to reference individual particles, so
that their neighbours can be defined. While this is easily
achieved in a regular crystalline packing, the difficulties
originating from a disordered contact network have been
realized early on (Edwards and Oakeshott, 1989; Moun-
field and Edwards, 1994). Below we review the different
definitions of Wi in historical order.

a. Tensorial formulation A first solution to the problem
of defining W(q) was proposed in (Edwards and Grinev,
2001). Introducing the tensor (Edwards and Grinev,
1999a,b) F̂i =

∑
j∈∂i rij ⊗ rij , where rij is the separa-

tion vector of particles i and j, we can define the volume

associated with particle i as Wi = 2
√

det F̂i, which in-
volves only contacting particles. The resulting total vol-
ume W =

∑N
i=1Wi is thus only an approximation of the

exact volume occupied by all N particles. Formal correc-
tions that allow for an exact definition of W have been
suggested, but the quantities specifying correlations of
tensors belonging to nearest neighbours are intractable
for any practical purposes (Edwards and Grinev, 2001).

b. Quadrons In 2d, a definition ofWi, such that Eq. (20)
is exact can be obtained by analysing planar packings in
terms of loops and voids (Ball and Blumenfeld, 2002; Blu-
menfeld and Edwards, 2003), leading to area-tesselating
quadrilateral elements referred to as quadrons. In 2d one
can show that the number of quadrons is identical to the
number of configurational degrees of freedoms (Blumen-
feld and Edwards, 2003, 2006), motivating the use of the
quadrons as the elementary “particles” of the system on
which the statistical mechanics is based. In 3d this coinci-
dence is no longer valid (Blumenfeld and Edwards, 2006),
thus limiting the applicability of the quadrons to realistic
systems. Even in 2d it has been noted that the exact tes-
selation is only valid in the absence of non-convex voids,
which are actually present in a gravitational field (Cia-
marra, 2007).

c. Delaunay tessellation For a set of points specifying,
e.g., the centres of spheres in a packing, elementary De-
launay cells are simplexes with vertices at the centres
of neighbouring particles. In 2d the simplexes are tri-
angles defined such that no other point lies inside the

circumcircle of a given triangle. In 3d the simplexes are
likewise tetrahedra defined such that no other point lies
inside the circumsphere of a given tetrahedron. In both
cases a space filling set of cells is obtained, which, how-
ever, is not uniquely associated with a given set of parti-
cles. Thus, it is not possible to cast this tesselation into
the form of Eq. (20), reducing its applicability to realis-
tic systems. The Delaunay tessellation has been used to
analyse the volume statistics of disordered sphere pack-
ings (Aste, 2005, 2006; Aste et al., 2007; Finney, 1970;
Hiwatari et al., 1984; Klumov et al., 2014), and is the
cornerstone in Hales’ proof of the Kepler conjecture.

d. Voronoi tessellation A straightforward way to tessel-
late the volume of a packing is to associate that amount
of space with particle i that is closer to it than to any
other particle (Fig. 5), thus making full use of the form
Eq. (20). This defines the Voronoi tesselation, first intro-
duced by the Ukrainian mathematician G. F. Voronoi in
1908, which is now widely used in mathematics and many
applied areas (Aurenhammer, 1991; Okabe et al., 2000).
In the case of spheres or points, the Voronoi tessellation
is dual to the Delaunay decomposition: the centres of the
circumspheres are just the vertices of the Voronoi graph.

Before we define the volume Wi, we first introduce
the Voronoi boundary (VB). The VB between two par-
ticles is defined as the hypersurface that contains all the
points that are equidistant to the surfaces of both parti-
cles (Baule et al., 2013; Portal et al., 2013; Schaller et al.,
2013). If we fix our coordinate system at the centre of
mass of particle i (and also assume its orientation fixed),
we can parametrize the VB in terms of the direction ĉ
from particle i (Fig. 5b). A point on the VB is found
at sĉ, where s depends on the relative position rij and
orientation t̂ij of the two particles: s = s(rij , t̂ij ; ĉ). The
value of s is obtained from two conditions:

1. The point sĉ has the minimal distance to the sur-
faces of each of the two objects along the direction
ĉ.

2. Both distances are the same.

As an example, the VB between two spheres of equal
radii is the same as the VB between two points at the
centres of the spheres. Therefore, condition 1 is trivially
satisfied for every s and condition 2 translates into the
equation (sĉ)2 = (sĉ− rij)

2, leading to

s =
rij

2ĉ · r̂ij
, (21)

i.e., the VB is the plane perpendicular to the separation
vector rij at half the separation (see Fig. 5a). Already for
two spheres of unequal radii, the VB is a curved surface.
Taking into account the different radii Ri and Rj , the
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FIG. 5 (Colors online) Illustration of the Voronoi tessella-
tion in a packing of monodisperse disks. (a) In this case the
Voronoi boundary (VB) between two particles is the plane
perpendicular to the separation vector at half the distance
(see Eq. (21)). The VBs of the reference particle (green) with
the particles in the first and second coordination shell are in-
dicated with thin black lines. (b) The volume of a Voronoi
cell associated with a given particle is defined as the amount
of space that is closer to the surface of that particle than to
the surface of any other particle. The cell boundary li(q, ĉ)
in a given direction ĉ for a configuration q thus follows from
the global minimization Eq. (24) and the cell volume from the
orientational integral Eq. (23). In the figure the contributed
VBs of all particles along ĉ are indicated. The pink particle
contributes the smallest VB, which thus defines the boundary
of the Voronoi cell (indicated in grey). We also refer to this
particle as “Voronoi particle” along the direction ĉ.

second condition becomes s − Ri =
√

(sĉ− rij)2 − Rj ,
which has the solution (Danisch et al., 2010):

s =
1

2

r2
ij − (Ri −Rj)2

ĉ · r̂ij − (Ri −Rj)
. (22)

Finding a solution for both conditions 1. and 2. for
general non-spherical objects is non-trivial (Baule et al.,
2013; Portal et al., 2013) and will be discussed in
Sec. IV.G.2.

Having defined the VB, the exact mathematical for-
mula for Wi(q) in d dimensions is given by the orienta-

tional integral:

Wi(q) =
1

d

∮
dĉ li(q, ĉ)d, (23)

where li(q, ĉ) is the boundary of the Voronoi cell in the
direction ĉ. This boundary depends on all N parti-
cle configurations q in terms of a global minimization:
li(q, ĉ) is the minimum among all VBs in the direction
ĉ between particle i and all other N − 1 particles in the
packing (see Fig. 5b). Formally,

li(q, ĉ) = min
j:s>0

s(rij , t̂ij , ĉ). (24)

Clearly, the global minimization over all particles j defin-
ingWi in Eq. (24) is highly difficult to treat analytically.
The Voronoi volume of a particle depends on the posi-
tion of all the other particles in the packing; clearly, a
many-body interaction. The precise knowledge of the
microscopic configurations of all particles is intractable
in the thermodynamic limit. Nevertheless, the Voronoi
convention has been shown to be the most useful way of
defining the volume function, since it is well defined for
any dimension and captures the effect of different particle
shapes. The technical challenges can be circumvented by:
(i) decomposing non-spherical shapes into overlapping
and intersecting spheres leading to analytically tractable
expressions for the VB; (ii) coarse-graining the volume
function over a mesoscopic length-scale, which avoids the
global minimization problem.

This approach (Baule et al., 2013; Song et al., 2008)
turns the volume ensemble into a predictive framework
for packings, as discussed in detail in Sec. IV. Interest-
ingly, the Voronoi cell of a particle can be interpreted as
its available volume in the packing. This correspondence
can be demonstrated by considering a soft interparticle
potential and evaluating the free volume for a given po-
tential energy before taking the hard core limit (Song
et al., 2010). Analyzing the statistics of the Voronoi cells
also provides deeper insight into structural features of
packings, e.g., by quantifying the cell shape anisotropies
(Luchnikov et al., 1999; Medvedev and Naberukhin, 1987;
Schaller et al., 2015a; Schröder-Turk et al., 2010).

2. Statistical mechanics of planar assemblies using quadrons

The quadron convention of the volume functionW has
been used in (Blumenfeld and Edwards, 2003) to calcu-
late the partition function of the volume ensemble ex-
plicitly. If correlations between particle positions are ne-
glected, analytical results can be obtained by introducing
suitable approximations for Θjam. The partition function
is then analytically tractable and leads likewise to pre-
dictions for the average quadron volume and fluctuations
(Blumenfeld and Edwards, 2003). The quadron approach
also allows to assess the effect of correlations. The lowest
order correlations originate from intergranular loops and
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can thus be considered as background fluctuations. In
the case of circular particles with three neighbours one
finds that taking into account correlations only due to the
intergranular loops reduces the packing density at high
compactivity, but increases it at low compactivity. In
addition, the difference in density due to correlations is
shown to be relatively small at around 2–4%, which sug-
gests that correlation-free models might be sufficiently
accurate to capture many packing properties (Blumen-
feld and Edwards, 2003).

3. Γ-distribution of volume cells

The analysis of the statistics of volume cells in sphere
packings reveals an interesting universality irrespective
of packing protocols and volume conventions. In (Aste,
2006; Aste et al., 2007) experimental packings of ∼
145, 000 spherical glass beads were prepared with flu-
idized bed techniques and structural features investi-
gated with X-ray tomography. The PDFs of cell vol-
umes in the Delaunay convention for 18 different ex-
periments show a surprising collapse onto a unique
master curve. The master curve is the Γ-distribution
f(V, k) = (V−Vmin)k−1

Γ(k)χk e−(V−Vmin)/χ, with shape param-

eter k and scale parameter χ = (〈V 〉 − Vmin)/k. Such
a Γ-distribution has been shown to capture well the vol-
ume statistics in a large variety of jammed systems (Aste
and Di Matteo, 2008a,b; Aste et al., 2007; Frenkel et al.,
2008; Lechenault et al., 2006; Matsushima and Blumen-
feld, 2014; Oquendo et al., 2016). Its possible univer-
sality has been motivated by statistical mechanical ar-
guments applied to independent elementary volume cells
(Aste and Di Matteo, 2008a; Aste et al., 2007) assuming
that the cells are uncorrelated. Even though the data col-
lapse on a Γ-distribution is remarkable, it is not clear if it
is indeed a signature of a jammed state. A Poisson point
process, e.g., leads likewise to a distribution of Voronoi
cell volumes that is well described by a Γ-distribution
(Ferenc and Néda, 2007; Kumar et al., 1992; Lazar et al.,
2013).

E. Stress and force ensemble

1. Force tilings

It has already been noted in the mid 19th century that
the contact forces in a 2d packing can be mapped to a
tessellation of the plane, the so called Maxwell-Cremona
tessellation (Cremona, 1890; Maxwell, 1864). An individ-
ual tile in the tessellation arises from the contact forces
acting on a particle i: the boundary of the tile is con-
structed by rotating all force vectors by π/2 and joining
them tip to end leading to a polygon (see Fig. 6a,b).
If the forces on the particle all balance the polygon is

(a) (c)(b)

FIG. 6 . Illustration of a Maxwell-Cremona tessellation.
(a,b) Rotating the contact force vectors by π/2 and joining
them tip to end leads to a tile that can be associated with
an individual particle. (b,c) Due to force balance every tile is
closed and the collection of tiles tesselates the plane.

closed, because its boundary is the sum of all contact
forces. Moreover, due to Newton’s third law the tiles of
contacting particles always have a side of equal length
and orientation, which, for a N particle packing satis-
fying force balance leads to a tessellation of the plane
without any gaps (Fig. 6c). Note that the condition of
torque balance is not required to construct the tiles. The
Maxwell-Cremona tessellation underlies the mapping of
contact forces to auxiliary forces such as the void forces
(Satake, 1993), loop forces (Ball and Blumenfeld, 2002),
and height fields (Henkes and Chakraborty, 2005) (see
Sec. II.E.3).

An important observation is that any rearrangement of
forces changes the area of individual tiles Ai, but leaves
the overall area of the tessellation invariant if force bal-
ance is maintained and boundary forces are unchanged.
This means that the total area is an invariant under
these force rearrangements (Tighe et al., 2008; Tighe and
Vlugt, 2010, 2011)

N∑

i=1

Ai = const, (25)

where the sum runs over all tiles in the tessellation.
Another manifestation is the conservation of the stress-
moment tensor (Ball and Blumenfeld, 2002; Henkes and
Chakraborty, 2005; Henkes et al., 2007). Eq. (25) only
holds for frictionless grains. In frictional systems, the
force tiles are non-convex and self-intersecting polygons,
which makes the tiling graph non planar and the individ-
ual tile areas do not sum up to the overall area (Bi et al.,
2015).

Maximum entropy methods in the spirit of E. D.
Jaynes information theoretic approach to statistical me-
chanics (Jaynes, 1957a,b) have been applied to the prob-
lem of force statistics in a number of works (Bagi, 1997,
2003; Goddard, 2004; Kruyt and Rothenburg, 2002; Met-
zger, 2004; Metzger and Donahue, 2005; Ngan, 2004,
2003; Radeke et al., 2004; Rothenburg and Kruyt, 2009).
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2. Force network ensemble

The force network ensemble (FNE) (Snoeijer et al.,
2004; Tighe et al., 2008, 2010; Tighe and Vlugt, 2010,
2011) motivated by work of Bouchaud (Bouchaud, 2002)
is based on a separation of scales relevant for the particle
configurations and forces. In quantitative terms, one can
introduce the parameter

ε =
〈fij〉
〈rij〉

〈
dfij
drij

〉−1

, (26)

where 〈...〉 denotes an average over all particles in the
packing and we introduce the notation fij for the normal
force component f ia of contact a on particle i with parti-
cle j. For ε� 1 variations of the forces of order 〈f〉 only
result in vanishing changes in the particle positions rij .
If the forces are underdetermined, i.e., not uniquely fixed
by the force and torque balance equations, the forces are
thus uncoupled from the configurational degrees of free-
dom. The FNE considers a fixed contact network (a fixed
set of {rij}) and constructs an ensemble of contact forces
{fij} with the following properties: (i) The forces are a
priori uniformly distributed as in the Edwards ensemble;
(ii) Force and torque balance equations are imposed as
constraints; (iii) Forces are repulsive ∀fij ≥ 0 and sat-
isfy the Coulomb condition Eq. (5); (iv) A fixed external
pressure P sets an overall force scale. For a small num-
ber of spheres the resulting force distribution can be de-
rived exactly (Snoeijer et al., 2004). For larger packings
maximum entropy arguments can be used (Tighe et al.,
2008; Tighe and Vlugt, 2010, 2011). The underlying as-
sumptions imply that the FNE is in principle applicable
to frictional hyperstatic systems, but is mathematically
well defined also for frictionless particles.

For an isostatic system at jamming the force net-
work ensemble is not needed, since the contact geometry
uniquely defines the contact forces (Charbonneau et al.,
2015b; Gendelman et al., 2016; Lerner et al., 2013). In
this case, an approximation of P (f) can be calculated
with the cavity method assuming a locally tree-like con-
tact geometry corresponding to an assumption of replica
symmetry (RS) (Bo et al., 2014). We note that a cor-
rect determination of P (f) requires one to take into ac-
count subtle correlations between particle positions that
exist at jamming beyond RS, and that are neglected in
(Bo et al., 2014), which in the end fails to account for
the non-trivial power-laws of P (f) at jamming. A sim-
ilar situation appears in the approximative calculation
at 1RSB using replicas, which also fails to predict the
correct exponents (Parisi and Zamponi, 2010). As dis-
cussed in Sec. V.A, the correct calculation needs to be
performed at the full-RSB level since the jamming line is
deep in the Gardner phase of the model.

3. Stress ensemble

A statistical ensemble based on the stress-moment ten-
sor is conveniently constructed by introducing auxiliary
force variables based on the voids surrounded by contact-
ing particles in 2d (Ball and Blumenfeld, 2002; Henkes
and Chakraborty, 2005). If we choose the centre of an
arbitrary void as the origin of a height field, we can con-
struct the height vectors hν iteratively as (Henkes and
Chakraborty, 2005)

hν = f ia + hµ. (27)

Here, µ, ν label voids and f ia is the force vector at the
contact that is crossed when going from the centre of void
µ to the centre of void ν. Since the contact forces on a
particle sum to zero due to force balance, the height vec-
tors are well defined and represent a one-to-one mapping
of the contact forces. The microscopic stress tensor of a
single grain, Eq. (17), σ̂i can then be expressed in terms
of the height fields (Ball and Blumenfeld, 2002)

σ̂i =
∑

a∈∂i
(ra1 + ra2)⊗ hµ, (28)

where ra1 and ra2 denote the vectors connecting void a
with the contact points. The macroscopic force-moment
tensor Eq. (18) of a macroscopic assembly of N particles
occupying area A in the quadron convention is thus

Φ̂ =

N∑

i=1

σ̂i =
∑

µ∈∂A
(rµ1 + rµ2)⊗ hµ. (29)

The sum in the last expressions runs only over all voids
defining the boundary of the area A, since all contribu-
tions from particles in the bulk cancel. We see that Φ̂ is
conserved under rearrangement of the contact forces in
the bulk that preserve force balance, which is a manifes-
tation of the area conservation Eq. (25). Therefore, pack-
ings with different values of Φ̂ can not be transformed
into each other by rearranging the bulk forces. This al-
lows us to define a granular entropy S = log Ω(A, Φ̂, N)
via the number of force configurations Ω(A, Φ̂, N) leading
to a given Φ̂.

In order to obtain the canonical distribution, we di-
vide the system into a small partition of size m and the
remaining system N −m, which acts as a reservoir. For
frictionless isotropic systems the only independent part
of Φ̂ is the trace Γ = tr Φ̂, which represents a simple hy-
drostatic pressure p = Γ/A. In this case, the formalism
simplifies and the canonical distribution is (Henkes and
Chakraborty, 2009; Henkes et al., 2007)

P (Γm) =
Ωm(Γm)

Z(α)
e−αΓm , Γm =

∑

i,j

dijFij , (30)

where α = log ΩN (Γ)/∂Γ and the sum is taken over all
contact vectors and forces in the m-particle cluster.

Eq. (30) leads to the following testable predictions:
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• All subregions in an equilibrated packing k should
have the same granular temperature αk. Thus mea-
suring P (Γm) in two packings k and k′ yields the
ratio (Henkes et al., 2007)

log

[
Pk(Γm)Pk′(Γ

′
m)

Pk(Γ′m)Pk′(Γm)

]
= (αk − αk′)(Γm − Γ′m). (31)

Moreover, the distribution Pk(Γm) satisfies the
scaling (Henkes et al., 2007)

Pk(Γm) = Pk′(Γm)e−(αk−αk′ )Γm . (32)

Eqs. (31,31) require that packings k and k′ are suf-
ficiently close in density to neglect changes in Ω due
to different volumes.

• At the isostatic point the partition sum Z(α) can be
evaluated analytically by summing over all force de-
grees of freedom assuming a uniform distribution.
In a monodisperse system of spheres, this yields
the predictions (Henkes and Chakraborty, 2009):
Ω(Γm) = Γ2m for m� 1 and

α =
Nziso

2 〈Γ〉 , (33)

where 〈Γ〉 = −∂ logZ/∂α. We also obtain the ex-
ponential force distribution

P (F ) ∝ e−αr0F , (34)

where r0 is the sphere radius.

Simulations of soft sphere systems have confirmed
predictions Eqs. (31,32) for different packing densities
(Henkes et al., 2007). Eq. (33) has also been shown close
to the J-point, but deviations are observed for larger
densities, where instead the relation α = Na 〈z〉 /ΓN is
observed. Here, a increases monotonically from a = 2 for
〈z〉 > ziso (Henkes and Chakraborty, 2009).

III. PHENOMENOLOGY OF JAMMED STATES AND
SCRUTINIZATION OF THE EDWARDS ENSEMBLE

In this section we first describe the phenomenological
results characterizing the jammed states and then pro-
ceed to review work dedicated to test the Edwards as-
sumption of equiprobability of jammed states.

A. Jamming in soft and hard sphere systems

Over the past two decades, considerable progress has
been made in our understanding of jammed particles
packings. Here we summarize the main results of this
work needed for the remainder of this review. One can
refer to several recent review articles for more details. (Bi
et al., 2015; Charbonneau et al., 2017; van Hecke, 2010;
Liu and Nagel, 2010; Torquato and Stillinger, 2010)

1. Isostaticity in jammed packings

The average coordination number in packings is ap-
proximately estimated by naive Maxwell counting argu-
ments (Alexander, 1998; Maxwell, 1870) which consider
the force variables constrained only by force and torque
balance Eqs. (2,3) and Newton’s third law Eq. (7), but ig-
nore the crucial constraints of Coulomb, Eqs. (5), and re-
pulsive forces, Eq. (6). In particular, attractive forces are
allowed, contradicting the fact that the forces are purely
repulsive, Eq. (6). With these caveats in mind, one ob-
tains an estimation of the average coordination number z
assuming: (i) all degrees of freedom (dofs) in the packing
are constrained by contacts (for periodic boundary con-
ditions); (ii) the number of contacts will be minimal for a
generic disordered packing. As a consequence, packings
of frictionless particles should satisfy (see appendix A)

z = 2df . (35)

When Eq. (35) is satisfied the packing is isostatic un-
der the naive Maxwell counting argument: the number
of force and torque balance equations exactly equals the
number of contact force components. Therefore, the con-
figurational dofs fully determine the force dofs and vice
versa, which allows to construct ensembles based on only
configurational or force dofs. Since isostatic packings
have the minimal number of contacts for a geometrically
rigid packings they are also referred to as marginally sta-
ble (Müller and Wyart, 2015). Packings with z smaller
or larger than the isostatic value are referred to as hypo-
static and hyperstatic, respectively.

Equation (35) predicts that packings of frictionless
spheres have z = 6, while rotationally symmetric shapes
such as spheroids and spherocylinders have z = 10 and
fully asymmetric shapes have z = 12. The isostaticity
for spheres is indeed widely observed to hold very closely
in experiments and simulations for both soft and hard
sphere systems. In fact it has been shown (Moukarzel,
1998) that non-cohesive sphere packings become exactly
isostatic, when their stiffness goes to infinity. However, if
we consider a small deformation from the spherical shape
to, e.g., a spheroid, the isostatic condition would predict
a discontinuous jump in the average coordination number
from z = 6 to z = 10. Instead, one finds that packings
of non-spherical shapes are in general hypostatic with a
smooth increase from the spherical isostatic z value un-
der deformation (Donev et al., 2004, 2007; Schreck et al.,
2012; Williams and Philipse, 2003; Wouterse et al., 2009).
These hypostatic packings are indeed mechanically stable
if the effect of the shape curvature at the contact point is
taken into account (Donev et al., 2007; Roux, 2000). As
a consequence, one can construct configurations that are
mechanically stable even though there are fewer contacts
than configurational dofs per particle (see Sec. IV.G.3).
Interestingly, also for larger aspect ratios the average
coordination number generally stays below the isostatic
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value, which is just slightly lower for spheroids and fully
asymmetric ellipsoids (Donev et al., 2004), but exhibits a
much stronger decrease for spherocylinders (Baule et al.,
2013; Williams and Philipse, 2003; Wouterse et al., 2009;
Zhao et al., 2012).

For polyhedral particles with flat faces and edges the
above counting arguments need to be modified, since,
e.g., two touching faces constrain more than a single con-
figurational dof. In (Jaoshvili et al., 2010) it has been
suggested to associate every contact with the number of
configurational dofs that are constrained by it: Contact
of two faces → 3 constraints; face and edge contact → 2
constraints; face and vertex, edge and edge contacts→ 1
constraint. With these correspondences the isostaticity
of disordered jammed packings of tetrahedra and other
Platonic solids could indeed be demonstrated (Jaoshvili
et al., 2010; Jiao and Torquato, 2011; Smith et al., 2011).

For frictional particles the contact counting argument
provides the range of coordination numbers 4 ≤ z ≤ 6
for spheres and 4 ≤ z ≤ 12 for general shapes (see
appendix A). For spheres it is generally observed that
z → 6 for a friction coefficient µ → 0 (frictionless
limit) and z → 4 for µ → ∞ (infinitely rough spheres)
(see Sec. III.A). For intermediate µ sphere packings are
thus generally hyperstatic. Hyperstaticity is also found
for frictional ellipsoids (Schaller et al., 2015b) and fric-
tional tetrahedra, when the different types of contact are
translated into constraints on the configurational dofs
(Neudecker et al., 2013).

The Coulomb condition Eq. (5) restricts the possible
force configurations compared with the infinitely rough
limit: A stable force configuration with a certain z(µ) is
also stable for all larger µ values. Any determined value
z(µ) is thus in principle a lower bound on the possible
combinations of z and µ, although it might not be possi-
ble to generate these combinations in practice. This high-
lights that z(µ) is not unique and depends strongly on the
history of the packing generation. It should be stressed
that the above isostatic conjectures are valid only un-
der the naive Maxwell counting argument ignoring the
repulsive nature of the interactions and the inequalities
derived from Coulomb conditions. A model generalizing
Maxwell arguments to this more realistic scenario was
proposed in (Bo et al., 2014) suggesting the existence of
a well defined lower bound on z(µ) (see Sec. V.A).

2. Packing of soft spheres

So far we have treated only hard spheres. A packing
of soft spheres with radius R is modelled by repulsive
normal forces: (Johnson, 1985; Landau et al., 1986):

f ia,n = knξ
α, (36)

where the normal overlap is ξ = (1/2)[2R−|r1−r2|] > 0,
and r1,2 are the positions of the grain centres. The nor-

mal force acts only in compression, f ia,n = 0 when ξ < 0.

The effective stiffness kn = 8
3µgR

1/2/(1 − πg) is defined
in terms of the shear modulus of the grains µg and the
Poisson ratio πg of the material from which the grains are
made (typically µg = 29 GPa and πg = 0.2, for spherical
glass beads). The exponent α is typically chosen among
two possibilities: (i) α = 1 for simple harmonic springs,
and (ii) α = 3/2 for 3d spherical geometries at the con-
tact (Hertz forces).

The situation in the presence of a tangential force,
f ia,τ , is more complicated. In the case of spheres under
oblique loading, the tangential contact force was calcu-
lated by Mindlin (Mindlin, 1949). For the special case
where the partial increments do not involve microslip at
the contact surface (i.e., |∆f ia,τ | < µ∆f ia,n, where µ is
the static friction coefficient between the spheres, typi-
cally µ = 0.3) Mindlin (Mindlin, 1949) showed that the
incremental tangential force is

∆f ia,τ = ktξ
1/2∆s, (37)

where kt = 8µgR
1/2/(2−πg), and the variable s is defined

such that the relative shear displacement between the two
grain centers is 2s. This is called the Mindlin “no-slip”
solution.

Typical packing preparation protocols employ Molec-
ular Dynamics compressing an initially loose gas (Makse
et al., 2004, 1999, 2000). In 2d it is necessary to use
bidisperse mixtures in order to avoid crystallization.
Other protocols start from a random configuration cor-
responding to a large “temperature” T =∞ initial state.
Jammed packings at T = 0 are generated by bringing the
system to the closest energy minimum using conjugate-
gradient techniques to minimize the energy of the sys-
tem, which is well defined for frictionless systems (O’Hern
et al., 2002). Another protocol for numerically construct-
ing jammed states consists in putting particles at ran-
dom positions above the packing at a certain height and
letting particles settle under gravity (Herrmann, 1993).
Also sophisticated experimental realizations of this pro-
cedure have been developed (Pouliquen et al., 1997).

In the T = 0 limit or the mechanical equilibrium state
assemblies of these particles exhibit a transition to the
jammed state. There exists in particular a critical pack-
ing density φc characterizing the onset of jamming at
which the static shear moduli G∞ and the pressure p
(and therefore, the static bulk modulus as well) become
zero simultaneously (under decompression) and the coor-
dination number attains the isostatic value (Makse et al.,
1999). For finite N the precise value of φc depends on
the initial T state and the protocol employed, but scal-
ing behaviour of G∞ and p for each of the different α
values is observed when using the distance to jamming
φ−φc as a control parameter for packings near isostatic-
ity. The critical density φc in the T = 0 limit and zero
shear stress is referred to as J-point (O’Hern et al., 2002).
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For quenches starting at infinite temperature, in the ther-
modynamic limit N → ∞ the distribution of φc values
converges to a delta function at a value φ∗ = 0.639±0.001
for frictionless monodisperse spheres in 3d. The J-point
thus obtained is close to values typically found for ran-
dom close packings (RCP) of hard spheres.

The following power-law scalings have been observed
by many studies and are independent of polydispersity
or dimensionality (van Hecke, 2010; Liu and Nagel, 2010;
Majmudar et al., 2007; Makse et al., 2004, 1999, 2000;
O’Hern et al., 2003, 2002; Zhang and Makse, 2005):

• Pressure:

p ∼ (φ− φc)α (38)

• Static bulk modulus:

B∞ ∼ (φ− φc)α−1 (39)

• Static shear modulus:

G∞ ∼ (φ− φc)α−1/2 (40)

• Average coordination number:

z − zc ∼ (φ− φc)1/2, (41)

where zc, the critical coordination number mea-
sured at φc, agrees in fact with the isostatic value
z = 2df .

