
1 HARRIS CRITERION: The result of Chayes

et al.

Consider a disordered system with a term, in the exponent of the Boltzmann
weight, of the form

λ
∑
x

εxAx

with Ax some “local observables” and εx a collection of IID random variables.
For simplicity, consider the case where the εx are Gaussians N (m,σ2)

of mean m and variance σ2, and to avoid that the disorder disappears we
assume that σ2 > 0.

Note that we can replace λ
∑

x εxAx by
∑

x εxAx if we say that the IID
variables εx have probability density

ρλ(x) :=
1

λ
ρ(
x

λ
),

with ρ(x) the probability density of the N (m,σ2) variables. In the following,
we let Pλ denote the law of such IID variables with density ρλ(x).

Now we assume that the system under consideration has a second-order
phase transition when λ is varied. Call the critical point λc and assume that
λc 6= 0 (at criticality disorder is not vanishing). In particular, for the finite-
volume system (enclosed in a cube of side L) we assume that there exists
some event BL such that

• if λ < λc then Pλ(BL)→ 0 when L→∞;

• if λ = λc then Pλc(BL) ≥ c > 0 for every L.

Theorem 1.1 (Chayes et al., ’86). For λ < λc define the “finite-size-scaling
correlation length” ξ(λ) as

ξ(λ) = max

{
L : Pλ(BL) ≥ 1

2
c

}
.

Then, one has
ξ(λ) ≥ C(λc − λ)−

2
d .

In other words, when λ→ λc the correlation length explodes with an exponent
ν that is at least 2/d.

Example: ferromagnet with random couplings.
Consider a nearest-neighbor ferromagnet such that the coupling constant

J > 0 between neighboring spins σx, σy is replaced by εxy, a Gaussian random
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variable N (J,Σ2). In the Boltzmann weight, the term εxyσxσy is multiplied
by β, the inverse temperature. Then, in this example one has simply λ = β.

Assume that at some critical inverse temperature βc there is a ferromag-
netic phase transition. It is natural to imagine that

• for β < βc spins are essentially independent, so that the magnetization

ML =
1

Ld

∑
x

σx

is of order L−d/2, while

• for β > βc the magnetization is of order 1.

Then, typically it will happen that at the critical point

ML ∼ L−γ

for some critical exponent γ < d/2. If this holds, then in this case a natural
candidate for the event BL is

BL = {〈M2
L〉 ≥ L−2γ},

with 〈·〉 the thermal average. Clearly, BL has probability almost zero for
β < βc and L large, has probability almost 1 for β < βc and L large and
should have positive probability at the critical point.

The finite size scaling correlation length ξ(β) has then the following mean-
ing. If βc−β is small, then a small enough system will look like critical. ξ(β)
is the first system size at which the system “realizes that it is sub-critical”.

Proof of the Theorem
The theorem is based on the following simple fact: let F be a function of

the random variables ε1, . . . , εN . Then,

| d
dλ

EλF (ε1, . . . , εN)| ≤ C
√
N max |F | (1)

where max |F | is the maximal value of F (in absolute value) and C(λ) is
some λ-dependent constant that does not diverge when λ→ λc.

For the system in the cube QL of side L, let F be the indicator function
of the event BL, that clearly depends on the Ld random variables εx, x ∈ QL.
Note that

Pλ(BL) = Eλ(F ).

By assumption,
Pλc(BL) ≥ c
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for every L. Integrating (1), we see that for λ < λc

Pλ(BL) = Eλ(F ) ≥ c− C
√
Ld(λc − λ)

since max |F | = 1 for an indicator function. One sees immediately that the
right-hand side is larger than c/2 if

L ≤
(

c

C(λc − λ)

)2/d

so that we obtain
ξ(λ) ≥ C ′(λc − λ)−2/d

as we wished.
Proof of (1).
We have

Eλ(F ) =

∫
dx1 . . . dxNF (x1, . . . , xN)

∏
j

1

λ
ρ(xj/λ) (2)

so that∣∣∣∣ ddλEλ(F )

∣∣∣∣ =

∣∣∣∣∣
∫
dx1 . . . dxNF (x1, . . . , xN)

N∏
j=1

1

λ
ρ(xj/λ)

N∑
i=1

(
−1

λ
− xi
λ2
ρ′(xi/λ)

ρ(xi/λ)

)∣∣∣∣∣ (3)

≤ max |F |
|λ|

∫
dx1 . . . dxN

N∏
j=1

ρ(xj)

∣∣∣∣∣
N∑
i=1

(
1 + xi

ρ′(xi)

ρ(xi)

)∣∣∣∣∣ (4)

where we did a change of variables xi/λ → xi. Now we use the Cauchy-
Schwartz inequality:

(E(f))2 ≤ E(f 2)

to obtain∣∣∣∣ ddλEλ(F )

∣∣∣∣2 ≤ (max |F |)2

λ2

∫
dx1 . . . dxN

N∏
j=1

ρ(xj)
∑
i,j

(
1 + xi

ρ′(xi)

ρ(xi)

)(
1 + xj

ρ′(xj)

ρ(xj)

)
. (5)

The diagonal terms (i = j) give altogether a contribution of order

N
(max |F |)2

λ2
.

