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We study a microscopic mean-field model for the dynamics of the electron glass near a local equilibrium
state. Phonon-induced tunneling processes are responsible for generating transitions between localized elec-
tronic sites, which eventually lead to the thermalization of the system. We find that the decay of an excited state
to a locally stable state is far from being exponential in time and does not have a characteristic time scale.
Working in a mean-field approximation, we write rate equations for the average occupation numbers �ni� and
describe the return to the locally stable state by using the eigenvalues of a rate matrix A describing the
linearized time evolution of the occupation numbers. By analyzing the probability distribution P��� of the
eigenvalues of A, we find that, under certain physically reasonable assumptions, it takes the form P���� 1

��� ,
leading naturally to a logarithmic decay in time. While our derivation of the matrix A is specific for the chosen
model, we expect that other glassy systems, with different microscopic characteristics, will be described by
random rate matrices belonging to the same universality class of A. Namely, the rate matrix has elements with
a very broad distribution, as in the case of exponentials of a variable with nearly uniform distribution.
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I. INTRODUCTION

Experiments conducted on thin films of amorphous or
crystalline semiconductors such as indium oxide or silicon
show that when driven out of equilibrium �for example, by
shining light on the system or by changing a gate voltage�,
the system exhibits slow relaxations, observable on the scale
of minutes or hours.1,2 In many cases, a logarithmic or weak
power-law time dependence of the measured quantity �such
as conductance and capacitance� is observed over many de-
cades of time.3–5 A common feature of the experimental sys-
tems is that they are highly disordered, so that most elec-
tronic states are localized. If the carrier concentration is high
enough,6 the �unscreened� Coulomb interactions may play an
important role.7 This system is usually referred to as the
electron glass since it exhibits many features characteristic of
glassy systems: memory effects8 �the conductance depends
on the previous perturbations applied to the system� and
aging9 �the duration of time the perturbation is applied af-
fects the relaxation process�. Similar effects have been ob-
served in granular Al,10,11 showing that the underlying prin-
ciples may be more general.

In this paper, we study a mean-field model for the dynam-
ics of the system. A variety of systems in nature can be
described near a locally stable state by a matrix equation of
the type

d�n�

dt
= A · �n� , �1�

where the component �ni=ni− f i is the deviation of the aver-
age occupation of the ith site, ni, from its value f i at the
locally stable point. The local stability of the point implies
that the matrix A must have only nonpositive eigenvalues
and, for large systems, their distribution will determine the
average time dependence of the return to the locally stable
point, after the system was slightly pushed away from it. We
will show how this picture emerges from the mean-field ap-

proximation of the electron glass. It must be emphasized that
our approach is different from the usual theoretical explana-
tions of aging phenomena in glasses, in which the system
explores the energy landscape, and slow relaxations are a
result of the existence of many metastable states. In our
model, the system is found in the vicinity of one locally
stable point at all times �we do not use the term metastable to
stress this difference�. This assumes that the initial perturba-
tion is small enough �and so is the temperature�, such that the
system does not reach other �lower� minima but remains in
the same region of phase space. Slow relaxations are due to
isolated localized states that, statistically, happen to have a
long lifetime. It should be emphasized that although the in-
teractions lead to the nontrivial Coulomb gap12 in the equi-
librium state, the slow dynamics will also occur without in-
teractions.

If it is given that the distribution of eigenvalues diverges
at small �negative� eigenvalues and is of the form P���
� 1

��� �as happens in our model�, it is straightforward to see
that logarithmic relaxation in time, in an appropriate time
window, is obtained �assuming that the eigenvectors are ex-
cited with uniform probability�. In this work, we show that
starting from a realistic microscopic model for the electron-
glass system, the described situation indeed occurs, and we
argue that it is plausible that other physical systems will also
show similar results.