The square root scaling of z − zc is observed for all α
values, which indicates that this scaling is only due to
the packing geometry independent of the interaction po-
tential. The scaling of the pressure can be interpreted
as an affine response of the packing to deformations.
This argument, which is usually referred as the Effec-
tive Medium Approximation in granular matter (DeGiuli
et al., 2014a,b, 2015; Digby, 1981; During et al., 2013;
Jenkins et al., 2005; Makse et al., 2004, 1999; Norris and
Johnson, 1997; Walton, 1987; Wyart, 2010), also predicts
an exponent α − 1 for the bulk modulus Eq. (39) (pro-
portional to the second derivative of the energy) as ob-
served (although the scaling law has a different prefac-
tor as expected from affine deformations). However, the
shear modulus should then also scale with an exponent
α − 2, which is not observed in Eq. (40), highlighting
the effects of non-affine motion under shear (Magnanimo
et al., 2008; Makse et al., 2004, 1999). The observed scal-
ing of the shear modulus has been reproduced in models
of disordered solids by taking into account the non-affine
response within an approximate analytical scheme (Zac-
cone and Scossa-Romano, 2011). Equation (41) has been
shown to be a bound for stability in (Wyart et al., 2005b)
based on physical arguments and confirmed analytically

in a replica calculation of the perceptron model of jam-
ming (Franz et al., 2015). Lattice models that exhibit
critical behaviour related to Eqs. (39)–(41) capture the
jamming transition in terms of a percolation transition
(k-core or bootstrap percolation) (Schwarz et al., 2006;
Toninelli et al., 2006).

Anomalous behaviour at point J is also indicated in the
density of normal mode frequencies (Charbonneau et al.,
2015a; DeGiuli et al., 2014b; O’Hern et al., 2003; Silbert
et al., 2005, 2009; Wyart et al., 2005a,b). In a crys-
tal the low frequency excitations are sound modes with
a vibrational density of states ∼ ωd−1 (Debye scaling).
In a disordered packing theoretical arguments based on
marginal stability predict instead (DeGiuli et al., 2014b)

D(ω) ∼





ωd−1 ω � ω0

ω2/ω∗2 ω0 � ω � ω∗

constant ω � ω∗
, (42)

which is also exhibited by the perceptron model (Franz
et al., 2015) and found in simulations of jammed soft
spheres in dimensions 3–7 (Charbonneau et al., 2015a;
Lerner et al., 2016; Mizuno et al., 2017). The ω2/ω∗2

scaling has also been observed in emulsion experiments
(Lin et al., 2016). In Eq. (42), ω∗ is a characteristic
frequency that vanishes at jamming as

ω∗ ∼ z − zc (43)

and ω0 is a small threshold frequency.
At jamming the density of states thus stays non-zero

for arbitrary small frequencies. This highlights that at
point J there is an excess of low frequency modes com-
pared with crystals. This anomaly is sometimes seen
analogous to the Boson peak observed in glassy mate-
rials (Franz et al., 2015). The vanishing crossover fre-
quency ω∗ allows to identify a length scale l∗, which di-
verges upon reaching point J as: l∗ ∼ (z − zc)−1 (Wyart
et al., 2005a). Such a diverging length scale has been
observed numerically in the vibrational eigenmodes and
in the response to point perturbations (Ellenbroek et al.,
2009, 2006; Silbert et al., 2005). However, theoretical
arguments predict for point responses l∗ ∼ (z − zc)−1/2

(Lerner et al., 2014). The length scale l∗ has been com-
puted in (During et al., 2013; Wyart, 2010). Diverging
length scales when approaching point J from below have
also been identified related to velocity correlation func-
tions (Olsson and Teitel, 2007) and clusters of moving
particles (Drocco et al., 2005). When approaching point
J from above finite point correlation functions are not
sufficient to detect such a length scale. Instead, point
to set correlation functions are necessary, which can pro-
vide a quantitative description of the sensitivity of force
propagation in granular materials to boundary conditions
(Mailman and Chakraborty, 2011, 2012).

The concept of frequency dependent complex-valued
effective mass Meff(ω) (Hsu et al., 2009) obtained as the
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packing is subjected to a vertical acceleration at a given
frequency is directly related to the vibrational density of
states (Hu et al., 2014a). Indeed, the vibrational den-
sity of states can be accessed experimentally through the
measurement of Meff(ω) via a pole decomposition of the
normal modes of the system (Hu et al., 2014a). By mea-
suring the stress dependence of the effective mass, it was
shown that the scaling of the characteristic frequency
ω∗ deviates from the mean field prediction Eq. (43) in
real frictional packings (Hu et al., 2014a). Furthermore,
the presence of dissipative modes can be studied via the
imaginary part of the complex valued effective mass (Hu
et al., 2014b; Johnson et al., 2015).

When friction is added, the observed packing den-
sities and coordination numbers at point J are gener-
ally smaller than RCP (Kasahara and Nakanishi, 2004;
Makse et al., 2000; Papanikolaou et al., 2013; Shen et al.,
2014; Shundyak et al., 2007; Silbert, 2010; Silbert et al.,
2002a). As a function of the friction coefficient µ the
densities decrease monotonically from φ ≈ 0.64 for fric-
tionless spheres to φ ≈ 0.55 in the limit of infinitely rough
spheres. Experiments find much lower packing fractions
in the large friction limit (Farrell et al., 2010). The den-
sities are also dependent on the packing preparation for
the same µ highlighting the history dependence of fric-
tional packings. An open question is whether there is
a well-defined lower bound on the packing density for a
given µ, which could specify random loose packing (RLP)
densities (Makse et al., 2000; Onoda and Liniger, 1990):
the lowest density packings that are mechanically sta-
ble. Extremely low density mechanically stable packings
can be generated with additional attractive interactions,
e.g., due to adhesion. Adhesive packings of spheres are
discussed in Sec. IV.F.

Likewise, the coordination number decreases monoton-
ically for µ ≥ 0 from the isostatic frictionless value 2df ,
reaching the frictional isostatic value zµiso = d + 1 in the
limit µ→∞. Frictional packings are thus in general hy-
perstatic, so that particle configurations do not uniquely
determine the contact forces. How this indeterminacy
depends on the friction coefficient and affects the me-
chanical properties has been investigated in detail using
contact dynamics by (Unger et al., 2005). It was also
found that the contacts with large indeterminacy are also
those contacts that make up force chains (McNamara and
Herrmann, 2004).

The following scaling results at point J have been ob-
tained in simulations of frictional soft spheres with Hertz-
Mindlin forces (Henkes et al., 2010; Makse et al., 2000;
Shundyak et al., 2007; Silbert, 2010; Somfai et al., 2007;
Zhang and Makse, 2005). For the coordination number
one finds a scaling analogous to Eq. (41)

z − zc ∼ z0(µ)(φ− φc)1/2, (44)

where zc ≈ 2df is the frictionless isostatic value at point
J and z0(µ) a weakly µ-dependent prefactor. However,

other quantities like the critical frequency ω∗ and the
bulk/shear modulus do not scale with φ−φc contrary to
the frictionless case. One finds

ω∗ ∼ z − zµiso, G∞/B∞ ∼ z − zµiso. (45)

By comparison, Eqs. (39,40,41) predict the scaling
G∞/B∞ ∼ z − zc. Therefore, one can conclude that
the critical observables generally scale with the distance
to isostaticity (Wyart, 2005).

3. Packing of hard spheres

The structural properties of packings have been inves-
tigated in considerable detail with computer simulations
and experiments of hard spheres satisfying constraints
Eq. (1). Hard sphere results should coincide with soft
spheres at zero pressure. A widely used simulation al-
gorithm for jammed hard particles is the Lubachevsky-
Stillinger (LS) algorithm (Lubachevsky and Stillinger,
1990). Here, starting from a random initial configura-
tion of spheres in a volume with periodic boundary con-
ditions generated, e.g., by random sequential addition of
spheres, the sphere radii are expanded uniformly with
a rate λ. Collisions occur due to the expansion of the
particles, which are resolved in an event-driven manner.
Forces can be calculated from the rate of exchange of
momentum per unit time. Eventually, a jammed state
is reached with diverging collision rates at the contacts
and typically 2-3% of rattlers that remain unjammed.
The properties of the final state are then independent
of the random initial state, but depend on the expan-
sion rate. For λ → 0 the system is in equilibrium lead-
ing to crystallization, while for small λ > 0 the system
is able to reach a quasiequilibrium jammed state with
a density φ(λ). These states have been characterized as
long-lived metastable glass states which in infinite dimen-
sions are described (Parisi and Zamponi, 2010) by the
replica symmetry breaking (RSB) theory adapted from
the solution of the Sherrington-Kirkpatrick (SK) model
of spin-glasses (Sherrington and Kirkpatrick, 1975) (see
Secs. III.A.4 and V).

An advanced numerical technique that can deal with
perfectly rigid particles and at the same time obtain the
contact forces precisely is Contact Dynamics (CD), as
reviewed for instance in (Radjai and Richefeu, 2009). In
fact, granular structures turn out to be more stable under
gravity when using CD than any other numerical method
(McNamara and Herrmann, 2004). CD has been used
extensively to explore force networks, their fluctuations
and their indeterminacies in frictional packings, see e.g.
(Unger et al., 2005).

Experiments of hard sphere packings go back to the
seminal work by Bernal and Scott (Bernal, 1960; Bernal
and Mason, 1960; Scott, 1960, 1962). Indeed, in the old
days Mason, a postgraduate student of Bernal, took on
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the task of shaking glass balls in a sack and ’freezing’ the
resulting configuration by pouring wax over the whole
system. He would then carefully take the packing apart,
ball by ball, noting the positions of contacts for each par-
ticle. Since this labor-intensive method patented half a
century ago, yet still used in recent studies (Donev et al.,
2004), other groups have extracted data at the level of the
constituent particles using x-ray tomography (Aste et al.,
2004, 2005; Richard et al., 2003; Saadatfar et al., 2012).
The most sophisticated experiment for granular matter
to date has resolved coordinates of up to 380000 spheres
using X-ray tomography (Aste et al., 2004, 2005). The
packing densities achieved are in general sensitive to the
packing protocol, friction, and polydispersity. The effect
of boundary walls can be reduced by focusing the analysis
on bulk particles or preparing the walls with randomly
glued spheres. Mechanically stable disordered packings
of spheres are typically found in the range φ ≈ 0.55 –
0.64. Empirical studies have shown that one can identify
different density regions depending on variations in the
protocol (Aste, 2005): (i) φ ≈ 0.55 – 0.58: packings are
only created by reducing the effect of gravity (Onoda and
Liniger, 1990); (ii) φ ≈ 0.58 – 0.61: packings are unstable
under tapping; (iii) φ ≈ 0.61 – 0.64: packings are gen-
erated by tapping and compression (Knight et al., 1995;
Nowak et al., 1998, 1997; Philippe and Bideau, 2002).
Packings in the range φ ≈ 0.64 – 0.74, i.e., up to the
FCC crystal density are usually only generated by intro-
ducing local crystalline order. This has been achieved
experimentally by pouring spheres of equal size homoge-
neously over plate, that vibrates horizontally at a very
low frequency (Pouliquen et al., 1997). The attained
density depends on the frequency. A similar range of
densities is obtained by flux deposition of spheres into a
container with a templated surface (Panaitescu and Ku-
drolli, 2014).

Establishing the number of contacting spheres in ex-
periments is somewhat challenging. The celebrated
Bernal packings (Bernal and Mason, 1960) find a coordi-
nation number close to z = 6, while compressed jammed
emulsions near the jamming transition studied by con-
focal microscopy (Brujić et al., 2007) finds an average
coordination 〈z〉 = 6.08, close to the isostatic conjec-
ture. One generally finds that larger densities coincide
with larger values of z exhibiting a monotonic increase
over the range φ ≈ 0.55 – 0.64 from z ≈ 4 – 7 (Aste,
2005; Aste et al., 2004, 2005, 2006) largely in agreement
with simulation results on frictional soft-sphere systems
at small pressure. A new method for contact detection in
jammed colloids using fluorescent exclusion effects at the
contact point has been developed in (Kyeyune-Nyombi
et al., 2017). The method improves detection resolution
and allows precise determination of the small force dis-
tributions, coordination number, vibrational density of
states, and pair correlations (see Fig. 7).

The following consensus on the structural properties

14

(a) (b)

(c)

FIG. 1:

FIG. 7 3D confocal image of a colloidal packing showing
green fluorescence on the particles’ surface. The method of
(Kyeyune-Nyombi et al., 2017) improves detection resolution
of the particle contact network using fluorescent exclusion ef-
fects at the contact point. Structural properties of the col-
loidal packing near marginal stability thus become experimen-
tally accessible (see Table IV). Figure reprinted with permis-
sion from (Kyeyune-Nyombi et al., 2017).

of the pair correlation function g2(r) of jammed hard-
spheres has been reached from simulations and experi-
ments for a variety of protocols:

• A delta function peak at r = σ due to contact-
ing particles, where σ = 2R is the contact ra-
dius. The area under the peak is the average co-
ordination number, which has the isostatic value
ziso = 2df = 6 at jamming in frictionless systems.

• A power-law divergence due to a large number of
near-contacting particles

g2(r) ∼ (r − σ)−γ . (46)

The exponent γ has been measured as γ ≈ 0.4 in
simulations of hard spheres (Charbonneau et al.,
2012; Donev et al., 2005b; Lerner et al., 2013; Skoge
et al., 2006) and γ ≈ 0.5 in simulations of stiff soft
spheres (O’Hern et al., 2003; Silbert et al., 2002b,
2006). The value depends on whether rattlers are
included or not in the numerical protocol. Theo-
retical arguments based on the marginal stability
of jammed packings provide (Müller and Wyart,
2015)

γ = 1/(2 + θ), (47)

where θ is the exponent of the force distribution:
P (f) ∼ fθ. Empirical studies find θ ≈ 0.2 − 0.5
(see Sec. III.A.5).

• A split second peak at r =
√

3σ and r = 2σ away
from contact. The precise shapes of the two peaks
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have not been clearly established yet. Simulations
show a strong asymmetry of the r = 2σ peak. The
values 2σ and

√
3σ have been related to the con-

tact network: 2σ is the maximal distance between
two particles sharing one neighbour, while

√
3σ is

the maximal distance between two particles sharing
two (Clarke and Jónsson, 1993). The split-second
peak is indicative of structural order between the
first and second coordination shells. However, no
signs of crystalline order have been observed.

• Long-range order g2(r) − 1 ∼ −r−4 for r → ∞
(Donev et al., 2005a). This is equivalent to a non-
analytic behaviour of the structure factor S(k) ∼
|k| for k → 0, which is typically only seen in sys-
tems with long-range interactions and is unchar-
acteristic for liquids. The fact that S(0) = 0 is
characteristic of a hyperuniform system (Torquato
and Stillinger, 2003). However, the validity of hy-
peruniformity at jamming has recently been ques-
tioned (Ikeda and Berthier, 2015; Ikeda et al., 2017;
Ozawa et al., 2017; Wu et al., 2015).

4. The nature of random close packing

The nature of RCP of frictionless hard spheres and
whether it is indeed a well-defined concept has been a
long-standing issue. In (Torquato et al., 2000) it has
been argued that “random” and “close-packed” are at
odds with each other, since inducing partial order typ-
ically increases packing densities, such that both can
not be maximized simultaneously. As an alternative it
has been suggested to use a more quantitative approach
based, e.g., on a metric detecting bond-orientational or-
der (Steinhardt et al., 1983). RCP can then be replaced
by the concept of a “maximally random jammed” (MRJ)
packing: The packing with the minimal order among
all jammed ones. In practice, all possible order met-
rics would need to be checked to identify a truly ran-
dom state, which is of course not feasible. Nevertheless,
many different packing protocols and algorithms seem to
robustly achieve disordered packings with maximal den-
sities around φ ≈ 0.64, which coincides with the densi-
ties of MRJ packings for many different order parameters
(Torquato and Stillinger, 2010). Despite early attempts
to explain this reproducibility, e.g., based on maximum
entropy arguments (O’Hern et al., 2003, 2002) and liquid
state theory (Aste and Coniglio, 2004; Kamien and Liu,
2007), there is now a general consensus that jamming
densities can be obtained over a range of densities de-
pending on the preparation protocol if crystallization is
suppressed (Charbonneau et al., 2012; Chaudhuri et al.,
2010; Ciamarra et al., 2010; Hermes and Dijkstra, 2010;
Ozawa et al., 2012; Skoge et al., 2006). This leads to
the concept of a J-line, which was first proposed the-
oretically in the context of a replica solution of hard

sphere glasses at the mean-field level (d → ∞) (Parisi
and Zamponi, 2005) and other fully connected models
(Mari et al., 2009). In the presence of polydispersity in
the particle size or in higher dimensions, crystallization
is strongly suppressed and the physics of the glass transi-
tion is expected to dominate the corresponding jamming
transition. If jamming is approached from the equilib-
rium fluid phase, the resulting jammed states are then
essentially the infinite pressure limits of glassy states. A
deep understanding of jamming in this scenario has been
provided by exact solutions for d → ∞ using both dy-
namical mode-coupling type approaches (Kurchan et al.,
2016; Maimbourg et al., 2016) and static approaches
adapted from the solution of the Sherrington-Kirkpatrick
model of spin-glasses (Charbonneau et al., 2014a,b; Franz
et al., 2015; Parisi and Zamponi, 2010; Rainone and Ur-
bani, 2016). Remarkably, the full RSB d → ∞ solu-
tion predicts scaling exponents for g2(r), Eq. (46), and
the force distribution P (f), Eq. (48) (see next section),
that are in agreement with finite dimensional measure-
ments for a range of d values even in 3d (Charbonneau
et al., 2014a,b). This remarkable agreement between
an infinite dimensional mean-field theory and 3d simu-
lations indicates that, at jamming, there is a strong sup-
pression of fluctuations, first of all thermal fluctuations
by definition, but, more importantly, sample to sample
fluctuations which are known to be stronger than ther-
mal fluctuations. Similar agreement between an infinite-
dimensional result and finite dimensions is not observed
for the finite-temperature glass transition. Thus, the crit-
ical properties of jamming related to marginal stability
appear independent of dimensionality. For a recent re-
view on the d → ∞ solution of hard sphere glasses, we
refer to (Charbonneau et al., 2017). An overview of the
different density values discussed in the following is given
in Tables II,III.

Briefly, in this scenario a glass transition interrupts
the continuation of the liquid equation of state consid-
ered in (Aste and Coniglio, 2004; Kamien and Liu, 2007)
at densities φj ∈ [φd, φK], where φd signals the dynamical
glass transition at the density at which many metastable
states first appear in the liquid phase and φK is the Kauz-
mann density of the ideal glass. Upon compression of
the metastable states (taking some care in the prepara-
tion protocol (Charbonneau et al., 2017)) the pressure
diverges at jamming densities φj ∈ [φth, φGCP]. The
lower limit is the threshold density φth ≈ 0.64 calcu-
lated in (Parisi and Zamponi, 2010), although it should
be noted that the values calculated with replica theory
come with a large error bar due to the approximation
of the liquid equation of state (Mangeat and Zamponi,
2016). The maximal density is the glass close packing
φGCP ≈ 0.68 corresponding to the infinite pressure limit
of the ideal glass φK. Therefore, the ground state of jam-
ming can be achieved in a whole range of densities along
a J-line φj ∈ [φth, φGCP] depending on the density of the
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Figure 6

The hard sphere phase diagram obtained using the generalized Edwards’ measure (Monasson real

replicas scheme). The black line represents the equilibrium liquid line and it is the same as the

one of the right plot of Fig. 2. The blue line represents the Gardner transition. Between the blue
line and the violet one, glassy states are no more stable and become metabasins of marginally

stable states. The red line is the jamming line where we can sample uniformly jammed states à la
Edwards.

rational entropy ⌃
(E)
J (b') ⌘ ⌃[p ! 1, b'] can be computed, and that this line falls entirely

in the marginal glass phase. Hence, all relevant glassy states within the Edwards measure

are marginally stable. The configurational entropy of jammed states is plotted in Fig. 5b.

As discussed in Sec. 4, the marginality of glassy states at jamming is responsible for the

critical behavior of jammed packings, and the results for the critical exponents obtained

in the generalised Edwards ensemble (78) are the same as the ones obtained by following

states adiabatically (72). This correspondence is quite remarkable. Two very di↵erent ways

of sampling jammed packings (uniformly à la Edwards, or by slowly annealing the liquid)

give the same critical properties. This observation leads us to conjecture that all jammed

states, however sampled, have the same universal critical properties.

This approach also reveals that there is at least one natural algorithm (adiabatic com-

pression) that produces jammed packings sampled with weights that are distinct from the

Edwards measure. To prove this point, Fig. 5 compares the configurational entropy of

jammed states produced by adiabatic compression and of Edwards’ jammed states. Be-

cause for an adiabatic compression the jamming density is a unique function b'J(b'g) of the

initial equilibrium density, the configurational entropy of the resulting packings is simply

⌃
(SF )
J (b'J) = ⌃eq[b'g(b'J)]. This quantity is systematically smaller than the Edwards config-

urational entropy. Hence, adiabatic compression creates exponentially fewer packings than

there exist. Moreover, note that the range of b'J that can be constructed via adiabatic

compression is smaller than the full range of existing jammed packings obtained from the

Edwards approach.

5.5. The threshold and aging dynamics after a crunch

The phase diagram in Fig. 6 shows a third line departing from the equilibrium supercooled

liquid line at b'd. This threshold line has two branches: one from (b'd, pd) to (b'⇤, p⇤) (purple

diamond), where the threshold states are simple and described by a single order parameter
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FIG. 8 (Colors online) (a) Phase diagram in d→∞ obtained from the non-equilibrium sampling of glassy states (Charbonneau
et al., 2017). Glassy states exist in the white region between the continuation of the equilibrium equation of state (black) and the
infinite pressure J-line. The blue line denotes the Gardner phase transition separating stable and marginally stable glass states.
Glass states are possible for densities > φd (ϕ̂d in the figure) at which metastable states first appear in the liquid. Compressing
the glass states to p → ∞ yields jammed states on the J-line φj ∈ [φth, φGCP] (only φth is indicated). Figure reprinted from
(Charbonneau et al., 2017). (b) Interpretation of RCP in a 3d system made of monodisperse spheres as a first order freezing
transition between disordered and ordered phases. In low dimensional systems (3d and specially 2d) crystallization prevails
around RCP and precludes the appearance of the J-line as discussed in (Parisi and Zamponi, 2010). The coordination number
zj is plotted versus the volume fraction φj for each packing at jamming. One can identify: (i) a disordered branch which can be
fitted by the equation of state (75) derived in Sec. IV.A; (ii) a coexistence region; and (iii) an ordered branch. White particles
are random clusters, light blue are HCP and green are FCC clusters. The dashed line from a → b denotes the states beyond
crystallization, which can be reached upon deformation of the particles (see Fig. 20). Figure reprinted from (Jin and Makse,
2010).

Density Definition Value in d = 3

φd The liquid state splits in an exponential number of states ≈ 0.58

φK Ideal glass phase transition – jump in compressibility ≈ 0.62

φth Divergence of the pressure of the less dense states ≈ 0.64

φGCP Divergence of the pressure of the ideal glass ≈ 0.68

TABLE II Density values when compressing a liquid state until jamming avoiding crystallization (Charbonneau et al., 2017;
Parisi and Zamponi, 2010).

metastable glass phase φ ∈ [φd, φK] that is compressed to
jamming. Before jamming is reached the glass undergoes
a transition to a Gardner phase, where the configura-
tion space is fragmented into an infinite fractal hierar-
chy of disconnected regions, which, in turn, brings about
isostaticity and marginal stability (Charbonneau et al.,
2014a,b). Indeed the states on the J-line are all stable
under all possible particle rearrangements with k → ∞
in the thermodynamic limit N →∞, thus corresponding
to the ground state of jamming, as discussed in Fig. 4a.
On the other hand, they differ in the fraction α = k/N ∼
const. of particle rearrangements required for stability.

Such a viewpoint is motivated by analogy with the full
RSB solution of the p-spin glass (Crisanti and Leuzzi,
2006), which is the spin glass model corresponding to the

full-RSB solution of infinite dimensional spheres under-
lying the J-line (Charbonneau et al., 2014a). By varying
α one obtains states on the J-line: the value α = 0 corre-
sponds to the states at the lower density φth, while α = 1
corresponds to the true global ground state of jamming
at the largest density φGCP. Metastable k-PD states with
finite k are achieved with lower packing fractions as de-
picted in Fig. 4a and in Table I.

We conclude that the truly global ground state is actu-
ally only one of the possible∞-PD stable states and cor-
responds to the point α = 1, which is at φGCP. The other
states along the J-line, obtained by varying 0 ≤ α < 1,
can be thought of as globally metastable (in reality they
also belong to the ground state of the J-line). On the ba-
sis of this picture, we propose four categories of jamming
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Density Definition Value in d = 3

φrlp Random loose packing: lowest density of a mechanically stable packing 1

1+
√
3/2

= 0.536...

φrcp Random close packing 1

1+1/
√
3

= 0.634...

φf Freezing point of a 1st order transition ≈ 0.64

φm Melting point of a 1st order transition ≈ 0.68

φfcc Density of the FCC crystal π/(3
√

2) = 0.74048...

TABLE III Density values when crystallization is not suppressed. The values for φrlp and φrcp are determined within the
Edwards ensemble using a coarse-grained volume function (Jin and Makse, 2010; Song et al., 2008) (see Sec. IV.B).

according to their metastability as explained in Table I:
local metastable (1-PD stable), collective metastable (k-
PD stable with finite 1 < k < ∞), globally metastable
(∞-PD stable but with 0 ≤ α < 1, and the true global
ground state (∞-PD stable and α = 1). In particular
the J-line corresponds to globally metastable states (∞-
stable) while the ground state corresponds to φGCP.

Interestingly, the phase diagram that arises from the
d→∞ solution, which corresponds to a particular pack-
ing protocol, can be reproduced by sampling over glassy
states with a modified (non-equilibrium) measure (Char-
bonneau et al., 2014a, 2017; Parisi and Zamponi, 2010)
(see Fig. 8a). Possible glass states are then predicted in
the white region of Fig. 8a bounded by the metastable
continuation of the equilibrium liquid and the J-line. In
this approach the Gardner transition (blue line) separates
stable and marginally stable states. Crucially, for infi-
nite pressure this non-equilibrium sampling assigns equal
probability to each jammed state at a given density, i.e.,
it agrees with Edwards uniform measure. Therefore, the
non-equilibrium sampling of glassy states at the ground
state is another generalization of the Edwards ensemble
to finite pressures. Since the critical jamming exponents
calculated in this approach are the same as those from the
full RSB solution (Rainone and Urbani, 2016), we con-
clude that the observed phenomenology of jamming is at
least consistent with Edwards assumption of equiproba-
bility in the values of the exponents. Edwards statistical
mechanics thus captures key features of the jamming phe-
nomenology, a fact that is increasingly being recognized
(Charbonneau et al., 2017; Sharma et al., 2016). Highly
sophisticated simulations have recently confirmed the va-
lidity of Edwards assumptions at the jamming transition
as well (Martiniani et al., 2016) (see Sec. III.B).

Furthermore, these results highlight the fact that pack-
ing problems, and more generally CSPs, undergo a
phase transition separating a satisfiable (SAT) (hypo-
static or under-constrained) regime from an unsatisfi-
able (UNSAT) (hyperstatic or over-constrained) phase,
as one varies the ratio of constraints over variables.
The jamming transition is equivalent to this SAT-
UNSAT phase transition in the broad class of contin-
uous CSPs, which are conjectured to belong to the
same ”super-universality” class based on models display-

ing SAT/UNSAT like the celebrated perceptron model
(Franz and Parisi, 2016; Franz et al., 2015) which admits
a much simpler solution at the full RSB level than the
hard-sphere glass.