The non-diagonal terms instead vanish: indeed, one has∫
dxidxj(ρ(xi) + xiρ

′(xi))(ρ(xj) + xjρ
′(xj)) =

[∫
dx(ρ(x) + xρ′(x))

]2
(6)

=

[∫
d

dx
(xρ(x))dx

]2
= 0. (7)
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Altogether, ∣∣∣∣ ddλEλ(F )

∣∣∣∣2 ≤ CN
(max |F |)2

λ2
(8)

and since λc 6= 0 by assumption, the constant C/λ2 is not divergent at
criticality.

2 The Imry-Ma argument

Imry, Ma, PRL35 (1975), 1399-1401.
We have seen that the Harris (and the Weinrib-Halperin) argument gives

a criterion for stability of a second-order phase transition with respect to the
introduction of a small amount of disorder.

The Imry-Ma argument in a sense is in the same spirit, but concerns
the stability of spontaneous symmetry breaking (an order parameter being
non-zero at low temperature and breaking a symmetry of the Hamiltonian).

Consider to be concrete a nearest-neighbor ferromagnet on Zd, with n-
dimensional spins (spins are vectors on the sphere Sn−1; the Ising case corre-
sponds to n = 1). The spin-spin interaction is Jσx ·σy (scalar product). Since
J is positive, at low temperature spins tend to align. Is there a spontaneous
magnetization at low temperature? This depends on d and n.

Suppose we have all spins aligned (upwards) and we want to create a
defect: a cube of side L of spin aligned downwards. The minimal cost (i.e.
increase in energy) to produce this defect is of order Ld−1 if n = 1 (Ising
model) and of order Ld−2 if n ≥ 2. For n ≥ 2, due to the continuous
character of the spins, the domain wall is energetically less costly because
spins can move from “up” to “down” in a smooth way, over a distance of
order L.

Then, one guesses that at low enough temperature large defects are very
unfavorable as soon as d > 1 (if n = 1) and as soon as d > 2 (if n ≥ 2), so
that the “up-magnetized phase” is stable. This is correct. Indeed, in these
situations there is spontaneous symmetry breaking (non-zero magnetization)
at low enough temperature.

Now one can ask: What happens if we introduce quenched randomness
in the Hamiltonian? in particular, a random magnetic field. So that the
Hamiltonian becomes

H = −J
∑
<xy>

σx · σy − ε
∑
x

hx · σx
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with hx IID random variables with zero average (say, Gaussian variables
for instance). Here ε is a positive (small) constant that tunes the disorder
intensity.

At first sight one might think that, since the varibles are centered, their
effect on a large volume will be negligible because of cancellations. However,
this is not true.

Let us repeat carefully the argument above. Assume that at low tem-
perature there is spontaneous magnetization and spins are (mostly) aligned
upwards. Let us check if this situation is stable. If we create a large defect of
cubic shape QL of linear size L of downward aligned spins, we have seen that
this induces a boundary energy increase of order Ld−1 if n = 1 and Ld−2 if
n ≥ 2. However, it may happen that the sum of the magnetic fields hx inside
QL is negative, which favors spins being downward. In fact, the energetic
decrease due to the fields when spins in QL are flipped is 2ε

∑
x∈QL

hx (if this
sum is negative, otherwise the energy decrease is actually an increase, that
is unfavorable). Since the magnetic fields are IID, the sum∑

x∈QL

hx

is approximately a Gaussian with variance of order Ld, i.e. its typical fluc-
tuations are of order Ld/2. Then, if d/2 ≥ d− 1 (for n = 1) or if d/2 ≥ d− 2
(for n ≥ 2) it is intuitive that we will find arbitrarily large regions where
the bulk energy decrease 2ε

∑
x∈QL

hx due to the random field fluctuations
beats the boundary energy increase. This suggests that, whatever the value
of ε > 0, the symmetry breaking is unstable when d ≤ 2 (if n = 1) or if d ≤ 4
(if n ≥ 2).

This is the Imry-Ma prediction and can be proven rigorously (This was
done by Aizenman-Wehr, PRL 62 (1989), 2503–2506)).

5