The structure of the paper is as follows. The model is
defined in Sec. II A. In Sec. II B, we review the application
of the mean-field approximation to the peculiar equilibrium
properties of the system, manifesting the Coulomb gap. In
Sec. II C, we briefly discuss the mean-field steady-state so-
lution in the presence of an external field, leading to the
Miller–Abrahams model.13

In a similar fashion, in Sec. III, we suggest to study the
dynamics of the system by writing a set of ordinary differ-
ential equations, given by Eqs. �2� and �6�, giving the time
evolution of the occupancies of the localized states. This is
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already an approximation neglecting interference or quantum
fluctuation effects. In Sec. III A, we study the dynamics of
the electron glass, starting from an out-of-equilibrium state.
By linearizing Eq. �2�, we obtain the time-evolution equa-
tions of the occupations and obtain Eq. �1�, with the random
matrix A belonging to a different class from the Gaussian
random matrix ensembles. The statistics of the eigenvalues is
studied numerically �see Fig. 4�. In Sec. III B, we analyti-
cally study a simplifying limit. Both lead to a distribution of
eigenvalues P��� diverging at low values �down to a cutoff�,
leading to slow relaxations of the physical observables, as
seen experimentally. This behavior might be characteristic of
glassy systems. Finally, in Sec. III D, we discuss the relation
between the relaxation of the occupation numbers and the
conductance.

II. MEAN-FIELD MODEL FOR ELECTRON GLASS

In this section, we discuss a specific microscopic model
for the dynamics of the electron glass. We will show that it
leads to a rate equation of the type of Eq. �1� and explicitly
find the matrix elements.

A. Definition of the model

We study a system of N localized states and M �N elec-
trons with a coupling between the electrons and a phonon
reservoir.14 Since the states are localized, the electrons will
interact via an unscreened Coulomb potential. In the absence
of electron-electron interactions, the localized states have
different energies �i due to the disorder. Our model also con-
tains structural disorder: the positions of the sites are as-
sumed to be random. Although localized states are orthogo-
nal, their tails overlap and, therefore, phonons may induce
transitions between them. The generic coupling between
electrons and phonons is given by the form �qMqci

†cj�bq
†

+b−q�, where ci
† ,cj are electron creation and annihilation op-

erators at local sites i, j and bq annihilates a phonon. Mq is a
coefficient accounting for the strength of the electron-phonon
coupling.

Let us denote the energy difference of the electronic sys-
tem before and after the tunneling event by �E, containing
the interaction effects. For weak electron-phonon coupling
��Mq�2���E, where � is the phonon density of states�, the
transition rate �ij of an electron from site i with energy Ei to
site j with energy Ej �Ei a distance rij away can be calcu-
lated, treating the coupling as a perturbation. This yields, up
to polynomial corrections,12

�ij � �Mq�2�f i�1 − f j�e−rij/	�1 + N��E�	 , �2�

where f i is the Fermi–Dirac distribution. For upward transi-
tions �Ej 
Ei�, the square brackets are replaced by N��E�.
These rates may be renormalized due to polaron-type or-
thogonality effects,15 which may significantly increase the
time scales.

We will be interested in the dynamics of the system when
it is out of equilibrium, namely, in the time dependence of
the occupation numbers and the conductance after an initial
excitation. Nevertheless, we first show how the nontrivial

equilibrium properties are obtained from the mean-field pic-
ture.

B. Equilibrium properties near a locally stable point

In an approximation similar to those used in spin glass
theory,16 we define f i= �ni�, where ni is the site occupation
�which takes the values zero or one� and � � denotes en-
semble averaging over the thermal phonon bath. This is a
mean-field-type approximation and may be used regardless
of the existence of interactions in the system. The approxi-
mation improves as the number of interacting sites
increases.17 The long-range nature of the interaction means
that the energy of a site will be determined by many of its
neighbors and gives intuitive justification of the use of mean-
field theory. Nevertheless, we should emphasize that this is
an uncontrolled approximation, and the limits of its validity
should be checked.

Let us first discuss the thermal equilibrium state near the
locally stable point. The site occupation must follow the
Fermi–Dirac distribution and, therefore,

f i�Ei� =
1

1 + e�Ei−��/T , �3�

where � is the chemical potential and the Boltzmann con-
stant is set to be 1.

In the mean-field approximation, we can calculate the av-
erage potential energy of site i,

Ei = �i + �
j�i

e2f j

rij
. �4�

By combining Eqs. �3� and �4�, one obtains a self-
consistent equation for the energies. It is common to use an
unbiased disorder distribution and add a background charge
� to each site.18 In the mean-field picture, this will lead to the
equation

Ei = �i + �
j

 1

1 + e�Ej−��/T − �� e2

rij
. �5�

For half filling, �=0 and �=0.5.
Rigorously, one cannot call any solution an equilibrium

distribution since the equilibrium distribution is a Boltzmann
average over all configurations, not only those near the lo-
cally stable point. The solution may be viewed as a “local
equilibrium.” We will see that the physical picture obtained
is quite plausible. At low temperatures,19 the probability dis-
tribution of the energies will contain a soft gap at the Fermi
energy, known as the Coulomb gap,12,18,20–25 as we shall dis-
cuss now.