If crystallization is not suppressed, compressing an
equilibrium liquid of monodisperse spheres can lead to
partial crystalline order (Anikeenko and Medvedev, 2007;
Anikeenko et al., 2008; Francois et al., 2013; Hanifpour
et al., 2015, 2014; Jin and Makse, 2010; Kapfer et al.,
2012; Klumov et al., 2014, 2011; Radin, 2008). Using
the granular entropy of Edwards statistical mechanics as
treated in Sec. II.C, then allows to identify the onset of
crystalline order with the freezing point of a first order
transition, which is found at φf ≈ 0.64 (Jin and Makse,
2010). Likewise, a melting point appears at φm ≈ 0.68.
Between these two densities a coexistence of disordered
and ordered states exists at the coordination number of
isostaticity z = 6 (see Fig. 8b). Defining RCP in this
scenario as the freezing point, two branches then exist: a
disordered branch from the RLP at φrlp ≈ 0.54 up to the
freezing point φf ≈ 0.64 and an ordered branch from the
melting point φm ≈ 0.68 to FCC at φfcc = 0.74.... The
signature of this disorder-order transition is a disconti-
nuity in the entropy density of jammed configurations as
a function of the compactivity. This highlights the fact
that beyond RCP, denser packing fractions of monodis-
perse spheres can only be reached by partial crystalliza-
tion up to the homogeneous FCC crystal phase in agree-
ment with the interpretation of RCP as a MRJ state
(Torquato et al., 2000). Indeed, RCPs are known to dis-
play sharp structural changes (Anikeenko and Medvedev,
2007; Anikeenko et al., 2008; Aristoff and Radin, 2009;
Kapfer et al., 2012; Klumov et al., 2014, 2011; Radin,
2008) signalling the onset of crystallization (Torquato
and Stillinger, 2010). The first-order transition scenario
observed numerically in (Jin and Makse, 2010) has been
verified in a set of experiments of 3d hard sphere packings
(Francois et al., 2013; Hanifpour et al., 2015, 2014). In
(Francois et al., 2013) the onset of crystallization at the
freezing point φf ≈ 0.64 has been identified from the vari-
ance of the Voronoi volume fluctuations (Jin and Makse,
2010), a “granular specific heat” (Aste and Di Matteo,
2008a), and the frequency of polytetrahedral structures.
The coexistence line at isostaticity between φf ≈ 0.64
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and φm ≈ 0.68 has been observed not only for friction-
less packings but also for frictional ones, where high den-
sities have been achieved by applying intense vibrations
(Hanifpour et al., 2015, 2014).

The existence of the first-order crystallization transi-
tion at RCP is expected to be dominant in a finite di-
mensional 3d system of equal size spheres and therefore
excludes the appearance of the interesting glassy phases
discussed above unless crystallization is suppressed by
heterogeneities like polydispersity. Interestingly, the val-
ues of the limiting densities [φth, φGCP] coincide approx-
imately with the densities of the melting and freezing
points in the first-order transition obtained for monodis-
perse 3d systems (Jin and Makse, 2010). However, this
coincidence is most likely coincidental since these states
are unrelated. It should be noted that the analysis of
structure and order parameters is generally supportive of
the existence of a glass-crystal coexistence mixture in the
density region 0.64 ≤ φ ≤ 0.68 in monodisperse sphere
packings where crystallization dominates over the glass
phase. All the (maximally random) jammed states along
the segment [φth, φGCP] can be made denser at the cost
of introducing some partial crystalline order. Support for
an order/disorder transition at φf is also obtained from
the increase of polytetrahedral substructures up to RCP
and its consequent decrease upon crystallization (Ani-
keenko et al., 2008).

The connection of the replica approach with the Ed-
wards ensemble for jammed disordered states is summa-
rized in Table I and Fig. 4a and will be discussed in detail
in Sec. V. The hierarchy of metastable jammed states k-
PD with k ∈ [1,∞) is analogous to k-SF with k ∈ [1,∞)
metastable states in spin-glasses which in turn are re-
lated to the continuity of jammed states along the J-line.
This is the picture emerging from a full RSB solution, at
the mean-field level of fully connected systems, like the
SK model of spin-glasses (Sherrington and Kirkpatrick,
1975). Thus, we expect that a continuous jamming line
of states should emerge from the Edwards ensemble solu-
tion of the JSP, since it is another realization of a typical
NP-hard CSP.

On the other hand, the mean field solution of the Ed-
wards volume ensemble (Song et al., 2008) reviewed in
Sec. IV predicts a single jamming point at RCP, Eq. (82),
φrcp = 1

1+1/
√

3
≈ 0.634 for z = 6. This prediction cor-

responds to the ensemble average over a coarse-grained
Voronoi volume for a fixed coordination number. Since
an ensemble average over all packings at a fixed co-
ordination number is performed in the coarse-graining
of the volume function, the obtained volume fractions
φrcp are in fact averaged over the J-line predicted by
the replica method. Thus, φrcp can be associated to
the state with the largest entropy (largest complexity)
along [φth, φGCP], expected to be near the highest en-
tropic state φth in the replica theory picture. Indeed,

high-dimensional calculations performed in Sec. IV.C
support this conjecture: the scaling obtained with di-
mension d of the Edwards prediction for RCP and φth

agree within a prefactor, see Eqs. (95) and (99) below.
New possibilities to study densely packed states are

opened up by including activity on the particle level (self-
propulsion), which shifts the glass transition closer to
random close packing (Ni et al., 2013).

5. Force statistics

It has been realized early on that jammed granular ag-
gregates exhibit non-uniform stress fields due to arching
effects (Cates et al., 1998; Jaeger et al., 1996). More re-
cent work has focused on the interparticle contact force
network. The key quantity is the force distribution P (f),
which exhibits characteristic features at jamming as ob-
served in both experiments (Brujić et al., 2003a,b; Cor-
win et al., 2005; Erikson et al., 2002; Kyeyune-Nyombi
et al., 2017; Liu et al., 1995; Løvoll et al., 1999; Makse
et al., 2000; Mueth et al., 1998; Zhou et al., 2006) and
simulations (Makse et al., 2000; O’Hern et al., 2001; Rad-
jai et al., 1996; Tkachenko and Witten, 2000):

• P (f) has a peak at small forces (approximately at
the mean force 〈f〉). This peak has been argued
to represent a characteristic signature of jamming
(O’Hern et al., 2001).

• For large forces, the decay of P (f) has been gen-
erally measured as exponential. Although a faster
than exponential decay has also been observed in
experiments (Majmudar and Behringer, 2005) and
simulations (van Eerd et al., 2007).

These properties are observed in both hard and soft
sphere systems, largely independent of the force law.

For f → 0+, P (f) converges to a power-law

P (f) ∼ fθ, f → 0+, (48)

with some uncertainty regarding the value of the expo-
nent: θ ≈ 0.2− 0.5. The existence of this power-law has
been explained by the marginal stability of the packing
which is controlled by small forces (Wyart, 2012). As a
consequence, θ is related to the exponent γ of near con-
tacting neighbours by Eq. (47). A more detailed inves-
tigation of the excitation modes related to the opening
and closing of contacts suggests that there are in fact
two relevant exponents θe and θl (Lerner et al., 2013): θe

corresponding to motions of particles extending through
the entire systems; and θl corresponding to a local buck-
ling of particles. A marginal stability analysis provides
γ = (2 + θe)−1 = (1 − θl)/2 (Müller and Wyart, 2015),
which has also been demonstrated numerically (Lerner
et al., 2013). Asymptotically θ = min(θl, θe) and thus
θ = θl ≈ 0.2 for γ ≈ 0.4.
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Theoretically, one step replica symmetry 1RSB the-
ory for fully connected hard sphere packings in infi-
nite dimensions predicts θ = 0 (Parisi and Zamponi,
2010), while the full RSB calculation provides a non-zero
θ = 0.42.. and γ = 0.41.. (Charbonneau et al., 2014a,b),
a result corroborated theoretically with a simpler jam-
ming model, the Perceptron model from machine learn-
ing, which exhibits a jamming transition as well (Franz
and Parisi, 2016; Franz et al., 2015). This result fur-
ther indicates the importance of the jamming transition
to general CSPs. The full-RSB values are seemingly in
disagreement with the scaling relations from marginal
stability in the presence of localized modes, since they
predict θl = 0.17... However, based on simulation re-
sults it has been shown that the probability of localized
modes decreases exponentially with dimension and thus
they do not contribute to the full RSB solution for d→∞
(Charbonneau et al., 2015b). Thus, in 3d simulations the
so called bucklers (particles with all forces aligned in a
plane) are removed from the distribution decreasing the
small force counting and changing the exponent from 0.17
to 0.42 in agreement with the full RSB replica theory.
As a consequence, θ = θe in agreement with the scaling
relations. High-resolution measurements of the contact
network in 3d allow for the experimental determination
of the exponents θ and γ, see Table IV (Kyeyune-Nyombi
et al., 2017). Here, instead of the equality Eq. (47) the
inequality γ ≥ 1/(2 + θ) is observed and θ ≈ 0.10− 0.17
even when bucklers are removed.

On the other limit of sparse graphs, replica symmetry
calculations predict θ = 0 in the thermodynamic limit us-
ing population dynamics (Bo et al., 2014) (see Sec. V.A).

Packing N z φ θ γ 1/(2 + θ)

A 1393 7.57 0.66(8) 0.110(5) 0.42(2) 0.474(1)

B 1263 6.79 0.62(4) 0.143(4) 0.62(2) 0.467(1)

C 1486 6.64 0.64(7) 0.170(6) 0.75(3) 0.461(1)

TABLE IV . Structural properties of a 3d colloidal packing
near marginal stability using high-resolution measurements
of the contact network (Kyeyune-Nyombi et al., 2017). Three
slightly different packing protocols have been used. Instead
of the equality (47), the weak force exponent θ (Eq. (48)) and
the small gap exponent γ (Eq. (46)) are found to satisfy the
inequality γ ≥ 1/(2 + θ) (Wyart, 2012) even when bucklers
are removed.

B. Test of ergodicity and the uniform measure in the
Edwards ensemble

Assuming ergodicity for a jammed system of grains as
proposed by Edwards (see Sec. II.C) seems contradictory
at first, but has become meaningful in the first place in
light of certain seminal compaction experiments devel-
oped over the years starting from the work of Nowak et

behavior of the compaction process is qualitatively similar at
different depths into the container ~see also Fig. 1!. Spurious
effects from continuous vibrations, such as period doubling
or surface waves @12#, were avoided by spacing the taps
sufficiently far apart in time to allow the system to come to
complete rest between taps. Also, by using a tall container
with smooth, low-friction interior walls shear-induced dila-
tion and granular convection were suppressed @15#. Although
friction between beads and with the tube walls can affect the
mechanical stability of a bead configuration, we argue below
that the motion of beads is limited primarily by geometric
constraints imposed by the presence of other beads, particu-
larly at the high densities investigated here.
The ratio of the container diameter to the bead diameter

can also influence the compaction process. For small values
of this ratio, ordering ~crystallization! induced by the con-
tainer walls @16# will increase the measured packing fraction
over its bulk value, leading to densities that can exceed the
random close-packed limit. This may be responsible for the
high maximum packing fractions seen in Fig. 2. Previous
studies @1,14# indicate that the qualitative behavior of the
compaction process is similar for varying bead sizes. The
container walls can also place constraints on the density fluc-
tuations. Since it is our aim to investigate these density fluc-
tuations, the choice of bead size was a compromise between
maximizing the container-to-bead diameter ratio and not
having the amplitude of the density fluctuations be obscured
by statistical averaging over a large number of particles.

Reaching the steady state

At a high acceleration G the steady-state density, rss can
be approached by simply applying a very large number of
taps ~often greater than 104– 105!. An example is shown in
Fig. 1 for G56.8. The three panels correspond to the capaci-
tively measured density near the top, middle, and bottom
sections of the pile of beads. ~The tap number t is offset by
11 tap so that the initial density can be included on the
logarithmic axis.! Note that these curves represent a single

run, and separate runs starting from the same initial density
differ in the details of the density fluctuations but show a
similar overall behavior. The behavior of r(t), obtained by
averaging many runs of this kind, appears to be homoge-
neous throughout the pile at these high accelerations. As dis-
cussed in Ref. @1#, the time evolution of this ensemble aver-
aged density is well fitted by the expression

r~ t !5r`2
Dr`

@11B ln~11t/t!#
, ~1!

where the parameters r` , Dr` , B , and t depend only on the
acceleration G. Equation ~1! was found to fit the ensemble
averaged density over the whole range 0,G,7 better than
other functional forms that were tried ~i.e., exponential,
stretched exponential, or algebraic forms, see Ref. @1#!. The
dashed lines in Fig. 1 show a fit to Eq. ~1!. Here, the value of
the final density, r` , is approximately equal to the observed
steady-state density rss .
For small values of G, however, r` corresponds to a

metastable state and not the steady-state density. In particu-
lar, for values of the applied acceleration G,3, it is difficult,
if not experimentally impossible, to reach the steady-state by
merely applying a sufficiently large number of taps of iden-
tical intensity. In this case, the steady state can be reached by
‘‘annealing’’ @14# the system. The annealing is controlled by
the ramp rate, DG/Dt , at which the vibration intensity is
varied over time. Experimentally, we slowly raise the value
of G from 0 to a value beyond G* in increments of DG
'0.5. At each intermediate value of G we apply Dt
5105 taps. G* defines an ‘‘irreversibility point’’ in the
sense that, once it has been exceeded, subsequent increases
as well as decreases in G at a sufficiently slow rate DG/Dt
lead to reversible, steady-state behavior. We found that G*
'3 for 1, 2, and 3 mm beads @14#. A typical run is shown in
Fig. 2. Here we have used 2 mm beads, and started with an
initial density of r'0.59. The highest densities are achieved
by annealing the system, i.e., decreasing G slowly from G*
back down to G50. If G is rapidly reduced to 0 ~large
DG/Dt! then the system falls out of ‘‘equilibrium.’’ This
leads to lower final densities and a curve for r~G! that is not
reversible. A crucial result emerging from data such as in
Fig. 2 is that along the reversible branch, the density is
monotonically related to the acceleration. We note that in 3D
simulations of granular compaction by Mehta and Barker
@17# a similar monotonic decrease in steady-state volume
fraction as a function of shaking intensity was found. Thus,
only once the steady-state has been reached is there a single-
valued correspondence between the average density and the
applied acceleration.

Density fluctuations about the steady state

After the granular material has been vibrated for a suffi-
ciently long time, it reaches a steady-state density rss . Al-
though there is a well-defined average density, Fig. 1 already
hints that there are large fluctuations about this value. The
magnitude of the fluctuations depends on the vibration inten-
sity and depth within the container. Figure 3 shows in more
detail an example of these fluctuations as a function of time,
dr(t)5r(t)2rss . In Fig. 3~a! we plot dr(t) for a fixed

FIG. 2. The dependence of r on the vibration history. The beads
were prepared in a low density initial configuration and then the
acceleration amplitude G was slowly first increased ~solid symbols!
and then decreased ~open symbols!. At each value of G the system
was tapped 105 times after which the density was recorded and G
was subsequently incremented by DG'0.5. The upper branch that
has the higher density is reversible to changes in G, see square
symbols. G* denotes the irreversibility point ~see text!.
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FIG. 9 The packing fraction ρ plotted as a function of the
shaking intensity Γ from experiments of granular packings un-
dergoing vertical tapping (Nowak et al., 1998). The intensity
is defined as the ratio of the peak acceleration during a single
tap to the gravitational acceleration. The system is prepared
initially at low packing fraction and subjected to taps of in-
creasing intensity. The tapping intensity is then successively
reduced, and the system falls on a reversible branch, where
the system retraces the density versus intensity behavior upon
subsequent increases and decreases of the intensity. Figure
reprinted with permission from (Nowak et al., 1998).

at. in the 90’s (Brujić et al., 2005; Chakravarty et al.,
2003; Knight et al., 1995; Makse et al., 2005; Nowak
et al., 1998, 1997; Philippe and Bideau, 2002; Richard
et al., 2005).

Nowak, et al. (Nowak et al., 1998, 1997) performed a
set of experiments of the compaction of spherical glass
beads as a function of increasing and decreasing verti-
cal tapping intensity. Figure 9 shows their results for the
packing fraction ρ versus the tapping intensity Γ (normal-
ized by the acceleration due to gravity). The key obser-
vation is that the system, after initial transient behavior
on the ‘irreversible branch’, reaches a ’reversible branch’
on which it retraces the variation of the packing fraction
upon increasing and decreasing the intensity. The ini-
tial tapping breaks the frictional contacts that support
loose packed configurations and store information about
the system preparation. On the reversible branch, small
tapping intensities induce denser packings with packing
fractions slightly above random close packing for equal-
sized spheres.

In principle, we can interpret the reversible packings
as equilibrium-like states, in which the details of the
microscopic configurations and the compaction proto-
col are irrelevant, as demonstrated by the reversible na-
ture of the states evidenced by the unique branch trav-
eled by the system as the external intensity is increased
and decreased. These are the states for which we ex-
pect, in principle, a statistical mechanical formalism to
hold. The existence of such a reversible branch has
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been corroborated in a number of experimental systems
with different compaction techniques, e.g., under me-
chanical oscillations and vibrations, shearing, or pres-
sure waves (Brujić et al., 2005; Chakravarty et al., 2003;
Philippe and Bideau, 2002) and studied with theory and
modelling (Caglioti et al., 1997; Krapivsky and BenNaim,
1994; Nicodemi, 1999; Nicodemi et al., 1997a,b,c, 1999;
Prados et al., 2000). However, this interpretation has
been challenged in a number of studies of ergodicity in
jammed matter.

Systems that are subjected to a constant drive such
as infinitesimal tapping or also small shear are able to
explore their phase space dynamically, such that ergod-
icity can be tested directly by comparing time averages
and averages with respect to the constant volume ensem-
ble. We stress here, that only infinitesimal driving forces
should be applied to test equiprobable states (see dis-
cussion in Sec. VI). An agreement of the two averages
has indeed been observed in simple models (Berg et al.,
2002; Gradenigo et al., 2015), as well as soft sphere sys-
tems with a small number of particles N = 30 (Wang
et al., 2010a, 2012).

Some recent systematic results are more controversial
though, motivating a continued investigation of this fas-
cinating concept (Irastorza et al., 2013). A very detailed
and rigorous numerical analysis confirms that at low tap-
ping intensities, the system can not be considered to be
ergodic: Two different realizations of the same prepa-
ration protocol do not correspond to the same station-
ary distribution, indicated by a statistical test of data
for both the packing density (Paillusson, 2015; Paillus-
son and Frenkel, 2012) using volume histograms sample
over time (McNamara et al., 2009a,b), and the trace of
the force-moment tensor (Gago et al., 2016). When con-
sidering the fraction of persistent contacts as a function
of tapping intensity, one observes that the non-ergodic
regime coincides with a larger percentage of persistent
contacts, while such contacts are almost absent in the
ergodic regime (Gago et al., 2016). The picture that
emerges is that the breakdown of ergodicity is connected
to the presence of contacts that do not break under the
effect of the tapping. In accordance with physical in-
tuition, the system can then not sample its whole phase
space, but is stuck in specific regions with the consequent
breaking of ergodicity. An additional reason to doubt the
validity of ergodicity is the violation of the time reversal
symmetry due to dissipation (Dauchot, 2007).

Ergodicity is also intimately related to the existence of
non-equilibrium fluctuation-dissipation relations (FDR)
characterized by an effective temperature (Cugliandolo,
2011). For equilibrium systems, the FDR is a very
general result relating time correlations and responses
through the temperature of the thermal environment.
Non-equilibrium FDRs have been shown to hold in a wide
range of systems starting with the work of Ref. (Cuglian-
dolo et al., 1997), e.g., for glassy systems (Bellon and

Ciliberto, 2002; Crisanti and Ritort, 2003; Leuzzi, 2009)
and models of driven matter (Berthier et al., 2000; Loi
et al., 2008) (see also the review (Marconi et al., 2008)).
It has recently also been demonstrated in single molecule
DNA driven out of equilibrium by an optical tweezer (Di-
eterich et al., 2015). Non-equilibrium FDRs and effective
temperatures are often linked to the slow modes of the
relaxation in a glassy phase (Cugliandolo et al., 1997). In
granular compaction, the relaxation to the final density is
similarly slow, following, e.g., an inverse logarithmic law
under tapping (Krapivsky and BenNaim, 1994; Nowak
et al., 1998, 1997) and a Kohlrausch-Williams-Watts law
under shear (Lu et al., 2008a). The fluctuations induced
by the continuous driving allow for the definition of an ef-
fective temperature, which, in an ergodic system, should
agree with the granular temperature associated with the
canonical volume ensemble (Cugliandolo, 2011). This al-
lows for an indirect test of ergodicity, which has been
established in a number of systems, both toy models
(Barrat et al., 2000; Brey et al., 2000; Coniglio et al.,
2004; Dean and Lefèvre, 2001; Fierro et al., 2002a, 2003;
Lefevre, 2002; Lefèvre and Dean, 2002; Nicodemi, 1999;
Nicodemi et al., 2004; Prados and Brey, 2002; Tarjus and
Viot, 2004) and more realistic ones using MD simulation
of slowly sheared granular materials (Makse and Kur-
chan, 2002), as well as experiments measuring effective
temperatures in colloidal jammed systems (Song et al.,
2005) and slowly sheared granular materials in a vertical
Couette cell (Potiguar and Makse, 2006; Wang et al.,
2008, 2006) and vibrating cells (Ribiere et al., 2007).
The observation of ratcheting in packings of polygonal
particles under cyclic load (Alonso-Marroqúın and Her-
rmann, 2004) sheds however some doubts about the ex-
ploration of configuration space due to systematic irre-
versible displacements on the grain scale: not only is time
reversibility violated, but a steady state does not seem
to be reached.

The concept of granular temperature or compactivity
X raises the question whether it is a well defined quan-
tity at all. There are essentially two different methods
to calculate X from packing data: (i) From the statis-
tics of elementary volume cells. Exploiting the analogy
with equilibrium statistical mechanics, X can be derived
by thermodynamic integration over the inverse volume
fluctuations (Briscoe et al., 2008; Jin and Makse, 2010;
Lechenault et al., 2006; Nowak et al., 1998; Ribiere et al.,
2007; Schröter et al., 2005). Alternatively, one can use
analytical expressions either for the volume distribution,
such as the Γ-distribution (Aste and Di Matteo, 2008a,b;
Aste et al., 2007) or for X itself, derived e.g. from ideal-
ized solutions using quadrons (Blumenfeld and Edwards,
2003; Blumenfeld et al., 2012). (ii) Using an overlapping
histograms approach (Dean and Lefevre, 2003; McNa-
mara et al., 2009a). The protocol independence of X ob-
tained from a fit to the quadron solution has been shown
in (Becker and Kassner, 2015). In (Zhao and Schröter,



26

2014) four different ways of measuring X from the same
experimental data set of a binary disk packing have been
systematically compared. Interestingly, only two of the
methods have been shown to agree quantitatively once
the density of states is also included as an experimental
input. This highlights possible inconsistencies between
different definitions of X.

The equilibration of the temperature-like parame-
ters in Edwards statistical mechanics has been demon-
strated in experiments (Jorjadze et al., 2011; Puckett
and Daniels, 2013; Schröter et al., 2005). However, in
(Puckett and Daniels, 2013) only the angoricity and not
the compactivity has been shown to equilibrate. An up-
per bound on the Edwards entropy in frictional hard-
sphere packings has recently been suggested (Baranau
et al., 2016).

Recent criticism in (Blumenfeld et al., 2016) has
claimed that the volume function is per se not suitable
as the central concept for a statistical mechanical ap-
proach, since the volume is defined by the boundary par-
ticles and W is thus independent of the configurations
of bulk particles, i.e., ∂W/∂qi = 0 for these degrees of
freedom. As a consequence, the resulting entropy would
be miscalculated due to miscounting of these configura-
tions. However, in (Becker and Kassner, 2017) it has been
shown that the vanishing derivatives are perfectly consis-
tent with statistical mechanics. Even ifW is independent
of some degrees of freedom, the resulting partition func-
tion still takes these into account and thus allows the
correct calculation of macroscopic observables in terms
of expectation values.

Related to ergodicity, the second controversial concept
underlying Edwards statistical mechanics is the assump-
tion of equiprobability of jammed microstates, Fig. 4a.
Since Edwards’ initial conjecture, most studies have fo-
cused on testing the validity of the consequences of this
assumption rather than testing it directly. On the other
hand, a direct test requires the evaluation of all possible
jammed configurations and counting the occurrence of
distinct microstates, which is possible in model systems
(Bowles and Ashwin, 2011; Slobinsky and Pugnaloni,
2015a,b). For more realistic packings, such a direct test
has long been restricted to small numbers of particles due
to the prohibitively large number of resulting jammed
states. Some of the first direct tests for up N = 14
particles have shown a highly non-uniform distribution,
suggesting that the structural and mechanical properties
of dense granular media are not dominated equally by
all possible configurations as Edwards assumed, but by
the most frequent ones (Gao et al., 2006, 2009; Xu et al.,
2005). It has been argued that the non-uniformity, which
is manifest in a broad distribution of basin volumes in the
energy landscape that identify jammed states, is due to
the fast quench into the energy minima (Wang et al.,
2012). Moreover, it is not clear if the non-uniformity
survives for larger system sizes.

Remarkable recent progress has been able to conclu-
sively validate Edwards’ equiprobability assumption for
realistic system sizes. Advances in numerical methods
have enabled a direct computation of basin volumes of
distinct jammed states of up to N = 128 polydisperse
frictionless spheres in both 2d and 3d with a hard core
and soft shell (Asenjo et al., 2014; Martiniani et al., 2016;
Martiniani et al., 2016a,b,c; Xu et al., 2011). The spheres
are jammed by equilibrating the fluid phase, inflating
the particles and then minimizing the energy to produce
mechanically stable packings at a given packing density.
The minimization procedure finds individual packings
with a probability pi proportional to the volume vi of
their basin of attraction. The number of jammed states
is Ω(φ) = VJ(φ)/ 〈v〉 (φ), where 〈v〉 (φ) is the average
basin volume and VJ(φ) the total phase space volume.
The observation that different basins have different vol-
umes for a range of φ values already implies that they
will not be equally populated and thus equiprobability
breaks down for these densities. However, as shown in
(Asenjo et al., 2014), the granular entropy still satisfies
extensivity if one considers the Gibbs entropy

S∗G = −
∑

i

pi log pi − logN ! (49)

The subtracted term logN ! ensures that two systems
in identical macrostates are in equilibrium under an ex-
change of particles and is required for extensivity (Cates
and Manoharan, 2015; Frenkel, 2014; Swendsen, 2006).
In order to test equiprobability one can compare S∗G
with the likewise modified Boltzmann expression S∗B =
log Ω(V )− logN !. The Gibbs entropy satisfies S∗G ≤ S∗B
with equality when all pi are equal, pi = 1/Ω. Remark-
ably, S∗G indeed approaches S∗B as φ → φ∗ for a specific
packing density φ∗ (see Fig. 10) (Martiniani et al., 2016).
At φ∗ the basin volumes decorrelate from structural ob-
servables such as pressure, coordination number, etc.
Furthermore using a finite size scaling analysis one can
show that φ∗ coincides with the density at which pres-
sure fluctuations diverge as N → ∞, which is only pos-
sible at the unjamming transition φJ : φ∗N→∞ = φJN→∞.
The comprehensive study in (Martiniani et al., 2016) thus
demonstrates that Edwards assumption of equiprobabil-
ity indeed holds at the unjamming transition, which cor-
responds to the point of maximum entropy. Moreover,
it is shown that equiprobability is still satisfied over the
whole range of φ values if one conditions on a fixed value
of the pressure indicating that the generalized stress-
volume Edwards ensemble is also a robust description.

In general, it is important to keep in mind that
equiprobability will not hold for all possible packing al-
gorithms. For example, the protocol used in (Atkin-
son et al., 2014) to generate maximally random jammed
monodisperse disk packings based on a linear program-
ming algorithm (Torquato and Jiao, 2010) samples a par-
ticular subset of all possible jammed states, which have
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FIG. 2: (a) Gibbs entropy SG and Boltzmann entropy SB as a function of volume fraction. SB is computed both
parametrically by fitting B(f) with a generalised Gaussian function (‘Gauss’) and non-parametrically by computing
a Kernel Density Estimate (‘KDE’) as in Ref.[13]. Dashed curves are a second order polynomial fit. (b) Scatter plot
of the negative log-probability of observing a packing, � ln pi = Fi + ln VJ(�), where VJ is the accessible fraction of
phase space (see SI) as a function of log-pressure, ⇤. Black solid lines are lines of best fit computed by linear minimum
mean square error using a robust covariance estimator (see SI). (c) Slopes �(�) and (d) intercepts c(�) of linear fits

for Eq. 1. Solid lines are lines of best fit and error bars refer to the standard error.

that for larger N where an exact computation of vi and SB is not feasible, the maximum in �2
⇤ can be used to identify

�⇤
N . We have measured �⇤ = N�2

⇤ using our (biased) sampling scheme for systems upto N = 128 (see inset of Fig.
3a) and finite size scaling indicates that �⇤ diverges as � ! �⇤

N!1 = 0.841(3) (see SI).
Interestingly, we find evidence that in the thermodynamic limit, the point of equiprobability �⇤

N!1, coincides with
the point at which the system unjams, �J

N!1. We use two characteristics of the unjamming transition to locate
�J

N!1 (i) the average pressure of the packings goes to zero, and therefore h⇤i ! �1 (see Fig 3b) and (ii) the
probability of finding jammed packings, pJ , goes to zero (see inset of Fig 3 b). A scaling analysis indicates that
h⇤i ! �1 as �J

N!1 = 0.841(3), and pJ ! 0 as �J
N!1 = 0.844(2) (see SI). We thus find that �⇤

N!1 = �J
N!1

within numerical error and up to corrections to finite size scaling [17]. Our simulations therefore lead to the surprising
conclusion that the Edwards conjecture appears to hold precisely at the (un)jamming transition.

Why is �⇤ related to the unjamming transition? As the particles interact via purely repulsive potentials, P is
strictly positive, which implies that the fluctuations of P have a floor and go to zero at unjamming. The relative
fluctuations �P ⌘ N�2 (P/hP iB), can be non-zero, and a diverging �P would then imply a diverging �⇤. Because
of the bounded nature of P , however, �P can only diverge at the unjamming transition where hP iB ! 0 (see SI).
We find that �P does diverge (Fig. 3 a) and finite size scaling yields �J

N!1 = 0.841(3) (see SI). Returning to the
N = 64 case that we have analysed using the basin volume statistics, we find that both �P and �⇤ saturate to their
maximum values over similar ranges of � and our estimate �⇤

N=64 = 0.824(70) where SG = SB and � ! 0, falls in
this region. In addition, the average number of contacts, hziB(�⇤

N=64) = 4.058 ± 0.33: close to the isostatic value

FIG. 10 (Colors online) Recent numerical results confirm Ed-
wards equiprobability assumption at the unjamming transi-
tion (Martiniani et al., 2016). Gibbs entropy Eq. (49) and
Boltzmann entropy S∗B = log Ω(V ) − logN ! demonstrating
equiprobability at φ∗ ≈ 0.82 for N = 64 particles. S∗B is
computed parametrically (“Gauss”) and non-parametrically
using a kernel density estimate (“KDE”). Figure reprinted
from (Martiniani et al., 2016).

only a very low probability of occurrence in the Edwards
ensemble. In (Charbonneau et al., 2017) it is shown that
the configurational entropy of jammed packings resulting
from adiabatic compression of glassy states is systemat-
ically smaller than the one obtained from Edwards uni-
form measure. Hence, this protocol generates exponen-
tially fewer packings than are possible. A framework to
include protocol dependence in an Edwards-type ensem-
ble has been suggested (Paillusson, 2015). Even without
such an extension, recent theoretical work has shown that
the predictions resulting from Edwards assumptions are
indeed in excellent agreement with empirical data, con-
firming, e.g., the critical properties of hard spheres at
jamming (Charbonneau et al., 2017) (see Sec. III.A.4),
and jamming densities in a wide range of different sys-
tems as reviewed in the next Section IV. Conceptually,
it is possible to resolve the problem of protocol depen-
dence if one starts from the very beginning by defining
the metastable jammed states and not the protocols, then
one avoids the whole question of the ergodic hypothesis
or protocol dependence or similar issues, which are not
really essential for Edwards’ statistics. We will discuss
in detail this line of reasoning in Section V by exploiting
an analogy between metastable jammed states with the
metastable states of spin-glass systems.

IV. EDWARDS VOLUME ENSEMBLE

In this chapter we focus on the Voronoi convention to
define the microscopic volume function of an assembly
of jammed particles. As we discuss in detail, Edwards
statistical mechanics of a restricted volume ensemble can

then be cast into a predictive framework to determine
packing densities for both spherical and non-spherical
particles. In the next sections we outline the mean-
field statistical mechanical approach based on a coarse-
graining of the Voronoi volume function Eq. (23). In
Secs. IV.C–IV.F, we discuss different aspects of packings
of spheres, such as the effects of dimensionality, bidis-
persity, and adhesion. In Sec. IV.G we focus on pack-
ings of non-spherical shapes. A comprehensive phase di-
agram classifying packings of frictional, frictionless, ad-
hesive spheres and non-spherical shapes is presented in
Sec. IV.H.

A. Mean-field calculation of the microscopic volume
function

The key question is how analytical progress can be
made with the volume function Eq. (23). The global min-
imization in the definition of li(ĉ), Eq. (24), implies that
the volume function is a complicated non-local function.
This global character indicates the existence of strong
correlations and greatly complicates the calculation of,
e.g., the partition function in the Edwards ensemble ap-
proach. In order to circumvent these difficulties, we re-
view here a mean-field geometrical viewpoint developed
in a series of papers (Baule and Makse, 2014; Baule et al.,
2013; Bo et al., 2014; Briscoe et al., 2008, 2010; Liu et al.,
2015; Meyer et al., 2010; Portal et al., 2013; Song et al.,
2010, 2008; Wang et al., 2010a,b, 2011, 2010c), where
the central quantity is not the exact microscopic volume
function, but rather the average or coarse-grained vol-
ume of an individual cell in the Voronoi tessellation. The
packing density φ of a system of monodisperse particle
of volume V0 is given by

φ =
NV0∑N
i=1Wi

=
V0

1
N

∑N
i=1Wi

. (50)

In the limit N → ∞ we replace the denominator by
the ensemble averaged volume of an individual cell W =
〈Wi〉i: 1

N

∑N
i=1Wi −→ W as N → ∞. As a result the

volume fraction is simply

φ = V0/W. (51)

Considering Eq. (23), we can perform an ensemble aver-
age to obtain:

W =

〈
1

d

∮
dĉ li(ĉ)d

〉

i

=
1

d

∮
dĉ
〈
li(ĉ)d

〉
i

=
1

d

∮
dĉ

∫ ∞

c∗(ĉ)

dc cdp(c, z). (52)

In the last step we have introduced the pdf p(c, z) which
is the probability density to find the Voronoi boundary
VB at a value c in the direction ĉ. This involves a lower
cut-off c∗ in the direction ĉ due to the hard-core bound-
ary of the particles. Crucially, we assume that the pdf is
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a function of c and the coordination number z only rather
than a function of the exact particle configurations in the
packing. This is the key step in the coarse-graining pro-
cedure, which replaces the exact microscopic information
contained in li(ĉ) by a probabilistic quantity. In the fol-
lowing, we focus on spheres, where p(c, z) = p(c, z) and
c∗(ĉ) = R due to the statistical isotropy of the packing
and the isotropy of the reference particle itself. More
complicated shapes will be treated in subsequent sec-
tions.

We now introduce the cumulative distribution func-
tion (CDF) P>(c, z) via the usual definition p(c, z) =
− d

dcP>(c, z). Eq. (52) becomes then in 3d

W (z) =
4π

3

∫ ∞

R

dc c3p(c, z)

= V0 + 4π

∫ ∞

R

dc c2 P>(c, z), (53)

where V0 = 4π
3 R

3. The advantage of using the CDF P>
rather than the pdf, is that the CDF has a simple geo-
metrical interpretation. We notice first that P> contains
the probability to find the VB in a given direction ĉ at
a value larger than c, given z contacting particles. But
this probability equals the probability that N − 1 par-
ticles are outside a volume Ω centered at c relative to
the reference particle (Fig. 11). Otherwise, if they were
inside that volume, they would contribute a VB smaller
than c. The volume Ω is thus defined as

Ω(c) =

∫
drΘ(c− s(r, ĉ))Θ(s(r, ĉ)), (54)

where s(r, ĉ) parametrizes the VB in the direction ĉ for
two spheres of relative position r. Θ(x) denotes the usual
Heavyside step function. Due to the isotropy of spheres,
the direction ĉ can be chosen arbitrarily. We refer to Ω as
the Voronoi excluded volume, which extends the standard
concept of the hard-core excluded volume Vex that domi-
nates the phase behaviour of interacting particle systems
at thermal equilibrium (Onsager, 1949).

This geometrical interpretation allows us to connect
P>(c, z) with the N -particle pdf PN ({r1, r2, ..., rN}) in
an exact way. Without loss of generality we denote
the reference particle i as particle 1. Then, P>(c, z) =
P>(r1; Ω), i.e., the probability that the N − 1 particles
apart from particle 1 are outside the volume Ω. Since
PN ({r1, r2, ..., rN}) expresses the probability to find par-
ticle 1 at r1, particle 2 at r2, etc., we have (Jin et al.,
2010)

P>(r1; Ω) = C
∫

drN−1PN ({r1, r2, ..., rN})

×
N∏

i=2

[1−m(ri − r1; Ω] , (55)

where C ensures proper normalization. The indicator
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FIG. 11 (Colors online) The condition to have the VB in the
direction ŝ from the reference particle (green sphere) at the
value c is geometrically related to the exclusion volume Ω for
all other particles (blue spheres). Taking into account the
conventional hard-core excluded volume leads to the Voronoi
excluded volume Eq. (57) (the Moon phase - grey volume V ∗)
and Voronoi excluded surface Eq. (57) (orange line).

function m(r; Ω) is given by

m(r; Ω) =





1, r ∈ Ω

0, r /∈ Ω

(56)

Equation (55) is the starting point for the calculation
of P>(c, z) from a systematic treatment of the particle
correlations as discussed in Sec. IV.D for 2d packings
(Jin et al., 2014) and in Sec. IV.C for high-dimensional
packings (Jin et al., 2010). Here, we proceed with a phe-
nomenological approach based on an exact treatment in
1d which is used as an approximation to the 3d case, as
originally developed in (Song et al., 2008).

We can first separate contributions to P> stemming
from bulk and contacting particles. We introduce two
CDFs, the bulk contribution PB and the contact contri-
bution PC :

• PB denotes the probability that spheres in the bulk
are located outside the Moon-phase grey volume V ∗

in Fig. 11. The volume V ∗ is the volume excluded
by Ω for bulk particles and takes into account the
overlap between Ω and the hard-core excluded vol-
ume Vex:

V ∗ = Ω− Ω ∩ Vex

=

∫
drΘ(r − 2R)Θ(c− s(r, ĉ))Θ(s(r, ĉ)). (57)

We call V ∗ the Voronoi excluded volume.

• PC denotes the probability that contacting spheres
are located outside the boundary of the grey area
indicated in orange in Fig. 11 and denoted S∗. The
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surface S∗ is the surface excluded by Ω for contact-
ing particles:

S∗ = ∂Vex ∩ Ω

=

∮
dr̂Θ(c− s(r, ĉ))Θ(s(r, ĉ))

∣∣∣∣
r=2R

, (58)

where ∂Vex denotes the boundary of Vex.

A key assumption to make analytical progress is to as-
sume PB and PC to be statistically independent, thus
P> = PBPC . There is no a priori reason why this should
be the case, so the independence should be checked a
posteriori from simulation data. For spheres and non-
spherical particles close to the spherical aspect ratio, it
has been verified that independence is a reasonable as-
sumption (Baule et al., 2013; Song et al., 2008). It is
then natural to consider only PC to be a function of z.
Therefore,

P>(c, z) = PB(c)× PC(c, z). (59)

We now derive a functional form of the PB term. In
1d, the distribution of possible arrangements of N hard
rods in a volume V can be mapped to the distribution of
ideal gas particles by removing the occupied volume NV0

(Krapivsky and BenNaim, 1994; Palásti, 1960; Rényi,
1958; Tarjus and Viot, 2004). The probability to locate
one particle at random outside the volume V ∗ in a system
of volume V −NV0 is then P>(1) = 1− V ∗/(V −NV0).
For N ideal particles, we obtain

P>(N) =

(
1− V ∗

V −NV0

)N
. (60)

The particle density is ρ̃ = N/(V −NV0). Therefore

lim
N→∞

P>(N) = lim
N→∞

(
1− ρ̃V ∗

N

)N
= e−ρ̃V

∗
. (61)

In the thermodynamic limit the probability to observe N
particles outside the volume V ∗ is given by a Boltzmann-
like exponential distribution. In this limit, the particle
density becomes

ρ̃ = lim
N→∞

1
1
N

∑N
i=1Wi − V0

=
1

W − V0

. (62)

While the above derivation is exact in 1d, the extension
to higher dimensions is an approximation: Even if there
is a void with a large enough volume, it might not be
possible to insert a particle due to the constraint imposed
by the geometrical shape of the particles (which does not
exist in 1d). Nevertheless, in what follows, we assume
the exponential distribution of Eq. (61) to be valid in 3d
as well and write

PB(c) = e−ρ̃V
∗(c), (63)

where the Voronoi excluded volume can be calculated
explicitly from Eq. (57):

V ∗(c) = V0

(( c
R

)3

− 4 + 3
R

c

)
. (64)

Furthermore, we also assume PC to have the same ex-
ponential form as Eq. (63), despite not having the large
number approximation leading to it (the maximum coor-
dination is the kissing number 12). Introducing a surface
density σ(z), we write

PC(c) = e−σ(z)S∗(c), (65)

where the Voronoi excluded surface follows from Eq. (58):

S∗(c) = 2S0

(
1− R

c

)
, (66)

where S0 = 4πR2. To obtain an expression for σ(z)
we calculate the average 〈S∗〉 with respect to the pdf
− d

dcPC(c), which yields a simple result (Song et al., 2010,
2008; Wang et al., 2011)

〈S∗〉 ≈ 1/σ(z). (67)

In turn, 〈S∗〉 is defined as the average of the solid angles
of the gaps left between z contacting spheres around the
reference sphere. An alternative operational definition
assuming an isotropic distribution of contact particles is:

(i) Generate z contacting particles at random.

(ii) For a given direction ĉ, determine the minimal
value of the VB, denoted by cm.

(iii) The average 〈S∗〉 follows as a Monte-Carlo average
in the limit.

〈S∗〉 = lim
n→∞

1

n

n∑

i=1

S∗(cm,i), (68)

where cm,i is the cm value of the ith sample. Simulations
following this procedure and considering z = 1 up to the
kissing number z = 12 suggest that

σ(z) ≈ z

4π

√
3, z > 1, (69)

for a chosen radius R = 1/2. The exact constants ap-
pearing in this expression are motivated from an exact
treatment of the single particle case plus corrections due
to the occupied surface of contact particles (Song et al.,
2010; Wang et al., 2011).

Due to the dependence of ρ̃ on W , the CDF P> is thus

P>(c, z) = exp

[
− V ∗(c)

W − V0

− σ(z)S∗(c)

]
, (70)
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where V ∗, S∗, and σ are given by Eqs. (64,66,69). Over-
all, Eq. (70) with Eq. (53) leads to a self-consistent equa-
tion to determine W as a function of z:

W (z) = V0 + 4π

∫ ∞

R

dc c2 exp

[
− V0

W (z)− V0

×

×
(
c3

R3
− 4 + 3

R

c

)
− σ(z)2S0

(
1− R

c

)]
(71)

for which, remarkably, an analytical solution can be
found. By using Eqs. (64,66), Eq. (71) is satisfied when
(Song et al., 2008):

d

dc

(
1

w

(
3
R

c

)
+ σ(z)S∗(c)

)
= 0, (72)

where the free volume is w ≡ (W − V0)/V0. Then, with
Eq. (66) we obtain the solution for w

w(z) =
3

2S0σ(z)
=

2
√

3

z
, (73)

using Eq. (69) and setting R = 1/2 for consistency.
As the final result of this section, we arrive at the

coarse-grained mesoscopic volume function

W (z) = V0 +
2
√

3

z
V0, (74)

which is a function of the observable coordination number
z rather than the microscopic configurations of all the
particles in the packing. With Eq. (50), we also obtain
the packing density as a function of z

φ(z) =
V0

W
=

z

z + 2
√

3
. (75)

Equation (75) can be interpreted as an equation of state
of disordered sphere packings. In the next section we will
show that it corresponds to the equation of state in z–φ
space in the limit of infinite compactivity.

B. Packing of jammed spheres

In the hard sphere limit angoricity can be neglected,
such that the statistical mechanics of the packing is de-
scribed by the volume function alone. The partition func-
tion is then given by Edwards’ canonical one, Eq. (15).
With the result on the coarse-grained volume function it
is possible to go over from the fully microscopic partition
function Eq. (15) to a mesoscopic one (Song et al., 2008;
Wang et al., 2011). To this end we change the integration
variables in Eq. (15) from the set of microscopic config-
urations q = {q1, ...,qN} (positions and orientations of
the N particles) to the volumes Wi(q), Eq. 23, of each
cell in the Voronoi tessellation. Since the microscopic
volume function is given as a superposition of the indi-
vidual cells, Eq. (20), the partition function Eq. (15) can

be expressed as

Z =

N∏

i=1

∫
dWi g(W)e−

∑N
i=1Wi/XΘjam. (76)

Here, the function g(W) for W = {W1, ...,WN} denotes
the density of states. In the coarse-grained picture all the
volume cells are non-interacting and effectively replaced
by the volume function Eq. (74). The partition function
thus factorizes Z = ZNi , where

Zi(X) =

(∫
dW g(W )e−W/XΘjam

)N
(77)

Averages over the volume ensemble as well as all ther-
modynamic information is thus accessible via Eq. (77).
The crucial step to go from the full microscopic partition
function Eq. (15) to Eq. (77) is to introduce the den-
sity of states g(W ) for a given volume W . Although this
step formally simplifies the integral, the complexity of the
problem is now transferred to determining g(W ), which
is in principle as difficult to solve as the model itself. In
Eq. (77), X is the compactivity measured in units of the
particle volume V0, and Θjam imposes the condition of
jamming.

In the mean-field view developed in the previous sec-
tion, W is directly related to the geometrical coordina-
tion number z via Eq. (74). Therefore, we map g(W )
to g(z), the density of states for a given z via a change
of variables g(W ) =

∫
P (W |z)g(z)dz, where P (W |z) is

the conditional probability of a volume W for a given z,
which, with Eq. (74), is given by P (W |z) = δ(W−W (z)),
where we have neglected fluctuations in z, see (Wang
et al., 2010c). Substituting these two equations into
Eq. (77) effectively changes the integration variable from
W to z leading to the single particle (isostatic) partition
function

Ziso(X,Zm) =

∫ 6

Zm

g(z) exp

[
−2
√

3

zX

]
dz. (78)

The jamming condition is now absorbed into the inte-
gration range, which constrains the coordination number
to isostatic packings (therefore the name isostatic parti-
tion function). Notice that in this mesoscopic mean-field
approach the force and torque balance jamming condi-
tions from Θjam Eq. (10) are incorporated when we set
the coordination number to the isostatic value. Thus,
in this way, we circumvent the most difficult problem of
implementing the force jamming condition Eq. (10).

More precisely, the geometric and force/torque con-
straints from Eq. (10) imply that there are two types
of coordination numbers: (i) the geometrical coordina-
tion number z, parametrizing the free volume function
Eq. (73) as a function of all contacting particles, con-
straining the position of the particle via the hard-core
geometrical interaction Eq. (1). (ii) The mechanical co-
ordination number Zm, counting only the geometrical
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contacts z that at the same time carry non-zero force
(Oron and Herrmann, 1999, 1998) and therefore takes
into account the force and torque balance conditions Eqs.
(2)-(7) via the isostatic condition.

From the definition we have z ≥ Zm since there could
be a geometric contact that constraints the motion of
the particle but carries no force. This distinction makes
sense when there is friction in the packing. For in-
stance, imagine a frictionless particle at the isostatic
point z = Zm = 6 (although isostatic is a global prop-
erty). Now add friction to the interactions. The mechan-
ical coordination number can be as low as Zm = 4, but
still z = 6; the geometrical constraints are the same, only
two forces have been set to zero, allowing for tangential
forces to appear in the remaining 4 contacts.

For frictionless packings, we have z = Zm. Further-
more, in the limit of infinite compactivity, where the
entropy of the packings is maximum and therefore, the
packings are the most probable to find in experiments, we
will see that again z = Zm and the distinction between
mechanical and geometrical coordination number disap-
pears. In what follows, we will consider the consequences
of considering the two coordination numbers only for the
following 3d monodisperse system of spheres. The dis-
tinction between z and Zm will allow us to describe the
phase diagram for all compactivities as in Fig. 12a, below.
In the remaining sections where we treat non-spherical
particles and others, either we will assume frictionless
particles or packings at infinite compactivity for which
we simply set z = Zm and get a single equation of state
rather than the yellow area in Fig. 12a.

The mechanical coordination Zm defines isostatic pack-
ings, which, strictly applies only to the two limits Zm =
2d = 6 for frictionless particles with friction µ → 0 and
Zm = d+ 1 = 4 for infinitely rough particles µ→∞. An
important assumption is that Zm varies continuously as
a function of µ

4 ≤ Zm(µ) ≤ z ≤ 6. (79)

In fact, a universal Zm(µ) curve has been observed for
a range of different packing protocols (Song et al., 2008)
and calculated analytically in (Bo et al., 2014). The up-
per bound of z is the frictionless isostatic limit. This
effectively excludes from the ensemble the partially crys-
talline packings, which are characterized by larger z.

The remaining unknown is the density of states g(z),
which can be determined using analogies with a quantum
mechanical system (see appendix B) leading to

g(z) = (hz)
z−D, (80)

where D is the dimension per particle of the configura-
tion space and hz a typical distance between jammed
configurations in this space. Note that the factor (hz)

−D

will drop out when performing ensemble averages. Phys-
ically, we expect hz � 1. The exact value of hz can be
determined by a fitting of the theoretical values to the

simulation data, but it is not important as long as we
take the limit at the end: hz → 0.

Having defined the jammed ensemble via the partition
function Ziso, we can calculate the ensemble averaged
packing density φ(X,Zm) = 〈φ(z)〉 as

φ(X,Zm) =
1

Ziso

∫ 6

Zm

z

z + 2
√

3
e−

2
√

3
zX +z log hzdz. (81)

Equation (81) gives predictions on the packing densi-
ties as a function of X over the whole range of friction
values µ ∈ [0,∞) since Zm(µ) is determined by friction
(Song et al., 2008). We can identify three distinct regimes
(see Fig. 12):

1. In the limit of vanishing compactivity (X → 0),
only the minimum volume at z = 6 contributes.
The density is the RCP limit φrcp = φ(X = 0, Z):

φrcp =
1

1 + 1/
√

3
= 0.634.., Zm(µ) ∈ [4, 6], (82)

and the corresponding RCP free volume is

wrcp =
1√
3
. (83)

φrcp defines a vertical line in the phase diagram
ending at the J-point: (0.634, 6). Here, RCP is
identified as the ground state of the jammed ensem-
ble with maximal density and coordination num-
ber. Notice that this result is also obtained from
Eq. (75) at z = 6.

2. In the limit of infinite compactivity (X →∞), the
Boltzmann factor exp[−2

√
3/(zX)] → 1, and the

average in Eq. (81) is taken over all states with
equal probability. The X → ∞ limit defines the
random loose packing equation of state φrlp(Z) =
φ(X →∞, Zm) as a function of Zm:

φrlp(Zm) =
1

Ziso(∞, Zm)

∫ 6

Zm

z

z + 2
√

3
ez lnhzdz

≈ Zm

Zm + 2
√

3
, Zm(µ) ∈ [4, 6]. (84)

The approximation comes from hz → 0. For small
but finite hz � 1, an interesting regime appears
of negative compactivity (Briscoe et al., 2010), yet
unstable, leading to the limit of RLP when X → 0−

which has been termed as the random very loose
packing (Ciamarra and Coniglio, 2008). Thus, φrlp

spans a whole line in the phase diagram between
the frictionless value φrcp upto the limit µ→∞ at:

φmin
rlp =

1

1 +
√

3/2
= 0.536.., for Zm = 4. (85)



32

(b)

m with Z(m) smoothly varying between Z(m 5 0) 5 6 and Z(m R ‘) 5
4 (ref. 23). This is an important assumption that we test by numerical
simulation (see Supplementary Information section II), where we
find a common Z(m) curve (Supplementary Fig. 10) for different
packing preparation protocols. The mechanical coordination num-
ber ranges from four to six as a function of m, and provides a lower
bound on the geometrical coordination number: Z # z # 6. These
bounds are tested in computer simulations in Supplementary
Information section IIIA.

By changing variables, we can write equation (2) as (see
Supplementary Information section IV):

Qiso(X,Z)~

ð6

Z

e{W (z)=X g(z)dz ð3Þ

Owing to the implicit volume coarse-graining in equation (1), each
volume state W(z) represents a mesoscopic state containing many
microstates with a common value of z and density of states g(z). The
latter can be calculated as follows (see Supplementary Information
section IV). We assume that the hard spheres are packed in a collec-
tively jammed configuration in which no motion of any subset of
particles can lead to unjamming24. Thus, the configuration space of
jammed matter is discrete, as we cannot continuously change one
configuration to another. We denote the dimension per particle of
the configuration space by D and assume that the distance between
two configurations is not broadly distributed, with a mean distance
hz. Therefore, the number of configurations is proportional to

1
"

(hz)D, analogous with that in quantum mechanics, h2d, where h
is Planck’s constant and d is the dimension. The fact that the particles
are jammed by z contacting particles reduces the number of degrees
of freedom to D2 z, and the number of configurations is then

1
"

(hz)D{z . Because the term 1
"

(hz)D is a constant, it will not
influence the average in the partition function. Therefore, we have
g(z) 5 (hz)

z.
From equation (3) we obtain the equations of state that define the

phase diagram of jamming. We start by investigating two limiting
cases (see Supplementary Information section V). First, in the limit of
vanishing compactivity (X R 0), we obtain the ground state of
jammed matter with a density

wRCP~
6

6z2
ffiffiffi
3
p <0:634 ð4Þ

for Z(m) g [4, 6]. Second, in the limit of infinite compactivity
(X R ‘), we obtain

wRLP(Z)~
1

Qiso(?,Z)

ð6

Z

z

zz2
ffiffiffi
3
p (hz)zdz

<
Z

Zz2
ffiffiffi
3
p

ð5Þ

for Z(m) g [4, 6].
The average in equation (5) is taken over all states with equal

probability, because e2W(z)/X R 1 as X R ‘, and the approximation
applies because hz is very small and the most populated state, z 5 Z,
thus makes the dominant contribution to the average volume. The
meaning of the subscripts ‘RCP’ (random close packing) and ‘RLP’
(random loose packing) in equations (4) and (5) will become clear
below.

The equations of state (4) and (5) are plotted in the w–Z plane in
Fig. 1, illustrating the phase diagram of jammed matter. The phase
space is limited to lie above the line of minimum coordination num-
ber, Z 5 4 (for infinitely rough grains), labelled ‘granular line’ in
Fig. 1. All mechanically stable, disordered jammed packings lie within
the confining limits of the phase diagram (Fig. 1, yellow zone), and
are forbidden in the grey area. For example, a packing of frictional
hard spheres with Z 5 5 (corresponding to a granular material with
interparticle friction coefficient m < 0.2, according to Supplementary
Fig. 10) cannot be equilibrated at volume fractions below

w , wRLP(Z 5 5) 5 5/(512!3) 5 0.591 or above w . wRCP 5 0.634.
Thus, these results provide a statistical interpretation of the RLP
and RCP limits, as follows.

First, originating in the statistical mechanics approach, the RCP
limit arises as the result of equation (4), which gives the maximum
volume fraction of disordered packings. The RCP density for mono-
disperse hard spheres2,4,6 is commonly quoted to be 63–64%; here we
physically interpret a state with this value as the ground state of
frictional hard spheres characterized by a given interparticle friction
coefficient. In this representation, as m varies from zero to infinity, the
RCP state changes accordingly. This approach leads to an unexpected
number of states lying in an ‘RCP line’ from the frictionless point at
Z 5 6 to the point at Z 5 4, as depicted in Fig. 1, demonstrating that
RCP is not a unique point in the phase diagram.

Second, equation of state (5) provides the lowest volume fraction
for a given Z and represents a statistical interpretation of the RLP
limit depicted by the ‘RLP line’ in Fig. 1. We predict that to the left of
this line packings either are not mechanically stable or are experi-
mentally irreversible as discussed in refs 8, 11, 25. There is no general
consensus on the value of the RLP density: different estimates
have been reported, ranging from 0.55 to 0.60 (refs 4–6). The phase
diagram offers a solution to this problem. Along the infinite-
compactivity RLP line, the volume fraction of the RLP decreases
with increasing friction from the frictionless point (w, Z) 5
(0.634, 6) (ref. 21), called the ‘J-point’ in ref. 22, towards the limit
of infinitely rough hard spheres. Indeed, experiments4 indicate that
lower volume fractions are associated with larger coefficients of
friction. We predict the lowest volume fraction to be wmin

RLP 5
4/(4 1 2!3) < 0.536, in the limit as m R ‘, X R ‘ and Z R 4
(hz = 1). Although this is a theoretical limit, our results indicate that
for m . 1 this limit can be approximately achieved. The existence of
an RLP bound is an interesting prediction of the present theory. The
RLP limit has been little investigated experimentally, and currently it
is not known whether this limit can be reached in real systems. Our
prediction is close to the lowest stable volume fraction ever reported
for monodisperse spheres5, namely 0.550 6 0.006.

Third, between the two RLP and RCP limits, there are packings
inside the yellow zone in Fig. 1 with finite compactivity, 0 , X , ‘.
In such cases we solve the partition function numerically to obtain
w(X, Z) along an isocompactivity line, as shown in the colour lines in
Fig. 1. The compactivity X controls the probability of each state,
through a Boltzmann-like factor in equation (3) (as in condensed
matter physics), and characterizes the number of possible ways of
rearranging a packing having a given volume and entropy, S. Thus,
the limits of the most compact and least compact stable arrangements
correspond to X R 0 and X R ‘, respectively. Between these limits,
the compactivity determines the volume fraction from RCP to RLP.
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Figure 1 | Phase diagram of jamming: theory. Theoretical prediction of the
statistical theory. All disordered packings lie within the yellow triangle
demarcated by the RCP line, RLP line and granular line. Lines of uniform
finite compactivity are in colour. Packings are forbidden in the grey area.
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Fig. 6. Predictions of the equation of state of jammed matter in the (X, �, s) space. Each line corresponds to a different system with Z(µ) as indicated. The
projections in the (�, s) and (X, s) planes show that the RCP (X = 0) is less disordered than the RLP (X ! 1). The projection in the (X, �) plane resembles
qualitatively the compaction curves of the experiments [19,21,20].

law [30]. In a sense, deformable particles are needed when discussing realistic jammed states especially when considering
the problem of sound propagation and elastic behavior [65,66]. In the case of deformable particles the third axis in Fig. 5(d)
corresponds to the energy of deformation or the work done to go from one configuration to the next. This energy is not
uniquely defined in terms of the particle coordinates; it depends on the path taken from one jammed state to the next. Thus,
we emphasize that the energy in Fig. 5 is path-dependent. The only point where it becomes independent of the path is in
the frictionless point. Besides this, the volume landscape in the isostatic plane Fig. 5(a)–(c) is well defined and independent
of the energy barriers and path dependent issues.