Equation �5� can be numerically solved by starting with a
random set of energies and evolving them iteratively within
the mean-field model. This was done following Ref. 18 by
solving the equations for many random instances and aver-
aging over them. In this way, a histogram of the on-site en-
ergies is obtained. When normalized correctly, it gives the

AMIR, OREG, AND IMRY PHYSICAL REVIEW B 77, 165207 �2008�

165207-2



single-particle density of states �DOS� as a function of en-
ergy. The results for two dimensions, yielding the Coulomb
gap, are given in Fig. 1. Notice that the obtained DOS con-
tains a linear gap near the Fermi energy, which is in accor-
dance with other works.20,24

It should be mentioned that the energies of the sites are
not independently distributed: in order for the sum of Eq. �5�
not to diverge, there must exist spatial correlations in the
energy distribution among the sites. The fact that correlations
exist should come as no surprise: for example, let us look at
two sites which are close to each other. At low temperatures,
we expect the solution of the equations to have the occu-
pancy at one of the sites close to unity and small for the other
site. Since the influence of the other sites on the energy dif-
ference of the two nearby sites will be small �only dipole
corrections�, the energy difference between the two sites will
be � e2

r . This is demonstrated in Fig. 2.

C. Response to an external field: Steady-state solution

When a small electric field is applied, there are correc-
tions to the average occupations and also to the average en-
ergies. It can be shown that the problem of finding the
steady-state solution corresponds to that of solving the
steady state of a resistance network, using Kirchoff’s laws.13

The solution, when neglecting interactions, gives the well-
known Mott variable range hopping,26 which was experi-
mentally observed in many cases.27 This calculation can be
performed through the mean field: the steady-state solutions
are obtained from time-dependent equations that are essen-
tially the mean-field equations. In the following, we propose
to use the same ideas to discuss the dynamics of the system
out of equilibrium.

III. DYNAMICS

Let us pose the following question: How will the occupa-
tion numbers or conductance depend on time when the sys-
tem is pushed slightly out of the locally stable point? Having
seen that the mean-field approximation yields the correct
density of states as well as the out-of-equilibrium steady-
state solution in the presence of an external field, we propose
to use the same approximation to describe the dynamics of
the systems when prepared out of local equilibrium.

Experimentally, the form of the relaxation depends on the
details and mechanism of the excitation. For simplicity, let us
assume that the initial perturbation takes the form of a ran-
dom addition �ni to the state occupations, with �i�ni=0,
reflecting particle number conservation.

Assuming that the initial change in the occupations is
small, we can still use Eq. �2� for the tunneling rates, with
the average occupations at the locally stable point f j substi-
tuted by the occupation numbers slightly out of equilibrium
nj �which can take any value between 0 and 1�. The energies
at each instance are related to the out-of-equilibrium occupa-
tions by Eq. �4�, upon replacing f j by nj, and we can write
the time evolution of the average occupation as

dni

dt
= �

j�i

� ji − �ij . �6�

This defines the problem completely. At the locally stable
point itself, the right-hand side of Eq. �6� must vanish.
Therefore, not too far from the point, we can take the first
�linear� order in the quantities �ni, the deviations from the
stable point. The linearized equation then takes the form of

Eq. �1�, where �n� is a vector of the deviations of the occu-
pation numbers from their local equilibrium values. The N
eigenvalues and eigenvectors of the matrix A will determine
the decay rates of the system.