It is important to note that the basins in Fig. 5 are not single states, but represent many microscopic states with different
degrees of freedom Eri, parameterized by a common value of z with a density of states g(z). The basins represent single states
only at themesoscopic level providing amesoscopic view of the landscape of jammed states. This is an important distinction
arising from the fact that the states defined byw(z) = 2

p
3/z, Eq. (7), are coarse grained from themicroscopic states defined

by the microscopic Voronoi volume Eq. (6) in the mesoscopic calculations leading to (7) as discussed in Jamming I [49]. This
fact has important implications for the present predictions which will be discussed in Section 7.5. The advantage of the
volume landscape picture is that it allows visualization of the corresponding average over configurations that give rise to
the macroscopic observables of the jammed states.

6.2. Equations of state

Further statistical characterization of the jammed structures can be obtained through the calculation of the equations of
state in the three-dimensional space (X, �, S), with S the entropy, as seen in Fig. 6.

The entropy density, s = S
N , is obtained as:

s(X, Z) = hwi/X + lnZiso(X, Z). (26)

This equation is obtained in analogy with equilibrium statistical mechanics and it is analogous to the definition of free
energy: F = E � TS where F = �T lnZ is the free energy. We replace T ! X, E ! hwi. Therefore, F = E � TS or
S = (E � F)/T = E/T + lnZ is now s(X, Z) = hwi /X + lnZiso(X, Z), which is plotted as the equation of state in Fig. 6.

Each curve in the figure corresponds to a systemwith a different Z(µ). The projections S(X) and S(�) in Fig. 6 characterize
the nature of randomness in the packings. When comparing all the packings, the maximum entropy is at �min

RLP and X ! 1
while the entropy is minimum for �RCP at X ! 0. Following the G-line in the phase diagram we obtain the entropy for
infinitely rough spheres showing a larger entropy for the RLP than the RCP. The same conclusion is obtained for the other
packings at finite friction (4 < Z(µ) < 6). We conclude that the RLP states are more disordered than the RCP states.
Approaching the frictionless J-point at Z = 6 the entropy vanishes. More precisely, it vanishes for a slightly smaller � than
�RCP of the order hz . Strictly speaking, the entropy diverges to �1 at �RCP as S ! ln X for any value of Z , in analogy with
the classical equation of state, when we approach RCP to distances smaller than hz . However, this is an unphysical limit, as
it would be like considering distances in phase space smaller than the Planck constant.

It is commonly believed that the RCP limit corresponds to a statewith the highest number of configurations and therefore
the highest entropy. However, herewe show that the stateswith a higher compactivity have a higher entropy, corresponding
to looser packings. Within a statistical mechanics framework of jammed matter, this result is a natural consequence and
gives support to such an underlying statistical picture. Amore detailed study of the entropy is performed in Jamming III [51].

Zm

µ ! 1

(a)

�rlp =
1

1 +
p

3/2
⇡ 0.536 �rcp =

1

1 +
p

3/3
⇡ 0.634

FIG. 12 (Colors online) (a) Theoretical prediction of the statistical theory Eq. (81). All disordered packings of spheres lie
within the yellow triangle demarcated by the RCP line at φrcp = 0.634.., the RLP line parametrized by Eq. (84) and the lower
limit for stable packings at Z = 4 (granular line) for µ → ∞. Lines of constant finite compactivity X are in colour. Packings
are forbidden in the grey area. (b) Predictions of the equation of state of jammed matter in the (X,φ, s)–space determined
with Eq. (86). Each line corresponds to a different system with Zm(µ) as indicated. The projections in the (φ, s) and (X, s)
planes show that RCP (X = 0) is less disordered than RLP (X →∞).

The corresponding RLP free-volume is wmin
rlp =√

3/2. These values are interpreted as the mini-
mal density of mechanically stable sphere packings
appearing at Zm = 4. We notice that Eq. (84)
can be obtained from the single particle Eq. (75),
by setting z = Zm. Indeed, in the limit of infinite
compactivity the mechanical coordination takes the
value of the geometrical one.

3. Finite compactivity X defines the packings inside
the triangle bounded by the RCP and RLP lines
and the limit for isostaticity Zm = 4 as µ → ∞
(granular line) are characterized. In this case,
Eq. (81) can be solved numerically. Figure 12a
shows the lines of constant compactivity plotted
parametrically as a function of Zm.

Further thermodynamic characterisation is obtained
by considering the entropy of the jammed configurations,
which can be identified by analogy with the equilibrium
framework. In equilibrium statistical mechanics we have
F = E − TS, such that S = E/T + lnZ using the free
energy expression F = −T lnZ (setting kB to unity). By
analogy we obtain the entropy density of the jammed con-
figuration s(X,Zm) (entropy per particle) (Briscoe et al.,
2008, 2010; Brujić et al., 2007):

s(X,Zm) = 〈W 〉 /X + lnZiso (86)

substituting the partition function Eq. (78) in the last
step. In Fig. 12b each curve corresponds to a packing
with a different Zm value determined by Eq. (86). The
projections s(φ) and s(X) characterize the nature of ran-
domness in the packings. When comparing all the pack-
ings, the maximum entropy is at φrlp for X →∞, while

the entropy is minimum at φrcp for X → 0. Following the
granular line in the phase diagram we obtain the entropy
for infinitely rough spheres showing a larger entropy for
the RLP than the RCP. The same conclusion is obtained
for the other packings at finite friction (4 < Zm < 6). We
conclude that the RLP states are more disordered than
the RCP states.

As stated, in the following results we will focus al-
ways on the X →∞ regime, where the volume function
that is obtained from the solution of the self-consistent
equation is also the equation of state, since we simply
have z → Zm for X →∞ when calculating the ensemble
averaged packing density (compare Eqs. (75) and (84)).
Therefore, we can drop the distinction between Zm and
z (for simplicity we consider z), while keeping in mind
that there exist further packing states for finite X that
are implied but not explicitly discussed in the next sec-
tions (e.g., in the full phase diagram Fig. 20).

C. Packing of high-dimensional spheres

According to Eq. (53), the key quantity to calculate
exactly the average volume W is the CDF P>(r1; Ω) as
defined in Eq. (55). This CDF has been approximated
in the work of (Song et al., 2008) reviewed in previous
Section IV.A by using a simple one dimensional gas-like
model which is analogous in 1d to a parking lot model
(Krapivsky and BenNaim, 1994; Palásti, 1960; Rényi,
1958; Tarjus and Viot, 2004), leading to the exponen-
tial form (70). It turns out that in the opposite limit
of infinite dimensions (mean-field), a closed form of P>
can be obtained as well, based on general considerations
of correlations in liquid state theory. In this mean-field
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high-d limit, the form obtained in (Song et al., 2008)
can be determined as a limiting case, with the added
possibility to develop a systematic expansion of P> in
terms of pair distribution functions allowing to include
higher order correlations which were neglected in (Song
et al., 2008). Furthermore, the high-d limit is important
to compare the predictions of the Edwards ensemble to
other mean-field theories such as the RSB solution of
hard-sphere packings (Parisi and Zamponi, 2010). The
high-dimensional limit is treated next (Jin et al., 2010).

In large dimensions, the effect of metastability between
amorphous and crystalline phases is strongly reduced,
because nucleation is increasingly suppressed for large d
(van Meel et al., 2009a,b; Skoge et al., 2006). Moreover,
mean-field theory becomes exact for d → ∞, because
each degree of freedom interacts with a large number of
neighbours (Parisi, 1988) opening up the possibility for
exact solutions.

In the following, we discuss the mean-field high-
dimensional limit of the coarse-grained Voronoi volume
theory starting from liquid state theory. We only sketch
the main steps in the calculation, for full details we refer
to (Jin et al., 2010). Assuming translational invariance
of the system, Eq. (55) can be rewritten as

P>(r1; Ω) = 1 +

N−1∑

k=1

(−1)k
ρk

k!

×
∫

Ω

gk+1(r12, . . . , r1(k+1))dr1i · · · dr1(k+1), (87)

where gn denotes the n-particle correlation function

gn(r12, r13, ..., r1n)

=
N !

ρn(N − n)!

∫
PN (rn, rN−n)drN−n, (88)

with ρ = N/V the particle density. The integrals
in Eq. (87) express the probabilities of finding a pair,
triplet, etc., of spheres within the volume Ω. For an ex-
act calculation of P>, we thus need the exact form of
gn(r12, r13 . . . r1n) to all orders, which is not available.
However, assuming the generalized Kirkwood superposi-
tion approximation from liquid theory (Kirkwood, 1935),
we can approximate gn in high dimensions by a simple
factorized form (Jin et al., 2010):

gn(r12, r13, . . . , r1n) ≈
n∏

i=2

g2(r1i), (89)

where g2 is the pair correlation function.
Equation (89) indicates that spheres 2, ..., n are corre-

lated with the central sphere 1 but not with each other,
which is reasonable for large d since the sphere surface is
then large compared with the occupied surface. The term
Sd−1 in Eq. (91) denotes the surface of a d-dimensional
sphere with radius 2R. Substituting Eq. (89) in Eq. (87)

yields

P>(r1; Ω) =

N−1∑

k=0

(−1)k
ρk

k!

(∫

Ω

g2(r)dr

)k

= exp

[
−ρ
∫

Ω

g2(r)dr

]
, (90)

in the limit N →∞ (ρ→ 1/W ).
Thus, we see that calculating the CDF P> reduces to

know the form of the pair correlation function. Indeed,
the exponential form calculated in Section IV.A using
a 1d model, Eq. (70), is obtained from Eq. (90) by as-
suming the following simplified pair correlation function
(which has been considered also in (Torquato and Still-
inger, 2006)):

g2(r) =
z

ρSd−1
δ(r − 2R) + Θ(r − 2R). (91)

This form corresponds to assuming a set of z contact-
ing particles contributing to the delta-peak at 2R plus a
set of uncorrelated bulk particles contributing to a flat
(gas-like) distribution characterized by the Θ-function.
This form, depicted in Fig. 13, further assumes the fac-
torization of the contact and bulk distribution and rep-
resents the simplest form of the pair correlation function,
yet, it gives rise to accurate results for the predicted pack-
ing densities. The important point is that the high-d
result Eq. (90) allows to express more accurate pair cor-
relation functions than Eq. (91) into the formalism to
systematically capture higher order features in the corre-
lations, thus allowing for an improvement of the theoret-
ical results. Such improvements are treated in Sections
IV.D and IV.F.

Using Eq. (91) and the definition of Ω, Eq. (54), we
see that the volume integral

∫
Ω
g2(r)dr becomes

∫

Ω

g2(r)dr =
zS∗(c)
ρSd−1

+ V ∗(c), (92)

where V ∗ and S∗ are the Voronoi excluded volume and
surface, Eqs. (57,58), for general d. We thus recover the
same factorized form of the CDF as in 3d, Eq. (70), but
now generalized to any dimension d, separating bulk and
contact contributions

P>(c, z) = exp

[
−ρV ∗(c)− zS∗(c)

Sd−1

]
, (93)

whose validity should increase with increasing dimension.
The Voronoi excluded volume and surface, V ∗ and S∗,
can be calculated with Eqs. (57,58) for general d. The
term z/Sd−1 can be interpreted as the surface density
σ(z) in the 3d theory.

The d-dimensional generalization of Eq. (53) is

W = V
(d)
0 +

V
(d)
0 d

Rd

∫ ∞

R

dc cd−1P>(c, z). (94)
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FIG. 13 (Colors online) At the core of the mean-field ap-
proach developed in (Song et al., 2008) to calculate the vol-
ume fraction of 3d packings is the approximation of the real
pair correlation function (green curve) with its characteristic
peaks indicating short-range correlations in the packing and
the power-law decay of the near contacting particles, Eq. (46),
by a simple delta-function (black curve) at the contacting
point plus a flat distribution charactering a gas-like bulk of
uncorrelated particles. Surprisingly, such an approximation,
which is expected to work better at high dimensions than at
low dimensions, gives accurate results for the volume fraction
in 3d, as shown in Section IV.A. High-dimensional analyses al-
low to treat higher-order correlations neglected in (Song et al.,
2008) to improve the theoretical predictions in a systematic
way as shown in Secs. IV.C, IV.D and IV.F.

For large d an analytical solution of Eq. (94) can be ob-

tained. In terms of w = (W − V (d)
0 )/V

(d)
0 one obtains

the following asymptotic predictions of the Edwards en-
semble in high-d (Jin et al., 2010) for the free volume:
wEdw = 3

4d2d, and the volume fraction in the Edwards
ensemble is

φEdw =
4

3
d 2−d. (95)

The scaling φ ∼ d 2−d is also found in other approaches
for jammed spheres in high dimensions. In principle, it
satisfies the Minkowski lower bound (Torquato and Still-
inger, 2010):

φMink =
ζ(d)

2
2−d, (96)

where ζ(d) is the Riemann zeta function, ζ(d) =∑∞
k=1

1
kd

, although this can be regarded as a minimal
requirement. Density functional theory predicts (Kirk-
patrick and Wolynes, 1987):

φdft ∼ 4.13 d 2−d. (97)

Mode-coupling theory with a Gaussian correction pre-
dicts (Ikeda and Miyazaki, 2010; Kirkpatrick and
Wolynes, 1987):

φmct ∼ 8.26 d 2−d. (98)

Replica symmetry breaking theory at the 1 step predicts
(Parisi and Zamponi, 2010)

φ1RSB
th ∼ 6.26 d 2−d, (99)

and the full RSB solution predicts (Charbonneau et al.,
2014b)

φfullRSB
th ∼ 6.85 d 2−d (100)

as the lower limit of jamming in the J-line (φj ∈
[φth, φGCP).

In general, we see that the Edwards prediction has
the same asymptotic dependence on d, Eq. (95), as the
competing theories. However the prefactors are in dis-
agreement, especially with the 1RSB calculation. While
Edwards ensemble predicts a prefactor 4/3, the 1RSB
prediction is 6.26. A comparison of the large d results
for PB and PC with those in 3d indicates that the low d
corrections are primarily manifest in the expressions for
particle density ρ and the surface density σ(z) = z/Sd−1

(Jin et al., 2010). In 3d, the density exhibits van der
Waals like corrections due to the particle volume: ρ →
ρ̃ = 1/(W − V0). Likewise, there are small corrections

to the surface density z/4π → 〈S∗〉−1 ≈ (z/4π)
√

3. The
origin of the additional

√
3 factor is not clear. In 2d, fur-

ther corrections are needed to obtain agreement of the
theory with simulation data, a case that is treated next.

D. Packing of disks

The high-dimensional treatment discussed in the pre-
vious section shows that improvements on the mean field
approach of (Song et al., 2008) can be achieved through
better approximations to the pair distribution function
by including neglected correlations between neighbor-
ing particles. These correlations become crucial in low-
dimensional systems, in particular in 2d systems of disk
packings. Interestingly, below we show that the 2d case
allows for a systematic improvement of the predictions
based on a systematic layer expansion of the pair distri-
bution function through a dimensional reduction of the
problem to a one-dimensional one, as treated next.

In principle, disordered packings of monodisperse disks
are difficult to investigate in 2d, since crystallization typ-
ically prevents the formation of an amorphous jammed
state. In (Berryman, 1983) the density of jammed disks
has been estimated as φrcp = 0.82 ± 0.02 by extrapo-
lating from the liquid phase. Only recently, MRJ states
of disks have been generated in simulations using a lin-
ear programming algorithm (Torquato and Jiao, 2010).
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These packings achieve a packing fraction of φmrj = 0.826
including rattlers and exhibit an isostatic jammed back-
bone (Atkinson et al., 2014). By comparison, the dens-
est crystalline arrangement of disks is a triangular lattice
with φ = π√

12
≈ 0.9069, which has already been proven

by Thue (Thue, 1892). For disordered packings, replica
theory predicts the J-line in 2d from φth = 0.8165 to
the maximum density of glass close packing at φGCP =
0.8745 (Parisi and Zamponi, 2010), although these values
have a large error bar due to the liquid theory approxi-
mation used in the calculation. A recent theory based on
the geometric structure approach estimates φmrj = 0.834
(Tian et al., 2015).

In order to elucidate the 2d problem from the view-
point of the Edwards ensemble, one can adapt as a first
approach the same statistical theory developed for 3d
spheres in Sec. IV.A to the 2d case. This would lead to a
self-consistent equation for the average Voronoi volume
as in Eq. (53) (Meyer et al., 2010):

W (z) = V0 + 2π

∫ ∞

R

dc c P>(c, z), (101)

where P>(c, z) has the form of Eq. (70) with V0 = πR2

and the 2d analogues of V ∗ and S∗ are easily calculated.
The surface density σ(z) follows from simulations of lo-
cal configurations via Eq. (67). In the relevant z range
between the isostatic frictionless value z = 2d = 4 and
the lower limit z = d+ 1 = 3 for frictional disks, σ(z) is
found to be approximately linear: σ(z) = (z− 0.5)/π for
R = 1/2 (Meyer et al., 2010).

Overall, such an implementation would predict a RCP
density of 2d frictionless disks of φrcp ≈ 0.89 greatly ex-
ceeding the empirical values. The reason for the discrep-
ancy are much stronger correlations between the contact
and bulk particles in low dimensions, such that the as-
sumed independence of the CDFs PB and PC in Eq. (59)
is no longer valid. A phenomenological way to quantify
the correlations by coupling bulk and surface terms has
been discussed in (Meyer et al., 2010) leading to better
agreement with simulation data.

A systematic way of dealing with the correlations can
be developed by focusing only on particles close to the
direction ĉ, i.e., particles that could contribute a VB,
and then constructing a layer expansion into coordina-
tion shells (Jin et al., 2014). We denote these particles
as Voronoi particles. In the exact Eq. (55), one can then

consider the exclusion condition
∏ñ
i=2 [1−m(ri − r1; Ω]

over ñ Voronoi particles (including the reference par-
ticle) rather than all N particles in the packing. In
2d, the Voronoi particles are located on the two clos-
est branches to the direction ĉ and can be described by
a correlation function of angles Gñ(α1, α2, ..., αn). Us-
ing angles instead of the position coordinates is a suit-
able parametrization of the Voronoi particles provided
the underlying contact network is assumed fixed only al-
lowing fluctuations in the angles without destroying con-

ŝ

ŝ

ŝΩ(  )

          Voronoi 
excluded volume

(a) (b)

(c) (d)

(e) (f)

(a) (b)

(c)

(a) (b)

FIG. 14 (Colors online) (a) An illustration of the geometrical
quantities used in the calculation of P>, Eq. (102). The αj are
the angles between any two Voronoi particles for a given ŝ. (b)
Mapping monodisperse contact disks to 1d rods. The 2d ex-
clusive angle α corresponds to the 1d gap. (c) Phase diagram
of 2d packings. Theoretical results for n = 1, 2, 3 (line points,
from left to right) and φ∞rcp (red) are compared to (i) values
in the literature: (Berryman, 1983) (down triangle), (Parisi
and Zamponi, 2010) (diamond), and (O’Hern et al., 2002) (up
triangle), (ii) simulations of 104 monodisperse disks (crosses),
and polydisperse disks (pluses), and (iii) experimental data of
frictional disks (square). (Inset) The theoretical RCP volume
fraction φrcp(n) as a function of n. The points are fitted to
a function φ(n) = φ∞rcp − k1e−k2n, where k1 = 0.34 ± 0.02,
k2 = 0.67± 0.06 and φ∞rcp = 0.85± 0.01.

tacts. For such a fixed contact network the degree of
freedom per particle is thus reduced by one and allows
to map the ñ − 1 position vectors r12, r13, ..., r1ñ onto
the angles α1, α2, ..., αn of contacting Voronoi particles
plus the angle β describing the direction ĉ (see Fig. 14).
This requires ñ−1 = n+ 1. Transforming variables from
(r12, r13, ..., r1ñ) to (β, α1, α2, ..., αn) in Eq. (55) leads to
(Jin et al., 2014)

P>(c) = lim
n→∞

C′
∫
· · ·
∫

Θ(α1 − β)Gn(α1, ..., αn)

×
n+2∏

j=2

Θ

(
r1j

2ĉ · r̂1j
− c
)

dβdα1 · · · dαn, (102)

where the constant C′ = z/L with L = 2π ensures the
normalization P>(R) = 1. Equation (102) becomes ex-
act as n → ∞ and provides a systematic approximation
for finite n. In particular, n can be related to the coor-
dination layers above and below ĉ.
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One can then make two key assumptions to make
this approach tractable (Jin et al., 2014). Firstly, one
applies the Kirkwood superposition approximation as
in the high-dimensional case for Gn: Gn(α1, ..., αn) ≈∏n
j=1G(αj). Secondly, the system of contacting Voronoi

particles is mapped onto a system of 1d interacting
hard rods with an effective potential V (x) (see Fig. 14).
Considering the particles in the first coordination shell
(Fig. 14b) leads to a set of z rods at positions xi,
i = 1, ..., z, where the rods are of length l0 = π/3 and
the system size is L = 6l0 with periodic boundary condi-
tions. In addition, the local jamming condition requires
that each particle has at least d+1 contacting neighbours,
which can not all be in the same “hemisphere”. In 2d,
this implies that z ≥ 3 and αj ≤ π. In the rod system,
this constraint induces an upper limit 3l0 on possible rod
separations. Thus, the jamming condition is equivalent
to introducing an infinite square-well potential between
two hard rods. Crucially, the partition function Q(L, z)
can then be calculated exactly in 1d (Jin et al., 2014):

Q(L, z) =

bL/l0−z
2 c∑

k=0

(−1)k
(
z

k

)
[L/l0 − z − 2k]z−1

(z − 1)!

×Θ(L/l0 − z)Θ(3z − L/l0), (103)

where bxc is the integer part of x and the inverse tem-
perature has been set to unity since it is irrelevant. This
allows to determine the distribution of angles (gaps)
G(α) = 〈δ(x2 − x1 − α)〉

G(α) =
Q(α, 1)Q(L− α, z − 1)

Q(L, z)
. (104)

In the limit a → ∞ the system becomes the classical
Tonks gas of 1d hard rods (Tonks, 1936). In the thermo-
dynamic limit (L→∞ and z →∞), the gap distribution
is GHR(α) = ρfe

−ρf (α/l0−1), where ρf = z/(L/l0 − z) is
the free density.

The density of 2d disk packings follows by solving
Eq. (101) with Eqs. (102,104) numerically using Monte-
Carlo (Fig. 14c). The formalism reproduces the highest
density of 2d spheres in a triangular lattice at φ ≈ 0.91
for z = 6. For disordered packings one obtains the RCP
volume fraction:

φ2d
rcp = 0.85± 0.01, for z = 4, (105)

and the RLP volume fraction as:

φ2d
rlp = 0.67± 0.01, for z = 3. (106)

We see that the prediction of the frictionless RCP point is
close to the numerical results and the result of the 1RSB
theory φth = 0.8165, while a new prediction of RLP at
the infinite friction limit is obtained.

E. Packing of bidisperse spheres

Polydispersity with a smooth distribution of sizes typ-
ically occurs in industrial particle synthesis and thus af-
fects packings in many applications. Qualitatively, one
expects an increase in packing densities due to size vari-
ations: The smaller particles can fill those voids that are
not accessible by the larger particles leading to more ef-
ficient packing arrangements, which is indeed observed
empirically (Brouwers, 2006; Desmond and Weeks, 2014;
Santiso and Müller, 2002; Sohn and Moreland, 1968).
Simulations have shown that the jamming density in
polydisperse systems depends also on the compression
rate without crystallization (Hermes and Dijkstra, 2010)
and the skewness of the size distribution (Desmond and
Weeks, 2014). Since these issues are important in tech-
nological applications, as for instance the proportioning
of concrete, very efficient phenomenological models have
been developed to predict volume fractions of mixtures of
various types of grains (de Larrard, 1999). For size distri-
butions following a power-law, space-filling packings can
be constructed (Herrmann et al., 1990). On the theoreti-
cal side, a ’granocentric’ model has been shown to repro-
duce the packing characteristics of polydisperse emulsion
droplets (Clusel et al., 2009; Corwin et al., 2010; Jorjadze
et al., 2011; Newhall et al., 2011; Puckett et al., 2011).
Here, the packing generation is modelled as a random
walk in the first coordination shell with only two param-
eters, the available solid angle around each particle and
the ratio of contacts to neighbors, which can both be
calibrated to experimental data.

The simpler case of a bidisperse packing with two
types of spheres with different radii has been investi-
gated in (Clarke and Wiley, 1987; Hopkins et al., 2013;
de Lange Kristiansen et al., 2005; Santiso and Müller,
2002) using simulations. Here, one can generally ob-
serve packing densities that increase from the monodis-
perse value as both the size ratio and concentration of
small spheres is varied. In (Hopkins et al., 2013) me-
chanically stable packings with a large range of densities
0.634 ≤ φ ≤ 0.829 have been generated using a linear
programming algorithm. Interestingly, for a given size
ratio, the density is non-monotonic, exhibiting a peak
at a specific concentration. A theoretical approach that
is able to reproduce the density peak in the bidisperse
case has been developed in (Danisch et al., 2010) based
on the volume ensemble. The key idea is to treat the
spheres of radii R1 < R2 as different species 1 and 2 with
independent statistical properties. If we denote by x1

the fraction of small spheres 1, then x1 = N1/(N1 +N2),
with Ni the number of spheres i in the packing. Likewise,
x2 = 1− x1. The overall packing density is

φ =
V g

W
, V g =

2∑

i=1

xiV
(i)
g (107)
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where V
(i)
g = 4π

3 R
3
i and W is the average volume of a

Voronoi cell as before. The average now includes averag-
ing over the different species, so that

W =

2∑

i=1

xiW i, (108)

W i = V (i)
g + 4π

∫ ∞

Ri

dc c2 P
(i)
> (c, z), i = 1, 2(109)

as a straightforward extension of Eq. (53). The CDF

P
(i)
> (c, z) contains the probability that, for a Voronoi

cell of species i, the boundary is found at a value larger
than c. This probability depends, of course, on both
species. Assuming statistical independence we can in-
troduce a factorization into bulk and contact particles
of both species (Danisch et al., 2010) analogously to the
monodisperse case Eq. (59):

P
(i)
> (c, z) = P

(i1)
B (c)P

(i1)
C (c, z)P

(i2)
B (c)P

(i2)
C (c, z).(110)

Here, P
(ij)
B denotes the CDF due to contributions of bulk

particles of species j to a Voronoi cell of species i. Like-

wise P
(ij)
C refers to the contact particles. We express each

of these terms in analogy to the monodisperse case, i.e.,
Eqs. (63,65),

P
(ij)
B = exp

[
−ρ̃jV ∗ij(c)

]
, (111)

P
(ij)
C = exp

[
−σij(z)S∗ij(c)

]
. (112)

The Voronoi excluded volume and surface, V ∗ij and S∗ij ,
are defined by Eqs. (57,58), where now s(r, ĉ) denotes the
VB between spheres of radii Ri and Rj , as parametrized
by Eq. (22). The particle densities ρ̃j are given by

ρ̃j =
xj

W − V g
, j = 1, 2. (113)

The main challenge is to obtain an expression for the
surface density σij(z). For this, it is first necessary to
distinguish different average contact numbers: zij is the
average number of spheres j in contact with a sphere i.
It follows that the average number of contacts of sphere
i, denoted by zi, is

zi = zi1 + zi2, z =

2∑

i=1

xizi. (114)

By relating the contact numbers zi to the average oc-
cupied surface on sphere i, 〈Socc

i 〉, one can obtain the
following equations to relate zij with z

z1 =
z

x1 + x2
〈Socc

1 〉
〈Socc

2 〉
, z2 =

z

x1
〈Socc

2 〉
〈Socc

1 〉 + x2

. (115)

and

z11 =
z2

1x1

z
, z12 =

z1z2x2

z
, (116)

z21 =
z1z2x1

z
, z22 =

z2
2x2

z
. (117)
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FIG. 15 (Colors online) (a) The occupied surface Eq. (118)
and the Voronoi excluded surface S∗ij . (b) Comparison be-
tween theory and numerical simulations of Hertzian packings
at RCP vs the concentration x of small spheres. Different
symbols denote different ratios R1/R2.

where 〈Socc
i 〉 is approximated as 〈Socc

i 〉 =
∑2
j=1 xjS

occ
ij

with the exact expression for the occupied surface (see
Fig. 15a)

Socc
ij = 2π


1−

√
1−

(
Rj

Ri +Rj

)2

 . (118)

Eqs. (115–117) imply that we can express zij as a func-
tion of z: zij = zij(z). As before, σij can in principle
be obtained from simulations using Eq. (67). However,
a direct simulation of

〈
S∗ij
〉

as a function of z contacting
particles ignores the dependence of the different species
that is not resolved in z. Therefore, σ̃ij is introduced via

σij(z) = σ̃ij(zij(z)). (119)

In turn, we obtain σ̃ij =
〈
S∗ij
〉−1

as a function of zij by
generating configurations around sphere i with the pro-
portions zi1/zi of spheres 1 and zi2/zi of spheres 2.

〈
S∗ij
〉

follows operationally again as the Monte-Carlo average
Eq. (68).

Overall, the packing density of the bi-disperse packing
of spheres can be calculated by solving the following self-
consistent equation for the free volume w = W − V g

w = 4π

2∑

i=1

xi

∫ ∞

Ri

dc c2

× exp



−

2∑

j=1

[xj
w
V ∗ij(c) + σij(z)S

∗
ij(c)

]


 .(120)

We notice that Eq. (120) is the generalization of
Eq. (71) from monodisperse to bidisperse packings.
While the monodisperse self-consistent Eq. (71) admits a
closed analytical solution, the bidisperse Eq. (120) does
not. Thus, we resort to a numerical solution of this equa-
tion, and therefore the equation of state w(z) is obtained
numerically in these cases rather than in closed form as
obtained for monodisperse spheres Eq. (73).

Calculations for all systems (from spheres to non-
spheres, monodisperse or polydisperse and beyond) that
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use the present mean-field theory in the Edwards ensem-
ble will end up with a self-consistent equation for the free
volume of the form Eq. (71) or Eq. (120). However, so
far, the only self-consistent equation that admits a closed
analytical solution is the 3d monodisperse case leading to
Eq. (73). The remaining equations of state for all sys-
tems studied so far are too involved and need to be solved
numerically.

Results of numerical solutions of Eq. (120) are shown
in Fig. 15b demonstrating good agreement with simula-
tion data as well as the predictions of the 1RSB hard-
sphere glasses calculations (Biazzo et al., 2009). We ob-
serve the pronounced peak as a function of the species
concentration x = x1 ∈ [0, 1]. The extension of the the-
ory to higher-order mixtures is straightforward in princi-
ple. The main challenge is to obtain the generalizations
of Eqs. (115,116,117). Determining σ̃ij(zij) from simu-
lations of local packing configurations becomes also an
increasingly complex task.

F. Packing of attractive colloids

Packings of particles with diameters of around 10µm or
smaller enter the domain of colloids and are often dom-
inated by adhesive van der Waals forces in addition to
friction and hard-core interactions. In fact, packings of
adhesive colloidal particles appear in many areas of engi-
neering as well biological systems (Jorjadze et al., 2011;
Marshall and Li, 2014) and exhibit different macroscopic
structural properties compared with non-adhesive pack-
ings of large grains treated so far, where attractive van
der Waals forces are negligible in comparison with grav-
ity. In (Lois et al., 2008) the mechanical response at
the jamming transition has been studied and two second-
order transitions are found in the attractive systems (Lois
et al., 2008): a connectivity percolation transition and a
rigidity percolation transition, where a rigid backbone
forms without floppy modes.

Numerical studies of adhesive granular systems have
found a range of packing fractions as a function of par-
ticle sizes φ ≈ 0.1 − 0.6 (Blum et al., 2006; Kadau and
Herrmann, 2011; Martin and Bordia, 2008; Parteli et al.,
2014; Valverde et al., 2004; Yang et al., 2000). The ef-
fect of varying the force of adhesion has been systemati-
cally investigated in (Chen et al., 2016; Liu et al., 2017,
2015) using a DEM framework specifically developed for
the ballistic deposition of adhesive Brownian soft spheres
with sliding twisting and rolling friction (Marshall and Li,
2014). A dimensionless adhesion parameter Ad, defined
as the ratio between interparticle adhesion work and par-
ticle inertia (Li and Marshall, 2007), can be used to quan-
tify the combined effect of size and deposition velocity.
In the case of Ad < 1, particle inertia dominates the ad-
hesion and frictions exhibiting a broad range of densities
and coordination numbers. At Ad ≈ 1 the isostatic value

z = 4 for infinitely rough spheres is observed, indicating
that weak adhesion has a similar effect on the packing
as strong friction. However, when Ad > 1, an adhesion-
controlled regime is observed with a unique curve in the
z–φ diagram. The lowest packing density achieved nu-
merically is φ = 0.154 with z = 2.25 for Ad ≈ 48. The
lowest density agrees well with the data from a random
ballistic deposition experiment (Blum et al., 2006) and
other DEM simulations (Parteli et al., 2014; Yang et al.,
2000).

An analytical representation of the adhesive equation
of state can be derived within the framework of the mean-
field Edwards volume function Eq. (53), where the CDF
P> is defined by Eq. (55). Assuming the same factor-
ization of the n-point correlation function as in high di-
mensions leads to the approximation Eq. (90), which al-
lows us to relate P> with the structural properties of the
packing expressed in the pair distribution function g2.
We then model g2 by extending the simple form consid-
ered so far for 3d hard-spheres in Eq. (91) in terms of
four distinct contributions following the results of avail-
able simulations of hard-sphere packings and metastable
hard-sphere glasses. We consider:

(i) A delta-peak due to contacting particles (Donev
et al., 2005b; Song et al., 2008; Torquato and Stillinger,
2006);

(ii) A power-law peak as given by Eq. (46) over a range
ε due to near contacting particles (Donev et al., 2005b;
Wyart, 2012);

(iii) A step function due to bulk particles (Song et al.,
2008; Torquato and Stillinger, 2006) mimicking a uniform
density of bulk particles;

(iv) A gap of width b separating bulk and (near) con-
tacting particles. This gap captures the effect of corre-
lations due to adhesion and is assumed to depend on z:
b = b(z). In this way we model the increased porosity at
a given z compared with adhesion-less packings. Overall,
we obtain

g2(r, z) =
z

ρλ
δ(r − 2R) + σ(r − 2R)−νΘ(2R+ ε− r)

+Θ(r − (2R+ b(z))). (121)

For the power law term we assume ν = 0.38 from
(Lerner et al., 2013) and a width of ε = 0.1R, which is ap-
proximately the range over which the peak decreases to
the bulk value unity as observed in (Donev et al., 2005b).
The value σ is then fixed by continuity with the step func-
tion term in the absence of a gap.

Next, we have to determine the gap of width function
b(z) which is the crucial assumption of the theory. b(z)
needs to satisfy a set of constraints that we impose purely
on physical grounds:

(i) b(z) is a smooth monotonically decreasing function
of z. Here, the physical picture is that for small z
(corresponding to looser packings), the gap width is
larger due to the increased porosity of the packing.
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(ii) At the isostatic limit z = 6, the gap disappears,
b(6) = ε, and we expect to recover the frictionless
RCP value, since this value of z represents a maxi-
mally dense disordered packing of spheres. We ob-
tain from Eq. (121) indeed the prediction for φEdw,
Eq. (82), by choosing an appropriate value of λ
and accounting for low dimensional corrections due
to the hard-core excluded volume of the reference
sphere, such that ρ → ρ = 1/(W − V0). This con-
straint thus fixes ρ and λ, as well as one of the
parameters in b(Z).

(iii) In addition, we conjecture the existence of an
asymptotic adhesive loose packing (ALP) at z = 2
and φ = 1/23 which yields b(2) = 1.47 and fixes a
second parameter in b(z). This is motivated by the
fact that φ = 1/2d is the lower bound density of
saturated sphere packings of congruent spheres in d
dimensions for all d (Torquato and Stillinger, 2006).
A saturated packing of congruent spheres of unit di-
ameter satisfies that each point in space lies within a
unit distance from the center of some sphere. More-
over, z = 2 is the lowest possible value for a physi-
cal packing: If z < 2 there are more spheres with a
single contact (i.e., dimers) than with three or more
contacts, which identifies that the ALP point is only
asymptotic.

Clearly, b(z) is a smoothly decreasing function, so
that we can assume, e.g., the simple parametric form
b(z) = c1 + c2e

−c3z, such that one fitting parameter is
left after the two constraints b(6) = ε and b(2) = 1.47
are imposed. Figure 16 highlights that the exponential
decay of b(z) provides an excellent fit to the simulation
data providing the equation of state φ(z) for adhesive
packings. Moreover, the resulting P (c, z) also agrees well
with the empirically measured CDF over a large range of
Ad values (Liu et al., 2015). This means that including
b(z) captures well the essential structural features of the
packing. It is quite intriguing that such a simple modifi-
cation of the non-adhesive theory, motivated on physical
grounds, leads to such good agreement not only in the
low density regime, but also for mid to high densities.

These results highlight that attraction in (spherical)
particles leads to a lower density limit for percolation at
the ALP with φc = 1/23. The equivalent φc in attractive
colloids is observed empirically over a range of densities
φc ≈ 0.1− 0.2 depending on the mechanism for the sup-
pression of phase-separation (Zaccarelli, 2007), e.g., due
to an interrupted liquid-gas phase separation (Lu et al.,
2008b; Trappe et al., 2001). The situation is thus remi-
niscent of the adhesion-less and frictionless range of den-
sities φ ∈ [φth, φGCP] of the J-line (see Sec. V).
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FIG. 16 (Colors online) Plot of high Ad simulation data in
the z–φ plane (Liu et al., 2015). The adhesive continuation
with an exponential b(z) connects the RCP at φEdw and z = 6
with the conjectured adhesive loose packing point (ALP) at
φ = 2−3 and z = 2. The black solid line is the RLP line of
Fig. 12(b).

G. Packing of non-spherical particles

The question of optimizing the density of packings
made of particles of a particular shape is an outstand-
ing scientific problem occupying scientists since the time
of Apollonius of Perga (Andrade et al., 2005; Herrmann
et al., 1990; Thomas, 1941) and Kepler (Kepler, 1611;
Weaire and Aste, 2008), and still of great practical impor-
tance for all industries involved in granular processing.
In addition, the complex structures that result from their
assembly become increasingly important for the design of
new functional materials (Baule and Makse, 2014; Dam-
asceno et al., 2012; Glotzer and Solomon, 2007; Jaeger,
2015).

In the absence of theory, searches for the optimal
random packing of non-spherical shapes have focused
on empirical studies on a case-by-case basis. Table V
presents an overview of the maximal packing densities
for a variety of shapes obtained in simulations, exper-
iments and theory. Recent simulations have found the
densest random packing fraction of, e.g., prolate ellip-
soids at φ ≈ 0.735 (Donev et al., 2004); spherocylin-
ders at φ ≈ 0.772 (Zhao et al., 2012) and 2d dimers at
φ ≈ 0.885 (Schreck et al., 2010). The densest random
tetrahedra packing has been found in simulations with
φ = 0.7858 (Haji-Akbari et al., 2009). More system-
atic investigations of the self-assembly of hard truncated
polyhedra families has been done in (Chen et al., 2014;
Damasceno et al., 2012). The organizing principles of or-
dered packings of Platonic and Archimedean solids and
other convex and non-convex shapes have been investi-
gated in (Torquato and Jiao, 2009, 2012). Interesting
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Object shape Decomposition Effective Voronoi interaction

Sphere

Dimer

Trimer

Spherocylinder

One sphere Two points

Two spheres Four points

Three spheres Six points

Two lines and four pointsN spheres

Ellipsoid

Tetrahedron

Two spheres

Four spheres Six lines, four points, four anti-points

Two lines and four anti-points

a

b

c

d

e

f

g

Cube Six spheres
Twelve lines, eight points,

six anti-points

Irregular polyhedron Unequal spheres Points, lines, anti-points

h

FIG. 17 (Colors online) Table of different shapes and their
VBs (Baule et al., 2013). (a–d) For shapes composed of
spheres, the VB arises due to the effective interaction of the
points at the centres of the spheres. Since spherocylinders
are represented by a dense overlap of spheres, the effective
interaction is that of two lines and four points. (e–h) For
more complicated shapes that would in principle be modelled
by a dense overlap of sphere with different radii, we propose
approximations in terms of intersections of spheres leading to
effective interactions between ‘anti-points’. For both classes
of shapes, the VB follows an exact algorithm leading to ana-
lytical expressions (see Fig. 25).

shapes have been considered also in a systematic way: su-
perballs (Jiao et al., 2010), puffy tetrahedra (Kallus and
Elser, 2011), polygons (Wang et al., 2015) and truncated
vertices (Damasceno et al., 2012; Gantapara et al., 2013).

A caveat of some empirical studies is the strong protocol
dependence of the final close packed state even for the
same shape: recent studies of spherocylinder packings,
e.g., exhibit a large variance depending on the algorithm
used (Abreu et al., 2003; Bargiel, 2008; Jia et al., 2007;
Jiao and Torquato, 2011; Kyrylyuk et al., 2011; Lu et al.,
2010; Williams and Philipse, 2003; Wouterse et al., 2009;
Zhao et al., 2012). A generic theoretical insight is needed
if one wants to search over more extended regions of pa-
rameter space of object shapes.

It is empirically clear that non-spherical shapes can
generally achieve denser maximal packing densities than
spheres. In fact, a conjecture attributed to Ulam
(recorded in the book (Gardner, 2001)) in the context
of regular packings, recently also formulated for ran-
dom packings (Jiao and Torquato, 2011), states that the
sphere is, indeed, the worst packing object among all con-
vex shapes. In (Kallus, 2016) it has been shown for ran-
dom packings that all sufficiently spherical shapes pack
more densely than spheres. However, one should notice
the local character of such a conjecture for random pack-
ings: Onsager already proved that elongated spaghetti-
like thin rods pack randomly much worse than spheres
(Onsager, 1949).

From a numerical point of view, a promising approach
to find the best shape has been put forward by Jaeger
and collaborators (Jaeger, 2015; Miskin and Jaeger, 2013,
2014; Roth and Jaeger, 2016) who used genetic algo-
rithms (GA) to map the possible space of the constitutive
particle shapes. They consider non-spherical composite
particles formed by gluing spherical particles of different
sizes rigidly connected into a polymer-like non-branched
shape. A genetic algorithm starts with a given shape and
perform ‘mutations’ to the constitutive particles until a
desired property, for instance, maximal strength or max-
imal packing fraction is achieved. This reverse engineer-
ing approach can generate novel materials with desired
properties but of limited shapes: within this framework,
the limits to granular materials design are the limits to
computation (Jaeger, 2015), since GA relies heavily on
dynamically simulating (e.g., with MD or MC) the pack-
ings to be optimized. Thus, computational limitations
are expected in more complicated shapes such as tetra-
hedra or irregular polyhedra, in general.

On the theoretical side, there are successful theories of
high density liquids that have been extended to encom-
pass non-spherical particles, such as mode-coupling the-
ory (Götze, 2009) and density functional theory (Hansen-
Goos and Mecke, 2009, 2010; Marechal and Löwen, 2013).
However, they do not apply to the jamming regime. On
the other hand, successful approaches to jamming based
on replica theory so far only apply to spherical particles
(Charbonneau et al., 2017; Parisi and Zamponi, 2010)
(see Sec. V). The difficulty to extend replica theory cal-
culations from spheres to non-spherical particles stems
from the fact that the system is not rotationally invari-
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ant, which adds more degrees of freedom to the descrip-
tion of the cage motion. Replica calculations also rely on
liquid equations of state, which are typically not avail-
able in analytical form for non-spherical particles. These
difficulties can be overcome in principle with numerics,
but this is most likely cumbersome, and has not been ac-
complished so far. On the other hand, the Edwards ap-
proach can be generalized theoretically much more easily
to non-spherical shapes.

The advantage of the mean-field Edwards approach is
that it is based entirely on the geometry of the particles;
its building block is directly the shape of the constitu-
tive particle. Therefore, Edwards ensemble can be ap-
plied in a straightforward way to arbitrary shapes. Such
a generalization, providing a comprehensive framework
to describe packings of non-spherical particles, has re-
cently been developed (Baule et al., 2013). A drawback
of employing a general theoretical approach rather than
direct simulations using, e.g., artificial evolution (Jaeger,
2015), is that current theories are at the mean-field level
and thus only approximate. However, both approaches
can be complementing: A mean-field theory could iden-
tify a reduced region in the space of optimal parameters,
which can then be tackled with more detail using more
focused reverse engineering techniques.

As discussed in the previous sections, the central quan-
tity to calculate is the average Voronoi volume W as a
function of z. In the case of frictionless spheres, z is fixed
by isostaticity providing the prediction Eq. (82) for RCP.
The situation is somewhat more complicated for friction-
less non-spherical particles: Here, both z and W depend
independently on the particle shape. For simplicity, we
assume rotationally symmetric particles in the following,
where deviations from the sphere can be parametrized
by a single parameter, e.g., the aspect ratio α measuring
length over width. As a consequence, if we are inter-
ested in obtaining the function φ(α) at RCP, we need to
combine the dependencies Wα(z) and z(α):

φ(α) =
V0

Wα(z(α))
. (122)

We discuss next how to obtain Wα(z) by extending the
framework of the coarse-grained Voronoi volume to non-
spherical particles. A quantitative approach to describe
z(α) is discussed in Sec. IV.G.3, which requires a quanti-
tative evaluation of the occurrence of degenerate config-
urations.

1. Coarse-grained Voronoi volume of non-spherical shapes

The key for the mean-field approach to the statistical
mechanical ensemble based on the coarse-grained volume
function is Eq. (52), which replaces the exact global min-
imization to obtain the Voronoi boundary li(ĉ) in the

direction ĉ by the pdf p(c, z). For a general particle-
shape the cut-off c∗ describes just the particle surface
parametrized by ĉ. Transforming Eq. (52) to the CDF
P> using p(c, z) = − d

dcP>(c, z) leads to the volume in-
tegral (Baule et al., 2013)

W (z) =

∫
dcP>(c, z), (123)

where P> is again interpreted as the probability that
N − 1 particles are outside a volume Ω centered at c,
since otherwise they would contribute a shorter VB. Ω
is in principle defined as in Eq. (54), but is no longer
a spherical volume due to the non-spherical interactions
manifest in the parametrization of the VB. The VB now
also depends on the relative orientation t̂ of the two par-
ticles suggesting the definition:

Ω(c, t̂) =

∫
drΘ(c− s(r, t̂, ĉ))Θ(s(r, t̂, ĉ)), (124)

for a fixed relative orientation t̂.
So far, the description of W is exact within the sta-

tistical mechanical approach. In order to solve the for-
malism, we introduce the following mean-field minimal
model of the translational and orientational correlations
in the packing (Baule et al., 2013):

1. Following Onsager (Onsager, 1949), we treat par-
ticles of different orientations as belonging to dif-
ferent species. This is the key assumption to treat
orientational correlations within a mean-field ap-
proach. Thus, the problem for non-spherical parti-
cles can be mapped to that of polydisperse spheres
for which P> factorizes into the contributions of the
different radii (see Sec. IV.E).

2. Translational correlations are treated as in the
spherical case for high dimensions (see Sec. IV.C).
Here, the Kirkwood superposition approximation
leads to a factorization of the n-point correlation
function into a product of pair-correlation func-
tions, Eq. (89). Including also the factorization of
orientations provides the form

P>(c, z) = exp

{
−ρ
∫

dt̂

∫

Ω(c,̂t)

dr g2(r, t̂)

}
. (125)

3. The pair correlation function is modelled by a delta
function plus step function as for spheres, Eq. (91).
This form captures the contacting particles and
treats the remaining particles as an ideal gas-like
background:

g2(r, t̂) =
1

4π

[
σ(z)

ρ
δ
(
r − r∗(r̂, t̂)

)

+Θ(r − r∗(r̂, t̂))
]
. (126)
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Shape φmax simulation φmax experiment φmax theory

disks (2d) 0.826 (Atkinson et al., 2014) 0.85 (Jin et al., 2014)

0.874 (Parisi and Zamponi, 2010)

0.834 (Tian et al., 2015)

Sphere 0.645 (Skoge et al., 2006) 0.64 (Bernal and Mason, 1960) 0.634 (Song et al., 2008)

0.68 (Parisi and Zamponi, 2010)

M&M candy 0.665 (Donev et al., 2004)

Dimer 0.703 (Faure et al., 2009) 0.707 (Baule et al., 2013)

Ellipse (2d) 0.895 (Delaney et al., 2005)

Oblate ellipsoid 0.707 (Donev et al., 2004)

Prolate ellipsoid 0.716 (Donev et al., 2004)

Spherocylinder 0.722 (Zhao et al., 2012) 0.731 (Baule et al., 2013)

Lens-shaped particle 0.736 (Baule et al., 2013)

Tetrahedron 0.7858 (Haji-Akbari et al., 2009) 0.76 (Jaoshvili et al., 2010)

Cube 0.67 (Baker and Kudrolli, 2010)

Octahedron 0.697 (Jiao and Torquato, 2011) 0.64 (Baker and Kudrolli, 2010)

Dodecahedron 0.716 (Jiao and Torquato, 2011) 0.63 (Baker and Kudrolli, 2010)

Icosahedron 0.707 (Jiao and Torquato, 2011) 0.59 (Baker and Kudrolli, 2010)

General ellipsoid 0.735 (Donev et al., 2004) 0.74 (Man et al., 2005)

Superellipsoid 0.758 (Delaney et al., 2010)

Superball 0.674 (Jiao et al., 2010)

Trimer 0.729 (Roth and Jaeger, 2016)

TABLE V Overview of maximal packing fractions φmax for a selection of regular shapes in disordered packings obtained with
a variety of different packing protocols. Note that the φmax value is achieved for the aspect ratio, where φ is maximal, so every
value is at a different aspect ratio.

Here, the prefactor 1/4π describes the density of
orientations, which we assume isotropic. The con-
tact radius r∗ denotes the value of r in a direction r̂
for which two particles are in contact without over-
lap. In the case of equal spheres the contact radius
is simply r∗(r̂, t̂) = 2R. For non-spherical objects,
r∗ depends on the object shape and the relative
orientation.

Combining Eq. (126) with Eq. (125) recovers the prod-
uct form of the CDF P>:

P>(c, z) = exp
{
−ρ V ∗(c)− σ(z)S

∗
(c)
}
, (127)

where V
∗

and S
∗

are now orientationally averaged ex-
cluded volume and surface: V

∗
= 〈Ω− Ω ∩ Vex〉t̂ and

S
∗

= 〈∂Vex ∩ Ω〉t̂ (compare with Eqs. (57,58)). The ori-
entational average is defined as 〈...〉t̂ = 1

4π

∮
...dt̂. Substi-

tuting Eq. (127) into Eq. (123) leads to a self-consistent
equation for W due to the dependence of ρ on W . In
order to be consistent with the spherical limit, we use
ρ→ ρf = 1/(W −V0) due to the low dimensional correc-
tions discussed in Sec. IV.A.

In accordance with the treatment of the surface den-
sity term σ(z) for 3d spheres, we obtain σ(z) by simu-
lating random local configurations of z contacting par-
ticles around a reference particle and determining the

average available free surface. This surface is given by
S
∗
(cm), where cm is the minimal contributed VB among

the z contacts in the direction ĉ. Averaging over many
realizations with a uniform distribution of orientations
and averaging also over all directions ĉ provides the
surface density in the form of a Monte-Carlo average

σ(z) =
〈〈
S
∗
(cm)

〉〉−1

ĉ
. In this way we can only cal-

culate σ(z) for integer values of z. For fractional z that
are predicted from the evaluation of degenerate configu-
rations in the next section, we use a linear interpolation
to obtain W (z).

The theory developed so far captures the effect of par-
ticle shape on the average Voronoi volume as a function
of a given z. The particle shape is taken into account in
three quantities: (i) c∗(ĉ), parametrizing the surface of
the shape; (ii) s(r, t̂, ĉ), parametrizing the VB between
two particles of relative position r and orientation t̂; and
(iii) the contact radius r∗(r̂, t̂). In the spherical limit,
all these quantities simplify considerably and the spher-
ical theory is recovered, which is analytically solvable as
discussed in Sec. IV.A. For non-spherical shapes, the VB
Point (ii) above is in general not known in closed form.
In the next section, we discuss a class of shapes for which
the VB can be expressed in exact analytical form. For
these shapes, the theory can be applied in a relatively
straightforward way, solving V

∗
and S

∗
numerically and
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providing also W (z) in numerical form. In Sec. IV.G.3
we then discuss the missing part in the theory so far, the
dependence of z itself on the particle shape.

2. Parametrization of non-spherical shapes

In Sec. II.D.1 the precise definition of the VB between
two particles has been given. We have seen that the VB
between two equal spheres is identical to the VB between
two points and is a flat plane perpendicular to the sep-
aration vector. Finding the VB for more complicated
shapes is a challenging problem in computational geome-
try, which is typically only solved numerically (Boissonat
et al., 2006). Already for ellipsoids, one of the simplest
non-spherical shape, there is no exact expression for the
VB. We nevertheless approach this problem analytically
by considering a decomposition of the shape into over-
lapping spheres (see Fig. 17a–d). Such a decomposition
is trivial for dimers, trimers, and n–mers, where the VB
arises effectively due to the interaction of four, six and 2n
points. It also applies exactly, e.g., to spherocylinders,
which can be represented as dense overlaps of spheres. In
this case, the VB arises due to the effective interaction
of two lines and four points.

The Voronoi decomposition used for n–mers and sphe-
rocylinders can be generalized to arbitrary shapes by us-
ing a dense filling of spheres with unequal radii (Phillips
et al., 2012). However, even though this approach is
algorithmically well defined, it may become practically
tedious for dense unions of polydisperse spheres. An
alternative approach that is analytically tractable has
been proposed in (Baule et al., 2013): Convex shapes
are approximated by intersections of a finite number of
spheres. An oblate ellipsoid, e.g., is approximated by a
lens-shaped particle, which consists of the intersection of
two spheres (Cinacchi and Torquato, 2015). Likewise, an
intersection of four spheres can be considered an approx-
imation to a tetrahedra, and six spheres that of a cube
(see Fig. 17e–h). The main insight is that the effective
Voronoi interaction of these shapes is governed by a sym-
metry: Points map to ’anti-points’ (since the interactions
between spheres is inverted). The VB of ellipsoid-like ob-
jects arises from the interaction between four anti-points
and four points in two dimensions or lines in three dimen-
sions, and thus falls into the same class as spherocylin-
ders. The VB between two tetrahedra is then due to the
interaction between the vertices (leading to four point
interactions), the edges (leading to six line interactions),
and the faces (leading to four anti-point interactions).
For cubes the effective interaction is that of twelve lines,
eight points and six anti-points. This approach can be
generalized to arbitrary polyhedra.

With such a decomposition into overlapping and in-
tersecting spheres, we can study a large space of parti-
cle shapes using Edwards ensemble. The resulting VBs
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FIG. 18 (Colors online) Illustration of a degenerate configu-
ration of a spherocylinder. Vectors r1, ..., r4 indicate contacts
on the spherical caps. The normal vector projects the contact
forces f1, ..., f4 onto the centres of the spherical caps. Due to
the symmetry of the two centres, the respective force arms
are equal and force balance automatically implies torque bal-
ance. The force and torque balance equations (2,3) are thus
degenerate.

can be parametrized analytically following an exact al-
gorithm (Baule et al., 2013) (see appendix C).

3. Dependence of coordination number on particle shape

As discussed in Sec. II.A the physical conditions of
mechanical stability and assuming minimal correlations
motivate the isostatic conjecture Eq. (35) z = 2df in
the frictionless case. While isostaticity is well-satisfied
for spheres, packings of non-spherical objects are in gen-
eral hypoconstrained with z < 2df , where z(α) increases
smoothly from the spherical value for α > 1 (Baule et al.,
2013; Donev et al., 2004, 2007; Wouterse et al., 2009).
The fact that these packings are still in a mechanically
stable state can be understood in terms of the occur-
rence of stable degenerate configurations, which have so
far been shown to occur in packings of ellipses, ellipsoids,
dimers, spherocylinders, and lens-shaped particles (Baule
et al., 2013; Chaikin et al., 2006; Donev et al., 2007). In
the case of ellipses, one needs in general four contacts
to fix (jam) the ellipse locally such that no displacement
is possible (Alexander, 1998). However, it is possible
to construct configurations, where only three contacts
are sufficient, namely when the normal vectors from the
points of contact meet at the same point and the cur-
vature on at least one of the contacts is flat enough to
prevent rotations (Chaikin et al., 2006). Such a config-
uration is degenerate since force balance automatically
implies torque balance such that the force and torque
balance equations (2–3) are no longer linearly indepen-
dent. Despite the fact that these configurations should
have measure zero in the space of all possible configu-
rations, they are believed to appear more frequently in
simulation algorithms such as the LS algorithm (Donev
et al., 2007).