We would like to stress that the matrix A can be calcu-
lated for the cases of interest by linearizing the equations of
motion near the locally stable point. This strategy is com-
pletely general and will be valid for any system, which can
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FIG. 1. �Color online� Histogram of the site energies in two
dimensions, for N=10 000 and �=0 �half filling�, obtained by solv-
ing the self-consistent Eq. �5�. The sites were uniformly distributed
in a square with e2

rnnT =20, where rnn denotes the average nearest-
neighbor distance and T is the temperature. The energies �i were
uniformly distributed in the interval �− W

2 , W
2 	 with W=1. The y axis

denotes the probability density of the energies Ei. The graph is the
average over 300 instances. Notice the finite value of the density at
the minimum due to the finite temperature.
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FIG. 2. �Color online� Demonstration of correlations between
the distance and energy difference of two sites chosen at random.
The parameters were as for Fig. 1 with N=1000. The graph shows
the energy difference of all the pairs of sites as a function of their
distance. The parameterless fit clearly shows that at small distances,
�E� e2

r .
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be described by equations of motion and has a locally stable
point �such would be the case for most classical systems and
many quantum systems in a mean-field approximation�. The
dynamics of the system when pushed slightly away from the
fixed point will be characterized by the eigenvalues of the
rate matrix. In the common case where disorder plays a role,
the dynamics will depend on the distribution of eigenvalues
of the matrix: this is, in fact, a problem of random matrix
theory,28 where the eigenvalue distribution is responsible for
the dynamics of the system. An extremely relevant property
of the electron-glass case, as we shall demonstrate in Sec.
III A, is that the entries of the random matrix are exponen-
tials of the broadly distributed parameters �energy and dis-
tance�. Another important feature of these matrices is that the
sum of every column vanishes. These properties make this
matrix belong to a different class from the Gaussian en-
sembles usually treated in random matrix theory and will
play an important role in the dynamics, leading to slow re-
laxations. A similar class of matrices was previously studied
by Mezard et al.29

In the following section, we will derive the form of the
matrix A for the particular case of localized states coupled
through phonons. We will find that the probability distribu-
tion is divergent for small eigenvalues and suggest what the
minimal properties leading to such a distribution are. The
implications of this distribution on the time-dependent relax-
ation of the occupation numbers and conductance will then
be discussed.

A. Application to the electron-glass model

Starting from Eq. �2�, a calculation of the elements of
matrix A in Eq. �6� shows that

Aii = �
j�i

−
�ij

0

nj
0�1 − nj

0�
, �7�

where �ij
0 are the local equilibrium rates, given by Eq. �2�,

and nj
0 are the occupation numbers in equilibrium. For i� j,

Aij = �ij
0 1

nj
0�1 − nj

0�
− �

k�j,i

e2�ik
0

T

 1

rij
−

1

rjk
� . �8�

Notice that the matrix is not symmetric due to the nj
0�1

−nj
0� term. The sum of each column of the matrix vanishes,

guaranteeing particle number conservation.
A priori one would expect that at low enough tempera-

tures T�
e2

rnn
, we could neglect the first term in the equation

for the regime of interest. However, at low temperatures, the
occupations of the sites tend to 0 or 1 exponentially, imply-
ing that the 1

nj�1−nj�
term explodes much faster than the 1

T part
in the second term. Viewed in a different way, if one looks at
the expression of the mean-field rates �ij �ni�1−nj��1
+N��E�	, one sees that if two states are close in energy, then
the first term in the matrix element �Eq. �8�	 �

ni

nj
N��E�

� T
�E . Therefore, there is good coupling between any two

states close in energy �and distance�, not only those ones
close to the Fermi level, as is the case for the second term.
Therefore, the “phase space” is much larger for the first term,

and the second one can be neglected. We have numerically
calculated the eigenvalue distribution for some specific sys-
tem parameters and, indeed, it was verified that the second
part has a small influence on most eigenvalues �see Fig. 3�.

An important property follows: the off-diagonal elements
are positive. Together with the property that the sum of every
column vanishes, the stability of the mean-field solution is
guaranteed: the real parts of all the eigenvalues are negative
�or zero�, characterizing decay.30 In fact, this is a necessary
and sufficient condition for the stability of the point.

Let us consider the distribution of the eigenvalues. Figure
4 shows the reciprocal of the distribution of the real part of
the eigenvalues of the matrix A, as numerically obtained. We
first found a mean-field solution by iterating the equations
�see, for example, Ref. 18�, then used Eq. �8� to construct the
relevant matrix. The eigenvalues of this matrix were numeri-
cally found. Notice that the localization length 	 influences
the dynamics, although it has no effect on the equilibrium
properties, at least as long as the localized states are spatially
well separated.