For spherocylinders, the degeneracy appears due to the
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spherical caps, which project the normal forces onto the
end points of the central line of the cylindrical part. If all
of the contacts are on the spherical caps, which will fre-
quently occur for small aspect ratios, force balance will
then always imply torque balance, since the force arms
of the two points are identical (see Fig. 18). A similar ar-
gument applies to dimers and lens-shaped particles, and
can possibly be extended to other smooth shapes. In
the case of spherocylinders, a degeneracy also appears
for very large aspect ratios, because then all contacts
will predominantly be on the cylindrical part. As a con-
sequence, the normal vectors are all coplanar and the
number of linear independent force and torque balance
equations is reduced by one predicting the contact num-
ber z → 8 as α → ∞, which is indeed observed in simu-
lations (Wouterse et al., 2009; Zhao et al., 2012).

A quantitative method to estimate the probability of
these degenerate configurations is based on the assump-
tion that a particle is always found in an orientation such
that the redundancy in the mechanical equilibrium con-
ditions is maximal (Baule et al., 2013). This condition
allows us to associate the number of linearly indepen-
dent equations involved in mechanical equilibrium with
the set of contact directions. Averaging over the possible
sets of contact directions then yields the average effective
number of degrees of freedom d̃f(α), from which the co-
ordination number follows as z(α) = 2d̃f(α) (Baule et al.,
2013). This approach recovers the continuous transition
of z(α) from the isostatic spherical value z = 6 at α = 1,
to the isostatic value z = 10, for aspect ratios above
≈ 1.5 observed in ellipsoids of revolution, spherocylin-
ders, dimers, and lens-shaped particles, Fig. 19a. The
trend compares well to known data for ellipsoids (Donev
et al., 2004) and spherocylinders (Wouterse et al., 2009;
Zhao et al., 2012).

Combining these results on z(α) with the results of
Sec. IV.G.1 on the average Voronoi volume Wα leads
to a close theoretical prediction for the packing density
φ(α) = V0/Wα(z(α)) which does not contain any ad-
justable parameters. Figure 19b presents the results for
dimers, spherocylinders and lenses showing that the the-
ory is an upper bound of the maximal densities mea-
sured in simulations. The theory predicts the maxi-
mum density of spherocylinders at α = 1.3 with a den-
sity φmax = 0.731 and that of dimers at α = 1.3 with
φmax = 0.707. For lens-shaped particles a density of
φmax = 0.736 is obtained for α = 0.8, representing the
densest random packing of an axisymmetric shape known
so far. The theoretical predictions of φ(α) compare quite
well with the available numerical data for spherocylinders
and dimers (Figs. 19c, d). The numerical results are ob-
tained with a range of different packing algorithms and
show a large variance in terms of the maximal packing
densities obtained, for the same shape. The appearance
of such a range of densities is understood in detail for
the case of spheres, see the discussion in Sec. III.A.4. As

for spheres, the single RCP value calculated within the
Edwards ensemble for a given shape is interpreted as a
maximum entropy value.

By plotting z against φ parametrically as a function
of α, we can also include our results in the z–φ phase
diagram, which is thus extended from spheres to non-
spherical particles and discussed next. By plotting (φ, z)
the apparent cusp-like singularity at the spherical point
α = 1 in z(α) and φ(α) (Figs. 19a, b) disappears and the
spherical RCP point becomes as any other point in the
phase diagram.

H. Towards an Edwards phase diagram for all jammed
matter

The results from Secs. IV.B, IV.F, and IV.G.3 are com-
bined in a phase diagram of jammed matter that can
guide our understanding of how random arrangements of
particles fill space as shown in Fig. 20. The representa-
tion in the z–φ plane is in a way the most natural choice,
since both φ and z are macroscopic observables that char-
acterize the thermodynamic state of the packing. They
can also be measured in simulations in a straightforward
way. Although Fig. 20 is far from complete, we observe
clear classifications of packings based on the symmetry
and surface properties of the constituents. Horizontal
phase boundaries are identified by the isostatic condition
for frictionless particles, predicting z = 6 for isotropic
shapes and z = 10 (z = 12) for rotationally symmetric
(fully asymmetric) shapes respectively. The frictionless
RCP point at φEdw = 0.634... and z = 6 plays a promi-
nent role in the phase diagram, despite that it contracts
the J-line. It splits up (although in a continuous man-
ner, except for ordering) the equation of state into four
different branches governed by friction, shape, adhesion,
and order, as follows:

Frictional branch. The infinite compactivity RLP
branch connects the RCP point (0.634, 6) with the min-
imal RLP point at (0.536, 4). This branch is the upper
limit of the triangle of mechanically stable disordered
sphere packings depicted in the phase diagram for 3d
monodisperse spheres in Fig. 12. The RLP branch is
parametrized by varying the friction µ and thus z in the
equation of state (84).

Non-spherical branch. Surprisingly, we find that both
dimer and spherocylinder packings appear as smooth
continuations of spherical packings. The analytic form
of this continuation from the spherical random branch
can be derived (blue dashed line in Fig. 20) by solving
the self-consistent equation (123) perturbatively for small
aspect ratios (Baule et al., 2013).

A comparison of our theoretical results with empirical
data for a large variety of shapes indicates that the ana-
lytic continuation provides an upper bound of density on
the z–φ phase diagram for a fixed z. Maximally dense
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FIG. 19 (Colors online) Theoretical predictions for packings of non-spherical particles (Baule et al., 2013). (a) The variation
z(α) obtained by evaluating the occurrence of degenerate configurations for dimers, spherocylinders, ellipsoids of revolution,
and lens-shaped particles. A smooth increase is obtained in agreement with simulation data. For spherocylinders, z decreases
to the value 8 as α→∞. (b) Combining z(α) with the results on Wα from the volume ensemble leads to theoretical predictions
for φ(α) exhibiting a density peak for dimers, spherocylinders, and lens-shaped particles. Results on φmax for the three shapes
from simulations are indicated by symbols. The theory captures well both the location of the peak and the maximum density.
(c) Detailed comparison of theory and simulations for spherocylinders. The theoretical peak is slightly shifted to the left and
more pronounced than in the empirical data. (d) Detailed comparison of theory and simulations for dimers showing excellent
agreement.

disordered packings appear to the left of this boundary,
while the packings to the right of it are partially ordered.
We observe that the maximally dense packings of dimers,
spherocylinders, lens-shaped particles and tetrahedra all
lie surprisingly close to the analytic continuation of RCP.
Whether there is any deeper geometrical meaning to this
remains an open question. Recent exact local expansions
from the spherical RCP point to arbitrary shapes agree
very well with our results and may shed further light on
this question (Kallus, 2016). We also notice that the fric-
tional and non-spherical branches are continuous at the
spherical RCP point suggesting that a variation in fric-
tion might be analogous to varying shape in the phase
diagram.

Adhesive branch. The non-spherical branch can also
be continued into the adhesive branch of spheres, which
splits off at RCP. The adhesive branch describes the uni-
versal high adhesion regime for Ad > 1 reaching the ad-

hesive loose packing (ALP) point at φ = 1/23 and z = 2
(see Sec. IV.F).

Spherical ordered branch. As discussed in Sec. III.A.4,
the RCP point has been associated with the freezing
point of a first order phase transition between a fully
disordered packing of spheres and the crystalline FCC
phase (Jin and Makse, 2010; Radin, 2008). The signature
of this disorder-order transition is a discontinuity in the
entropy density of jammed configurations as a function
of the compactivity. Experiments on hard sphere pack-
ings indeed confirm the first order transition scenario,
observing the onset of crystallization at φf ≈ 0.64 at the
end of the frictional branch, as well as the coexistence
line (Francois et al., 2013; Hanifpour et al., 2015, 2014).
The spherical ordered branch provides another boundary,
which separates tetrahedra from all other shapes: Tetra-
hedra are the only shape that pack in a disordered way
denser than spheres in a FCC crystal.
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FIG. 20 (Colors online) Unifying phase diagram in the z–φ plane resulting from the Edwards volume ensemble theory. Theo-
retical results on the equations of state for spheres with and without adhesion and dimers/spherocylinders are plotted together
with empirical results on maximal packing densities for non-spherical shapes from the literature (where z and φ have been
determined in the same simulation). Different phases are identified by the symmetry of the constituents. Different equations
of state due to friction, adhesion, shape, and (partial) order all come together at the RCP point. Indicated are the frictional
branch (Song et al., 2008), spherical ordered branch (Jin and Makse, 2010), non-spherical branch (Baule et al., 2013), and
adhesive branch (Liu et al., 2015).

The picture that emerges from this phase diagram is
that spherical packings can be generated on the frictional
branch between the RLP and RCP limits by variation of
the inter-particle friction and along the adhesion branch
by varying interparticle attraction. Beyond RCP, these
two lines can be continued smoothly by deforming the
sphere into elongated shapes. The ordered branch does
not connect smoothly to any of these branches, instead
appears through a first order phase transition with a co-
existence regime. It suggests that introducing order is
a more drastic modification than modifying the particle
interactions due to geometry or surface frictional prop-
erties. This distinction is similar to the one between dis-
continuous first and continuous higher-order phase tran-
sitions.

Overall, it seems that the central importance histori-
cally given to the spherical RCP point may not be justi-
fied. In the whole share of things, the spherical point ap-
pears as any other inconsequential point in a continuous
variation of jammed states driven by friction, attraction
or shape. It is as though each jammed state (ranging
from spherical to dimers, trimers, polymers, spherocylin-
ders, ellipsoids, tetrahedra and cubes, from frictionless to

frictional and adhesive grains) carries the features of one
great single organizing principle in which all the jammed
states organize, too; so that everything links to every-
thing else, moved by one organizing idea which is the uni-
versal physical principle in nature (Schopenhauer, 1974).

Such an organizing principle is captured by the phase
diagram in Fig. 20 where the volume fraction as a func-
tion of α for non-sperical particles appears as an analyti-
cal continuation of the equation of state for the spherical
particles. It is as though the sphere system with friction
can be made analogous to a non-spherical system without
friction by following the continuation branch. Likewise,
the RCP point bifurcates into other equations of state fol-
lowing the appearance of adhesion between particles as
seen in Fig. 20. We may conjecture that all these pack-
ings with different interactions (from hard-spheres to at-
traction and friction) and different shapes (from spheres
to ellipsoids, etc.) can be made part of an organizing
principle embodied in the statistical mechanical laws.
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V. JAMMING SATISFACTION PROBLEM, JSP

We close our review by providing a novel understand-
ing of the jamming criticality under the Edwards ensem-
ble as the phase transition between the satisfiable and the
unsatisfiable phases of the Jamming Satisfaction Prob-
lem. At the very end we suggest a unifying view of the
Edwards ensemble of grains with the statistical mechan-
ics of spin-glasses.

As we explained in Sec. II.A, a packing can be de-
scribed as an ensemble of particles with given positions
and orientations, satisfying a set of geometrical and me-
chanical constraints. As such, it is an instance of a con-
straint satisfaction problem: the Jamming Satisfaction
Problem (JSP). Solving the JSP, in general, is a very
complicated task, and one needs to resort to some ap-
proximations. The first main approximation that we ap-
plied across this review consisted in decoupling the geo-
metrical problem of determining the contact network of
the packing from the mechanical problem of finding the
force distribution. Thus, in Sec. IV we developed the
Edwards volume ensemble that considers in detail the
volume ensemble, but does not directly consider the full
force ensemble, which is only taken into account by the
global isostatic constraint on the average coordination
number establishing force balance.

Below, we consider another reduced JSP where one
now fixes the geometry of the packing considering it as
a random graph (thus, fixing the volume ensemble), and
then considering the full force ensemble on these random
graphs to find the force distribution (Bo et al., 2014).
An ensemble average over all possible random graphs
consistent with prescribed (local) conditions of jamming
and excluded volume on the positions of neighbouring
particles is performed to obtain the force distribution.
Such a reduced JSP is therefore amenable to be solved
for sparse networks by the cavity method from spin-glass
theory (Mézard and Montanari, 2009; Mézard and Parisi,
2001), where one considers the geometric configuration of
the particles in the packing as fixed, and then finds the
force distribution (Bo et al., 2014).

This force distribution is nothing but the uniform Ed-
wards’ measure Θjam over all possible solutions of the
JSP Eq. (10) where the hard-core constraint is relaxed,
being automatically satisfied because we are considering
the contact network fixed. To emphasize the dependence
of Θjam solely on the force configuration {f} for a given
realization of the contact network {d}, we use the nota-
tion Θjam({f}|{d}) = P ({f}), with the normalization or
partition function Z is the number of solutions of this
JSP. The important point is that if Z ≥ 1 then there
exists a solution to the JSP, i.e., it is satisfiable (SAT).
Conversely, if Z < 1 there are no solutions to the JSP,
i.e., it is unsatisfiable (UNSAT) (Kirkpatrick and Selman,
1994).

The SAT/UNSAT threshold of the JSP is marked by

the coordination number zmin
c (µ) that separates the re-

gion where solutions do exist (i.e. where Z > 1) from
the region without solutions (where Z < 1), corre-
sponding to an underdetermined/overdetermined set of
equations, respectively (Bo et al., 2014). In the limit-
ing case of frictionless particles, zmin

c (µ) should be com-
pared with the naive Maxwell counting isostatic condi-
tion: zmin

c (µ = 0) = 2df , although the JSP takes into
account the full set of constraints, Eqs. (10), rather than
only force balance as in Maxwell counting. The JSP thus
extends this naive counting to the full set of constraints
including friction µ. A jammed isostatic assembly of par-
ticles lies exactly on the edge between these two phases,
i.e., where a solution to the JSP first appears as one in-
creases the average coordination number z(µ). Figure 23
shows the average coordination number zmin

c (µ) at the
jamming transition as a function of the friction coeffi-
cient µ in a 2d sphere packing, obtained by solving the
JSP through the cavity method as explained next (Bo
et al., 2014). Results are consistent with existing numer-
ical simulations (Kasahara and Nakanishi, 2004; Makse
et al., 2000; Papanikolaou et al., 2013; Shen et al., 2014;
Shundyak et al., 2007; Silbert, 2010; Silbert et al., 2002a;
Song et al., 2008).

A. Cavity approach to JSP

Solving the JSP amounts to compute the single force
distributions P (f ia) at the contacts a’s of the particle
i’s. However, calculating these single force distributions
P (f ia) from the joint distribution P ({f}) Eq. (10) is still a
very demanding computational task, which requires some
additional mean-field approximations to be solved.

There are two preferred mean-field theories (both of
infinite dimensional nature): the first one is the in-
finite range model, which assumes that each particle
is in contact with every other particle in the packing.
The archetypical model is the Sherrington-Kirkpatrick
(SK) model of fully connected spin-glasses (Sherring-
ton and Kirkpatrick, 1975) which has been adapted to
the hard-sphere case in (Parisi and Zamponi, 2010) (see
Secs. III.A.4). As a result of this approximation scheme,
the real finite dimensional contact network Fig. 21a is
substituted by a fully-connected network of possible in-
teractions, i.e., a complete graph as shown in Fig. 21b.
The solution of such a model is possible since, in a com-
plete graph, each interaction becomes very weak, ren-
dering a fully connected model into a weakly connected
system that can be solved exactly under the hierarchy of
replica symmetry breaking schemes (Mézard and Monta-
nari, 2009; Parisi and Zamponi, 2010). A simpler version
than the SK model, yet showing all the phenomenology of
jamming, is a model adapted from machine learning; the
perceptron recently studied in (Franz and Parisi, 2016;
Franz et al., 2015).
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FIG. 21 (a) A real finite-dimensional packing is composed of
strongly correlated force chains and geometrical loops at short
scale (image reprinted with permission from the Behringer
Group, Duke University). However, state-of-the-art theo-
retical approaches to describe this correlated structure rely
upon mean-field infinite-dimensional approximate treatments
of such a packing as a: (b) Fully-connected packing where
every single particle interacts with any other particle in the
packing; the real interaction network is approximated by a
complete graph, i.e., each node is connected with all other
nodes as shown for one of them. (c) Locally-tree like packing
where the real network is approximated by a sparse random
graph that locally looks like a tree structure with no loops, i.e.,
loops in the network are neglected, except at relatively large
scales that diverge with system size, although very slowly as
` ∼ lnN .

A second mean-field theory of choice consists in ap-
proximating the contact network by a sparse random
graph (Mézard and Parisi, 2001), which allows one to
preserve an essential property of real finite dimensional
packings: the finite coordination number z. The sparse
random graph scheme assumes that the local contact net-
work around each particle can be approximated by a tree-
like structure, i.e. it neglects the strong local correlations
of loops and force chains of a real packing Fig. 21a by a
locally tree-like structure, Fig. 21c. Under this approxi-
mation the JSP can be solved by a method known as cav-
ity method (Mézard and Montanari, 2009; Mézard and
Parisi, 2001), which we explain next.

It should be noticed that, although the cavity approach
is a mean field theory valid for infinite dimensions, a di-
mensional dependence appears in the non-overlap condi-
tion in the definition of the network ensemble, see (Bo
et al., 2014) for details. The crucial quantity to con-
sider in the cavity method is not the single force distri-
bution itself P (f ia), but a modified one, called the cavity
force distribution and denoted by Pi→a(f ia). Physically,
Pi→a(f ia) is the probability distribution of the force f ia at
the contact a in a modified packing where the particle j
touching the particle i at the contact a has been removed
(from where the name cavity derives). The rationale to

FIG. 22 Calculation of the cavity force distribution Pi→a.
First particle j (dashed contour) is virtually removed from the
packing. Then Pi→a for particle i is computed by convoluting
the distributions Pk→b of the neighboring particles k with
the local mechanical constraint χi enforcing force and torque
balances.

consider Pi→a(f ia) instead of the “true” force distribution
P (f ia) is that for the cavity distributions it is possible to
derive a set of self-consistent equations if one neglects
the correlation between Pi→a(f ia) and Pj→a(f ja) (hence
the need of a tree-like network) (Bo et al., 2014).

For example, the cavity equation for Pi→a(f ia) can be
obtained by simply convoluting the cavity force distribu-
tions Pk→b(fkb ) of the particles k 6= j neighbors of particle
i with the local mechanical constraint χi, as depicted in
Fig. 22, and mathematically expressed as follows:

Pi→a(f ia) ∝
∫ ∏

b∈∂i\a
dfkb χi

∏

k∈∂b\i
Pk→b(f

k
b ), (128)

where the symbol ∝ implies a normalization factor, and
the mechanical constraint χi on particle i is given by:

χi

(
{f ia}a∈∂i

)
= δ

(∑

a∈∂i
f ia

)
δ

(∑

a∈∂i
dia × f ia

)

×
∏

a∈∂i
θ
(
µf ia,n − |f ia,τ |

)
θ
(
−dia · f ia

)
.

(129)

Notice that the contact directions {dia} are kept fixed:
they represent the ”quenched” disorder introduced by the
underlying contact network, which is kept fixed.

Once the set of cavity equations (128) has been
solved— e.g. by iteration under the Replica Symmetric
(RS) assumption (Bo et al., 2014)— one can reconstruct
back the original force distribution at contact a by sim-
ply multiplying the cavity force distributions Pi→a(f ia)
and Pj→a(f ja) coming from the two particles i and j in
contact at a:

P (f ia) ∝ Pi→a(f ia)Pj→a(f ja). (130)
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The result shows an exponential decay at large forces
and a non-zero value for P (f) at f = 0, i.e., it gives an
exponent at the RS level

θRS = 0 (131)

for the small force scaling P (f) ∼ fθ, Eq. (48). This last
prediction is inconsistent with simulation results, which
find a nonzero value of the exponent θ in the interval
0.2 ≤ θ ≤ 0.5. It should be noted that Eq. (131) is
obtained exactly at the thermodynamic limit, so no finite
size effects are expected.

The discrepancy could be in principle due to the abun-
dance of short loops in the real finite-dimensional contact
network that are neglected by the locally tree-like con-
tact network structure considered by the cavity method.
However, it is known that the fraction of short force loops
decreases with dimension at jamming— a results valid
for any random network in infinite dimensions— yet, the
non-zero weak force power-law exponent is obtained in
the high dimensional calculations in the fully connected
case (Charbonneau et al., 2012). In this case, the com-
plexity lost by the consideration of a uniform fully con-
nected network is somehow overcome by the fractal com-
plexity provided by the fullRSB solution, which in this
case, gives rise to the concomitant non-zero small-force
exponent. Whether a zero exponent result is the byprod-
uct of the cavity calculation being done at the RS level
or of the absence of loops in the structure is to be deter-
mined.

A similar situation appears in the replica approach to
the problem: The original 1RSB calculation under the
replica approach of the force distribution for hard sphere
glasses done in (Parisi and Zamponi, 2010) led to a trivial
scaling

θ1RSB = 0, (132)

while the non-zero exponent was only obtained when the
full RSB calculation was performed (Charbonneau et al.,
2014b)

θfullRSB = 0.42... (133)

It should be noticed, though, that 1RSB level calcula-
tions and above are substantially more difficult to per-
form with the cavity method than with replicas (e.g., no
calculation exists above 1RSB with the cavity method
for any model, although it has recently been conjectured
how the cavity method could be used to describe the full
RSB scenario (Parisi, 2017)).

Despite these discrepancies, the main result of the cav-
ity approach is the detection of the SAT/UNSAT tran-
sition of the JSP for sphere packings with arbitrary fric-
tion coefficient, and a lower bound estimate of the critical
coordination number zmin

c (µ) at the jamming transition
as a function of the friction coefficient µ, as shown in
Fig. 23. Moreover, the cavity method seems a promising
way to study JSPs for packings with particles of arbitrary
shapes, which are difficult to perform with replicas.

FIG. 23 Linear-log plot of average coordination number
zmin
c (µ) at the jamming transition as a function of the friction

coefficient µ in 2-D sphere packing calculated with the cav-
ity method. The curve zmin

c (µ) separates the SAT/UNSAT
phases of jamming. For z > zmin

c (µ), the force balance equa-
tions are satisfied while they are not when z < zmin

c (µ).
At the transition zmin

c (µ) for a given µ a jammed critical
state exists separating the SAT from the UNSAT phases.
zmin
c (µ) shows a monotonic decrease with increasing µ from

the isostatic Maxwell estimation zmin
c (µ = 0) = 2D = 4 to

zmin
c (µ = ∞) ≥ D + 1 = 3. Error bar indicates the range

from the largest zmin
c (µ) having no solution to the smallest

zmin
c (µ) having solution. Data points represents the mean of

the range. (Data reprinted from (Bo et al., 2014)).

B. Edwards uniform measure hypothesis in the
Edwards-Anderson spin-glass model

The main goal of this section is to investigate Edwards’
conjecture of equiprobable jammed states in the spin-
glass model first introduced by Edwards together with
Anderson (Edwards and Anderson, 1975), thus, bring-
ing together two of the most significance contributions
of Edwards: spin-glasses (Edwards and Anderson, 1975)
and granular matter (Edwards and Oakeshott, 1989). We
leverage some rigorous results (Newman and Stein, 1999)
to understand what is effectively right and what may
go wrong with that hypothesis by precisely stating it in
terms of metastable states in spin-glasses and jamming.
We will see how this definition of metastable jammed
states leads to the most precise test so far of the Ed-
wards uniform measure hypothesis in the exactly solvable
SK model (Sherrington and Kirkpatrick, 1975), which we
propose to perform in Sec. V.C.

The Ising spin-glass on the d-dimensional cubic lat-
tice Zd, also known as the Edwards-Anderson model, is
described by the following Hamiltonian (Edwards and
Anderson, 1975):

H(~σ) = −
∑

〈ij〉
Jijσiσj , (134)
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where i are the sites of Zd, the spins σi = ±1, and the
sum is over nearest neighbor spins. The couplings Jij
are independent identically distributed random variables,
and we assume their common distribution to be contin-
uous and to have a finite mean.

A distinguishing property of spin glasses, which per-
tains to many complex systems including granular me-
dia, is that they feature a “rugged energy (or free en-
ergy) landscape”. To be more clear, let us consider a
zero-temperature dynamics, where at each time step a
spin is randomly chosen and flips if it lowers the energy,
otherwise it does not move, until no more spins will flip.
At variance with a pure ferromagnet, in the spin glass
this dynamics arrests very quickly, and also at a quite
high-energy state, the reason being due to, precisely, the
abundance of metastable states. The type of metastable
states concerned in this specific case are 1-SF metastable
states, discussed in Section II.B and Fig. 4a, since they
are reached following a dynamics that flips one spin at
a time: when the system arrives in one of these configu-
rations, no single spin can lower the energy by flipping,
but if two neighboring spins are allowed to flip simulta-
neously, then lower energy states are available. In other
words, 1-SF states are stable against a single spin-flip,
but not necessarily against two (or more) simultaneous
spins-flip. An example of one-spin-flip metastable state
is shown in Fig. 24 along with a possible two-spin-flip
move (shown in the lowest panel) needed to escape the
1-SF metastable trap. As discussed in Table I these 1-SF
metastable states are analogous to the locally jammed
states introduced by (Torquato and Stillinger, 2001) and
called 1-PD in the table.

The concept of 1-SF metastable states can be easily ex-
tended to k-spin-flip (k-SF) metastable states, even with-
out resorting to a specific dynamics, but using solely the
Hamiltonian of the system Eq. (134) (Biroli and Monas-
son, 2000). We define a k-spin-flip metastable state as a
(infinite volume) configuration whose energy cannot be
lowered by flipping any connected subset of 1, 2, . . . , k
spins. In particular, the ground states of the system cor-
respond to configurations whose energy cannot be low-
ered by flipping any finite number of spins, i.e., they are
found in the limit k →∞, hence the ground state of the
spin-glass is the ∞-SF state, Fig. 4a.

The k-SF metastable states are analogous to the k-
PD metastable collective jamming states defined in Ta-
ble I that generalize the concept of collective jamming
in (Torquato and Stillinger, 2001). The corresponding
ground state of jamming is then the ∞-PD state. We,
thus, end up with a nice analogy between spin-glasses and
jamming which we can leverage to harness the nature of
metastable jammed states in terms of exact results for
spin-glass metastable states obtained by (Newman and
Stein, 1999).

It is important to see that the k-PD or k-SF states are
hierarchically organized one inside another as seen in Fig.

FIG. 24 Example of a 1-Spin flip stable configuration.

4a. For instance, 2-PD (2-SF) metastable states form a
subset of the 1-PD (1-SF) metastable states, since states
which are 2-SF-stable are automatically 1-SF-stable, but
the converse is not necessarily true. Also, the energies of
2-SF metastable states may cross, in principle, the ener-
gies of 1-SF metastable states, Fig. 4a. This hierarchy
defines the k-SF-core metastable states and the k-SF-
shell: the 1-SF-shell consists of 1-SF metastable states
which are not in 2-SF-core. In general, the k-SF-shell
consists of k-SF metastable states which are not in the
k + 1-SF-core. The ∞-SF core is then the ground state.

Now we may ask: how do we visit the k-SF metastable
states for k > 1? To answer this question we need to
introduce more precisely the concept of dynamics.

A k-spin-flips dynamics is defined in such a way that
rigid flips of all lattice animals (finite connected subset
of Zd) up to k spins can occur. For example, in the case
k = 2 both single-spin flips and rigid flips of all nearest
neighbor pairs of spins are allowed (see the bottom panel
in Fig. 24 as an example of a 2-SF move). At each step
of the dynamics a lattice animal of size ` ≤ k is chosen
at random with probability p` and it flips if the resulting
configuration has lower energy, otherwise it does not flip.
We denote by ωk a given realization of this k-SF dynam-
ics (Newman and Stein, 1999) and the ending metastable
configuration of such a path as ~σ∞k .

Having defined the k-SF dynamics, we can now state
an important rigorous result obtained by Newman and
Stein (Newman and Stein, 1999): every end state ~σ∞k of
a dynamics ωk has the same energy density ek (energy
per site), which thus depends only on the choice of the
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k-SF dynamics. Therefore, once a given k-SF dynamics
is chosen, almost all realizations ωk of this dynamics will
end in configurations ~σ∞k having the same energy density.
Furthermore, if we focus only on the states of energy ek
reachable by the dynamics we chose (which may not be
all the available states with that energy), can we say
something about the way they are sampled by the dy-
namics? The answer is yes, in that all these final states
not only have the same energy, but they are equiprobable,
i.e., they are reachable with the same probability as rig-
orously proved by (Newman and Stein, 1999). Due to the
fact that the states reachable by the dynamics may not
represent all the available states with that energy, then,
this rigorous proof represent a weak proof of the Edwards
uniform measure. The strong proof would imply that all
states available at energy ek are indeed accessed by the
dynamics. We can explain graphically this point with the
aid of Fig. 4a. Consider a given energy εk and the corre-
sponding set of k-SF/PD metastable states with energy
εk, i.e. the ones with complexity ΣkSF(εk). The whole
set of available k-SF/PD states with energy εk forms the
k-SF-core. Thus, the strong proof of the Edwards uni-
form measure would imply all the states in the k-SF-core
to be accessible by the k-SF-dynamics.

We thus arrive to the following important conclusions:

1. For a given choice of the dynamics, we can never
visit all the available k-SF/PD metastable states,
because they span a continuous range of energies
(or volume fractions) and, evidently, it does not
make much sense to ask if we visit those states with
equal probability, without further specifying their
energy (or volume fraction).

2. If a given k-SF/PD dynamics visits all the
metastable states in the k-SF/PD-core, then these
states are also visited with the same probability.

In light of the conclusion 1. we may reformulate Ed-
wards hypothesis for a particular k-PD state rather than
for all the states (all k-PD states) together, saying that
“when N grains occupy a volume V , they do so in such
a way that all the k-PD metastable states corresponding
to that volume V are equally weighted”.

From conclusion 2. we arrive to the real meaningful
question and related Edwards’ conjecture, which is: does
a given dynamics, which terminates always in configura-
tions having the same energy (or volume fraction), sam-
ple uniformly ALL the available metastable states at that
given energy, i.e., the whole kSF/PD-core?

As discussed in Sec. III.B there exist certain proto-
cols that do not sample packing states with a uniform
probability, therefore, Edwards hypothesis may not be
provable correct for all possible protocols. Likewise, sim-
ulations of jammed states, for instance using LS algo-
rithms (Lubachevsky and Stillinger, 1990), may not be
able to provide an answer to this question for systems

large enough to be of definitive value. Thus, in the next
section we propose an exact calculation to test Edwards
ergodic assumption in the exactly solvable Sherrington-
Kirkpatrick model (Sherrington and Kirkpatrick, 1975),
which is a mean-field model of a spin glass where the
metastable states can be mathematically and precisely
defined and allows for a rigorous test of Edwards hy-
pothesis.

The Edwards hypothesis in a more general sense ap-
plies to granular matter and spin glasses and hard sphere
glasses as well. Thus we explore this analogy in the next
section to test Edwards ergodic hypothesis in more detail.

C. Opening Pandora’s box: Test of Edwards uniform
measure in the Sherrington-Kirkpatrick spin-glass model

As explained across this review, four recent (and not
so recent) remarkable results have been achieved that
support the validity of the uniform measure hypothesis
for jammed states as proposed by Edwards:

1. The state-of-the-art simulations done in (Martini-
ani et al., 2016) allowing a direct computation of
basin volumes of distinct jammed states, which con-
firm the validity of Edwards ergodicity at the jam-
ming transition (Section III.B and Fig. 10).

2. The exact solution of the jammed ground state
in infinite-dimensional fully-connected hard-sphere
model done in (Charbonneau et al., 2014b) using
full replica symmetry breaking. The∞-PD ground
states stable under k-PD displacements with k →
∞ and N →∞ and finite α = k/N define the J-line
ranging from α = 0 to α = 1 (see Fig. 4a).

3. The analytical study in (Sharma et al., 2016) of
zero-temperature metastable minima in classical
Heisenberg spin glass in a random magnetic field.
Such a study confirms that the energy reached dy-
namically is in agreement with a computation of
metastable states using Edwards equiprobability,
see Eq. (12) in (Sharma et al., 2016).

4. The rigorous results of Newman and Stein (New-
man and Stein, 1999) probing a weaker formulation
of Edwards uniform measure: the final states that
a zero-temperature dynamics in spin-glass model
arrive at a given energy are solely determined by
the dynamical protocol and are accessed with equal
probability for a given energy. The important fact
is that for every protocol there are certain states
with a given energy that are achievable and those
states are equally probable. Although, the final
states visited by the protocol may not be all the
available states with that energy, hence the weak
Edwards formulation.
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Armed with these four preliminary results, we now pro-
pose to perform a fifth exact calculation to integrate these
results and provide a closure to the long-standing saga on
the validity of the Edwards uniform measure, see Fig. 4b.
This final test would be to test the Edwards measure in
the metastable states as done in (Sharma et al., 2016),
following the use of the Edwards assumption to calculate
the ground state of the hard sphere model in (Charbon-
neau et al., 2014b) and using the exact results of (New-
man and Stein, 1999). We propose to perform a calcu-
lation of 1-SF metastable state in the exactly solvable
SK model as a ultimate test of Edwards ergodic hypoth-
esis in this canonical mean field model of spin glasses.
We discuss the validity of Edwards uniform hypoth-
esis in the mean-field fully-connected exactly-solvable
version of the Edwards-Anderson spin-glass model, the
Sherrington-Kirkpatrick (SK) spin-glass model (Sher-
rington and Kirkpatrick, 1975). The interest in consid-
ering this particular model stems from the fact that it
allows one to calculate analytically the metastable states
using Edwards uniform measure, that can be compared
with the corresponding quantities measured in dynamical
simulations of the same model, thus providing the ideal
testing ground to examine the applicability of Edwards
uniform measure.

The SK model is the infinite dimensional limit of the
Edwards-Anderson model, whose Hamiltonian is akin to
the one given in Eq. (134), but the sum runs over all
N(N − 1)/2 pairs of distinct spins:

HSK(~σ) = − 1√
N

N∑

i,j=1

Jijσiσj . (135)

A key quantity which can be calculated exactly in the
SK model is the ‘complexity’ Σ(e) as a function of the
energy density as schematically shown in Fig. 4a (we
only consider the system at zero temperature) (Bray and
Moore, 1980). Physically, the complexity Σ(e) is defined
as the logarithmic scaled number of metastable states
NN (e) of a given energy density e:

Σ(e) = lim
N→∞

logNN (e)

N
, (136)

where N is the size of the system (i.e. the number of
spins). The word ‘scaled’ indicates that Σ(e) is the log-
arithm of NN (e) scaled by N .

1. The penultimate test of Edwards uniform measure

We propose to solve the SK model for the 1-SF
metastable states to obtain analytically their number
NN (e). From the ‘dynamic’ point of view, we consider
a 1-SF dynamics at zero temperature, starting from a
random initial configuration, sampled, for example, from

a symmetric Bernoulli distribution. We can then apply
the general results discussed above. Specifically, the 1-SF
dynamics will arrest always in states (i.e. configurations)
having the same energy (Newman and Stein, 1999), say
ε, and the number of such states, which we denote by
ΓN (ε), is exponentially large in the system size N . On
the other side, from the ‘static’ point of view, we can
calculate analytically the total number of available 1-SF
metastable states of energy ε under the Edwards uni-
form measure from Eq. (136), which is given precisely by
NN (ε) ∼ eNΣ(ε) (Bray and Moore, 1980).

The Edwards ergodic hypothesis is: does the dynami-
cally generated ΓN (ε) equal the static uniform averaged
NN (ε):

ΓN (ε)
Edw
= NN (ε) ? (137)

And, if so, does the dynamics pick up all theNN (ε) states
with the same probability?

If Edwards hypothesis is correct, then the answer to
both these questions is affirmative. Actually, the first
condition, i.e. ΓN (ε) = NN (ε), is also sufficient for the
second to be true according to the exact results of New-
man and Stein, point 4 above (Newman and Stein, 1999).
However, measuring ΓN (ε) from the dynamics is not an
easy task, and hence we have to resort to another con-
venient quantity. A suitable, and easily measurable, ob-
servable to test Edwards hypothesis is the distribution
of local fields P (h). The local field hi acting on spin i
is defined as hi = 1√

N

∑
j 6=i Jijσj , and, in a 1-SF stable

configuration, all these local fields satisfy the condition
hiσi > 0 for any i [see (Bray and Moore, 1980; Roberts,
1981) and Eq. (12) in (Sharma et al., 2016)].

Thus, we arrive at a mathematically tractable defini-
tion of metastable 1-SF state in the SK model, which
can be incorporated into the SK partition function Eq.
(135). This has been done in (Roberts, 1981) by the con-
straint Θ(

∑
j 6=i σiJijσj) to obtain the exact mean-field

solution for P (h) for this 1-SF metastable state under
the Edwards uniform measure. We notice in passant the
work (Roberts, 1981) predates by a decade the Edwards
formulation. Indeed, it can be said that the Edwards
problem has been debated in the spin glass community
for a longer time than in the granular community. The
number of 1-SF metastable states is then obtained from

NN (ε) =
∑

σ

δ


ε+

1√
N

N∑

i,j=1

Jijσiσj




N∏

i=1

Θ


σi
∑

j 6=i
Jijσj


.

(138)
Such a prediction can be then compared with the

states dynamically obtained under a 1-SF dynamics from
the fully connected SK model, for instance, a single-
spin-flip Glauber dynamics as done in (Eastham et al.,
2006). Then, a precise test of Edwards ergodicity can
be achieved in the SK model for metastable states.
This requires a mathematical definition of 1-PD locally
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metastable states for jammed hard spheres analogous to
1-SF in the SK model, which eventually might be in-
corporated into the Edwards partition function of hard-
spheres to test Edwards hypothesis in such a jammed
model. Such an approach has already proven to be fruit-
ful. In (Müller and Wyart, 2015), corresponding prop-
erties of the SK model and jammed hard spheres based
on marginal stability have been derived by exploiting the
analogy between a spin flip and the opening or closing of
a particle contact.

The test will be to compare the form of P (h) measured
at the ending configurations of the 1-SF dynamics with
the one predicted by Edwards uniform measure, in par-
ticular for small values of the local fields h ∼ 0. Assuming
the scaling form:

P (h) ∼ hα, for h→ 0, (139)

a lower bound on the exponent α can be derived by im-
posing the stability of 1-SF metastable states with re-
spect to single spin-flips. The argument goes as follows:
consider two spins σi and σj , along with their local fields
hi and hj and their coupling Jij . The energy cost to
flip one spin, say σi, is given by ∆E = 2|hi| − 2Jijσiσj .
The non trivial case is realized when the bond Jij is sat-
isfied, i.e. when Jijσiσj > 0, so that we have ∆E =
2|hi| − 2|Jij |. Since this condition must be satisfied even
by the smallest possible field hi ∼ N−1/(1+α), and since
|Jij | ∼ N−1/2, then the stability condition ∆E > 0 of the
1-SF metastable state gives α ≥ 1. Therefore, the dis-
tribution P (h) must vanish at small fields like hα with
an exponent α not smaller than one. A direct dynami-
cal measurement of P (h) in the final configurations of a
1-SF dynamics shows that P (h) indeed vanishes linearly
for h→ 0 (Eastham et al., 2006):

P (h) ∼ h, dynamics, (140)

i.e. the lower bound α ≥ 1 is actually saturated.
On the other side, what is the form of P (h) calculated

by using Edwards hypothesis on the equiprobability of
all the available 1-SF metastable states of energy ε from
Eq. (138)?

The exact calculation of P (h) for the 1-SF metastable
states using Edwards ensemble can be carried out. In
fact, at the present, P (h) has been obtained using the
Edwards partition function Eq. (138) but only at the RS
level in (Eastham et al., 2006; Roberts, 1981). This
calculation gives for h → 0, P (0) ∝ const > 0 in con-
trast to the dynamical result Eq. (140). However, there
is an inconsistency in the RS calculation of P (h) per-
formed in (Eastham et al., 2006; Roberts, 1981) in the
fact that the RS calculation is exact only above a certain
energy density ec ∼ −0.672... (Bray and Moore, 1980),
and ceases to be valid below that energy. But the energy
ε of the states selected by the 1-SF dynamics leading to
Eq. (140) (and any protocol we are aware of) lies below

the critical energy ec (ε < ec), where the RS calculation
of P (h) is not correct. As a consequence, also the RS
value of the intercept P (0) is wrong. Therefore, the cor-
rect calculation for P (h) Eq. (139) for energies e < ec to
obtain the exponent α to be compared to the dynamical
result α = 1 needs to be done by taking into account
the effect of full RSB, as in the low temperature equi-
librium phase of the SK model. This calculation has not
been carried out yet (mainly because of its algebraic com-
plexity). This calculation would represent the ultimate
theoretical test of the Edwards uniform measure at the
mean-field level for 1-SF metastable states.

It should be noted that the analog of P (h) in the
hard-sphere model is the distribution of inter-particle
forces P (f), given by Eq. (48). The model solution can
be worked out by using the replica method, and it has
a full RSB structure akin to the one found in the SK
model. Now, in the hard-spheres model, a RS calcula-
tion of P (f) gives P (0) > 0 (Bo et al., 2014), i.e., a
finite intercept at zero force, and even the 1-RSB solu-
tion (i.e. the solution accounting for just the first level
in the hierarchical breaking of replica symmetry) gives
P (0) > 0 as well (Parisi and Zamponi, 2010), as dis-
cussed in Eq. (132). However, at the full-RSB solution
beyond the Gardner transition one finds P (f) ∼ fθ with
θ = 0.42..., Eq. (133), and thus P (0) = 0. Therefore, in
the light of these results, we expect that the full RSB cal-
culation of P (h) for 1-SF in the SK model using Edwards
ensemble would be crucial to resolve the question on the
validity of Edwards hypothesis in this model. This cal-
culation is based on similar calculations done already by
Moore and Bray in (Eastham et al., 2006) and goes back
to an old controversy that started with the work of Bray
and Moore (Roberts, 1981). As shown in (Eastham et al.,
2006), P (f) is a good way to test the predictions of Ed-
wards theory. However, we recognize that the behaviour
of P (f) is not a direct measure of the equiprobability,
and therefore does not directly test whether the states
are equiprobable. However, P (f) is the most accessible
calculation that can be done to test the predictions of Ed-
wards theory, and thus we propose it as the first step in
looking at the validity of Edwards theory in a controlled
exactly solvable model.

VI. CONCLUSIONS AND OUTLOOK

More than 25 years after Edwards original hypothesis
on the entropy of granular matter, it becomes increas-
ingly evident that the consequences of Edwards simple
statement are far reaching. For one, it allows us to under-
stand the properties of jammed granular matter — one
of the paradigms of athermal matter states — by anal-
ogy with thermal equilibrium systems. The first-order
transition of jammed spheres identified within Edwards’
thermodynamics (Jin and Makse, 2010) is reminiscent of
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the entropy induced phase transition of equilibrium hard
spheres, which is found at φ = 0.494 and φ = 0.545,
respectively. Clearly, the physical origins of these two
transitions are fundamentally different: the equilibrium
phase transition is a consequence of the maximization
of the conventional entropy, while the transition at RCP
of jammed spheres is driven by the competition between
volume minimization and maximization of the entropy of
jammed configurations, Eq. (8).

Such an analogy can probably be extended to other
disorder-order phase transition observed in equilibrium
systems. Anisotropic elongated particles, e.g., exhibit
transitions between isotropic and nematic phases: For
large α, Onsager’s theory of equilibrium hard rods pre-
dicts a first order isotropic-nematic transition with freez-
ing point at the rescaled density φα = 3.29 and melting
point at φα = 4.19 (Onsager, 1949). By analogy with
the case of jammed spheres, one might wonder whether
packings of non-spherical particles exhibit similar tran-
sitions that could be characterized in the z–φ phase di-
agram. Packings of hard thin rods indeed satisfy a scal-
ing law, where the RCP has been experimentally iden-
tified at φα ≈ 5.4 (Philipse, 1996). Dynamically, tran-
sitions to orientationally ordered states can be induced
in rod systems by shaking (Yadav et al., 2013), but the
entropic characterization of such transitions remains an
open problem.

For colloidal suspensions of more complex shapes like
polyhedra, both liquid crystalline as well as plastic crys-
talline and even quasicrystalline phases have been found
(Agarwal and Escobedo, 2011; Damasceno et al., 2012;
Haji-Akbari et al., 2009; Marechal and Löwen, 2013).
Entropic concepts based on shape are only starting to
be explored even for equilibrium systems (van Anders
et al., 2014; Cohen et al., 2016; Escobedo, 2014). In the
jammed regime, the behaviour of packing density as a
function of shape has been shown to be exceedingly com-
plex (Chen et al., 2014). Edwards granular entropy might
be the key to understand such empirical data on a more
fundamental level.

Our approach based on the self-consistent equa-
tion (123) can be applied to a large variety of both convex
and non-convex shapes. The key is to parametrize the
Voronoi boundary between two such shapes, which allows
for the calculation of the Voronoi excluded volume and
surface. In fact, analytical expressions for the Voronoi
boundary can be derived following an exact algorithm for
arbitrary shapes by decomposing the shape into overlap-
ping and intersecting spheres (see Figs. 17,25). There-
fore, a systematic search for maximally dense packings
in the space of given object shapes can be performed us-
ing our framework. Extensions to mixtures and polydis-
perse packings can also be formulated. This might eluci-
date in particular the validity of Ulam’s conjecture that
the sphere is the worst packing object in 3d (Gardner,
2001), which has also been formulated in a random ver-

sion (Jiao and Torquato, 2011) locally around the sphere
shape (Kallus, 2016).

The Edwards’ approach could help more generally to
elucidate how macroscopic properties of granular mat-
ter arise from the anisotropy of the constituents – one
of the central questions in present day materials sci-
ence (Glotzer and Solomon, 2007). A better understand-
ing of this problem will facilitate, e.g., the engineering
of new functional materials with particular mechanical
responses by tuning the shape of the building blocks
(Athanassiadis et al., 2014; Jaeger, 2015) or to new ways
to construct space filling tilings (Andrade et al., 2005;
Herrmann et al., 1990). Edwards statistical mechanics
might be the key to tackle this problem based on theory
rather than direct simulations.

We postulate that a unifying theoretical framework
can predict not only the structural properties (volume
fraction and coordination number), but also mechanical
properties (vibrational density of states and yield stress)
and dissipative properties (damping) as a function of the
shape and interaction properties (e.g., friction) of the
constitutive particles. If such an approach is possible,
then one could envision to span the large parameter space
of the problem from a theoretical point of view to ob-
tain predictions of optimal packings with desired prop-
erties. The penalty for approaching the problem theo-
retically rather than by a direct numerical generation of
the packings as in reverse engineering evolutionary tech-
niques (Miskin and Jaeger, 2013) is that all results are
only valid at the mean-field level. Thus, predictions of
the resulting optimal shapes can only be approximate.
On the other hand, it might be possible to develop a the-
ory versatile enough to encompass a large portion of the
parameter space which cannot be easily accessed by the
direct simulation of packing protocols in reverse engineer-
ing. Such a theory might explore particles made of rigidly
gluing spheres in arbitrary shapes, and also other generic
shapes such as (a) union of spheres of arbitrary radius,
(b) intersection of spheres of arbitrary radius leading to
tetrahedral-like particles and in general (c) any irregular
polyhedra. Another advantage is the ability to possibly
span over more than one relevant property of granular
materials, not only density but also yield stress and dis-
sipation. Furthermore, such an approach would include
interparticle friction, a property that was not considered
before, yet, it is of crucial importance in granular pack-
ings.

Additional insight can be provided by analytically solv-
able models that take into account realistic excluded vol-
ume effects due to non-spherical shapes. The recent so-
lution of the ‘Paris car parking problem’, e.g., reveals
the existence of two shape universality classes that are
manifest in different critical exponents in the asymptotic
approach to jamming (Baule, 2017).

On the more fundamental side of things, the contro-
versy on the validity of Edwards statistical mechanics has
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been caused by different interpretations of Edwards’ la-
conic statement (Edwards, 1994): “We assume that when
N grains occupy a volume V they do so in such a way that
all configurations are equally weighted. We assume this;
it is the analog of the ergodic hypothesis of conventional
thermal physics.”

As regards the veracity of this statement, it is not rig-
orously established not disproved yet. We have reviewed
the recent encouraging results of (Charbonneau et al.,
2014b; Martiniani et al., 2016; Newman and Stein, 1999;
Sharma et al., 2016) and have proposed a calculation for
the 1-SF states in the SK model. Beyond these encourag-
ing results one must not be fooled by believing that a sta-
tistical mechanics description of granular media is a least
well-founded branch of theoretical physics, if only one re-
members that almost every branch of theoretical physics
is lacking ‘rigorous proofs’, although this is not consid-
ered as an inappropriate foundation for such branches.
The main issue with Edwards’ statement, and the reason
why it will be likely hard to reach an end to the diatribe,
is that the statement, as it stands, is incomplete.

From a broad standpoint, the problem is whether it
is possible to describe the properties of the asymptotic
states of the dynamics by using only static features of
the system. In Edwards’ statement there is no reference
at all to which are those asymptotic dynamic states. To
solve this issue, we have proposed a rigorous definition of
jammed states as those configurations satisfying the geo-
metrical hard-core and mechanical force and torque bal-
ances constraints. Then we have further classified those
jammed states on the basis of their stability properties
under k-Particle-Displacements, inspired by an analo-
gous characterization of (energetically) metastable states
in spin glasses through the concept of k-Spin-Flips. With
this definition of the asymptotic dynamic states, we re-
defined (in italics) Edwards’ ensemble by the following
proposition: “We assume that when N grains occupy a
volume V they do so in such a way that all stable jammed
configurations in a given k-PD jamming category (i.e.
at given volume fraction) are equally weighted. We as-
sume this; it is the analogue of the ergodic hypothesis of
conventional thermal physics (and also out-of-equilibrium
spin glasses and hard-sphere glasses).”

This statement also clarifies the role of the protocol,
i.e. of the dynamics, in the Edwards’ ensemble. A “le-
gal” protocol is the one for which the asymptotic dynamic
states are in a given k-PD-core. This is, again, motivated
by a spin-glass analogy. In this case an example of cor-
rect protocol is, for instance, a single-spin-flip Glauber
dynamics, for which the asymptotic dynamic states are in
the 1-SF-core and all have the same energy. In the gran-
ular framework this is equivalent to say that the asymp-
totic jammed states of a legal protocol are only the k-PD
metastable states (with a fixed k, for instance the 1-PD),
and they (presumably) have the same volume. Then the
question of whether these states are statistically equiva-

lent (i.e. equiprobable) remains still open, and we have
suggested a model (SK) where an end-to-end comparison
between the results of dynamics and a static computa-
tion can be performed, in principle, in an exact analytical
way.

An “illegal” protocol is one that mixes different k-PD
metastable states, i.e., whose asymptotic dynamic states
have different values of k, and hence different stability
properties. Nothing can be claimed for such illegal proto-
cols. In the case of legal protocols, it has been rigorously
proved in spin glasses that statistical equivalence of the
asymptotic dynamic states of the given protocol holds
true, i.e., the k-SF visited by a given dynamics are in-
deed equiprobable (Newman and Stein, 1999). Whether
this statement is also rigorous for jammed states is an
open question, but the correctness in spin glasses points
towards an affirmative answer. The stronger claim that
the asymptotic dynamic states are also the totality of k-
PD (k-SF) metastable states with given volume fraction
(energy density) is not analytically proved or disproved
for any model we are aware of.

Conversely, in the strong tapping regime, the statisti-
cal equivalence of the asymptotic dynamic states cannot
be claimed. Notwithstanding, this does not preclude the
use of Edwards’ ensemble as a very principled approxi-
mation supposedly more justified than other mean-field
approaches. A fortiori, the great advantage of Edwards’
approach is that it leads to concrete quantitative pre-
dictions for realistic packing scenarios. As we discuss in
detail in Sec. IV, the volume ensemble in the Voronoi
convention allows us to treat packings of frictional and
frictionless particles, adhesive and non-adhesive, granular
and colloidal sizes, mono-disperse and poly-disperse, in
2d, 3d and beyond, as well as spherical and non-spherical
shapes within a unified framework. Such a comprehen-
sive treatment is currently out of reach for any other
approach that can treat glassy and/or jammed systems
analytically, such as mode-coupling theory (Götze, 2009)
or replica theory (Charbonneau et al., 2014b; Parisi and
Zamponi, 2010). Moreover, the analytical efforts needed
to extend these theories to incorporate, for instance, fric-
tion or anisotropies may be unsurmountable. The ver-
dict on Edwards’ Alexandrian solution to this Gordian
Knot, as on every physical theory, should be returned,
ultimately, on the goodness of its predictions when com-
pared with experimental data and practical applications.
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Appendix A: Bounds on the average coordination number

A packing is geometrically rigid if it can not be de-
formed under any translation or rotation of the particles
without deforming the particles or breaking any of the
contacts (Alexander, 1998). In d dimensions, there are
d force balance equations Eq. (2) and d(d − 1)/2 torque
balance equations Eq. (3). The number of equations can
in general be associated with the configurational degrees
of freedom (dofs), so that per particle we have in total
df = d(d+ 1)/2 configurational dofs.

Geometrical rigidity requires that all Ndf degrees of
freedom in the packing are constrained by contacts (as-
suming periodic boundary conditions). For frictional par-
ticles there are d force components at contact and since
all contacts are shared by two particles we thus require
Ndz/2 ≥ Ndf or

z ≥ 2df/d = d+ 1. (A1)

For frictionless particles there is only a single force com-
ponent at each contact due to Eq. (4): The normal unit
vector is fixed by dia. The equivalent rigidity condition
is thus Nz/2 ≥ Ndf or

z ≥ 2df . (A2)

For frictionless spheres the normal unit vector is parallel
to dia so that Eqs. (3) are always trivially satisfied. In
this case df = d, which corresponds to the translational
dofs since rotations are irrelevant.

If Eqs. (A1,A2) are not satisfied there exist zero en-
ergy modes (so called floppy modes) that can deform the
packing without any energy cost. If the equalities hold,
i.e., z = d + 1 for frictional particles and z = 2df for
frictionless particles,

On the other hand, we can obtain an upper bound
on z by imposing that a generic disordered packing will
have the minimal number of contacts. If any two par-
ticles precisely touch at a single point without deforma-
tion, we find that a single contact fixes one component
of the vector connecting the two center of masses. Over-
all, there are then Nz/2 constraints on the configura-
tional dofs from touching contacts. From the constraint

Nz/2 ≤ Ndf we obtain

z ≤ 2df (A3)

for both frictional and frictionless particles. Note that
for particles interacting with a soft potential the touching
condition can only be satisfied at zero pressure. Likewise,
realistic hard particles usually suffer slight deformations
when jammed, complicating the analysis (Donev et al.,
2007; Roux, 2000)

Appendix B: Density of states g(z)

The density of states g(z) can be calculated using
analogies with a quantum mechanical system in three
steps:

(i) First, we consider that the packing of hard spheres
is jammed in a ∞−PD configuration where there can be
no collective motion of any contacting subset of particles
leading to unjamming when including the normal and
tangential forces between the particles. As discussed in
the introduction, this jammed state is the ground state
and corresponds to the collectively jammed category pro-
posed in (Torquato and Stillinger, 2001). While the de-
grees of freedom are continuous, the fact that the packing
is collectively jammed implies that the jammed configura-
tions in the volume space are not continuous. Otherwise
there would be a continuous transformation in the posi-
tion space that would unjam the system contradicting the
fact that the packing is collectively jammed. Thus, we
consider that the configuration space of jammed matter
is discrete, since we cannot change one configuration to
another in a continuous way. A similar consideration of
discreteness has been studied in (Torquato and Stillinger,
2001).

(ii) Second, we refer to the dimension per particle of
the configuration space as D and consider that the dis-
tance between two jammed configurations is not broadly
distributed (meaning that the average distance is well-
defined). We call the typical (average) distance between
configurations in the configuration space as hz, and there-
fore the number of configurations per particle is pro-
portional to (hz)

−D. The constant hz plays the role of
Planck’s constant in quantum mechanics which sets the
discreteness of the phase space via the uncertainty prin-
ciple.

(iii) Third, we add z constraints per particle due to
the fact that the particle is jammed by z contacts. Thus,
there are Nz position constraints (|rij | = 2R) for a
jammed state of hard spheres as compared to the un-
jammed “gas” state. Therefore, the number of degrees
of freedom is reduced to D − z, and the number of con-
figurations is then 1/(hz)

D−z leading to

g(z) = (hz)
z−D. (B1)

Note that the factor (hz)
−D will drop out when perform-

ing ensemble averages. Physically, we expect hz � 1.
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The exact value of hz can be determined by a fitting of
the theoretical values to the simulation data, but it is
not important as long as we take the limit at the end:
hz → 0.

Appendix C: Algorithm to calculate Voronoi boundaries
analytically

Every segment of the VB arises due to the Voronoi in-
teraction between a particular sphere on each of the two
particles, reducing the problem to identifying the correct
spheres that interact (see Fig. 25). The spheres that in-
teract are determined by separation lines given as the
VBs between the spheres in the filling. For dimers, there
is one separation line for each object, tesselating space
into four areas, in which only one interaction is correct
(Fig. 25a). The dense overlap of spheres in spherocylin-
ders leads to a line as effective Voronoi interaction at the
centre of the cylindrical part. This line interaction has
to be separated from the point interactions due to the
centres of the spherical caps as indicated. Overall, the
two separation lines for each object lead to a tessellation
of space into nine different areas, where only one of the
possible line-line, line-point, point-line, and point-point
interactions is possible (Fig. 25b).

The spherical decomposition of ellipsoid-like lens-
shaped particles is analogous to dimers, only that now
the opposite sphere centres interact (“anti-points”). In
addition, the positive curvature at the intersection point
leads to an additional line interaction, which is a circle in
3d (a point in 2d) and indicated here by two points. The
separation lines are then given by radial vectors through
the intersection point/line. The Voronoi interaction be-
tween two ellipsoids is thus given by two pairs of two
anti-points and a line, which is the same class of interac-
tions as spherocylinders. The different point and line in-
teractions are separated analogously to spherocylinders,
as shown in Fig. 25c.
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