In Sec. III B, we will analyze a simplifying limit, when
the rather complicated dependence on energy can be ne-
glected, and consider only the exponential dependence of the
tunneling rate on length. Both limits give approximately a 1

���
distribution �up to logarithmic corrections�, reminiscent of 1

f
noise.31 This suggests that the result may be more general
and not dependent on the details of the specific model. Note
that the interactions affect the mean-field solution �and the
Coulomb gap�, but the calculation shows that the slow dy-
namics will exist also without them.

Let us now discuss the consequences of this distribution
for the dynamics of the system. Having found that the distri-

0 500 1000
−0.6

−0.4

−0.2

0

0.2

Eigenvalue index

E
ig

en
va

lu
e

m
ag

ni
tu

de

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Eigenvalue index

R
el

at
iv

e
er

ro
r

FIG. 3. �Color online� Comparison of the eigenvalue magni-
tudes of the full linearized matrix �stars� and the ones obtained after
neglecting the “Coulomb” term �crosses�, the second one in Eq. �8�.
The difference is mostly seen for the large magnitude eigenvalues,
which are not relevant for the behavior at long time scales. N
=1000, 	

rnn
=0.1, and e2

rnnT =10. The energies �i were uniformly dis-
tributed in the interval �− W

2 , W
2 	 with W

T =10. The inset shows the
relative error in replacing the full matrix with the approximated
one, which is defined as the difference between the approximation
and exact diagonalization divided by the exact value.
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bution is � 1
��� down to some minimal value, we conclude

that if all eigenvectors �except the one with eigenvalue zero,
not conserving particle number� are excited with equal prob-
ability, the time evolution of the deviation from the local
stable point will be related to the Laplace transform of the
eigenvalue distribution. This will give rise to logarithmic de-
cays. Let us show this in more detail: if the eigenvectors are

denoted by n�
� , the time-dependent deviation from the locally

stable point will be given by

�n� = �
�

c�n�
� e−�t. �9�

We shall assume that the eigenvectors are excited with
roughly uniform probability. Going to the continuous limit,
and utilizing the fact that the components of the eigenvectors
themselves are also random variables, we obtain that the

norm of �n� should relax as

��n� �t�� � �
�min

�max e−�t

�
d� � �E − log�t�min	 , �10�

for 1
�min

� t�
1

�max
, where �E is the Euler constant.

B. Dynamics of exponential models

Hitherto, we have discussed a specific model for glass
dynamics in a system constructed from interacting electrons
and phonons. The actual form of the rate matrix eigenvalue
distribution did not strongly depend on the details of the
matrix elements. In this section, we will show that there are
few sufficient conditions on the random rate matrix A that
will make the relaxation process long. Let us look at the
dynamics which follow from a class of random matrices
obeying the following properties.

�1� The sum of every column vanishes. This follows from
particle number conservation.

�2� The entries of the matrices are distributed over a very
broad range. This happens, for example, when they are ex-
ponentials of a more or less flat distribution.32

We expect that a variety of systems that exhibit a glassy
behavior may be described by a random rate matrix belong-
ing to this class. The matrix obtained for the electron-glass
system indeed obeys these properties. The first property was
explicitly shown in Sec. III A. To see the second, let us ex-
amine Eq. �8�. If we neglect cases where the energies Ei, Ej,
and �Ei−Ej� are smaller than T, we can recast the equation
into a more transparent form,

Aij � e−rij/	e−�Ei−Ej�−�Ei�+�Ej�/2T. �11�

Due to the exponential, the matrix entries are indeed broadly
distributed.

We shall now discuss a specific class of matrices which
can be analytically analyzed. As seen in Eq. �11�, the matrix
elements for the electron-glass system contain a factor e−rij/	.
If 	 is much smaller than the typical distance rnn, it is plau-
sible that this factor would be dominant in determining the
eigenvalue distribution. This motivates us to discuss a sim-
pler model of so-called distance matrices:29 assume that we
have N random points in a two dimensional space. Let us
define a matrix Bij =e−rij/	, where rij is the distance between
points i and j, and 	 some constant. Let us choose the diag-
onal elements of the matrix such that the sum of every col-
umn vanishes. Following the previous discussion of the dy-
namics, we are interested in the distribution of eigenvalues
of such a matrix. A mapping of this problem to a field theory
problem is given in Ref. 29, enabling one to look at a low-
density approximation to the theory. Mezard et al.29 calcu-
lated the resolvent R= 1

NTr 1
�−H , the imaginary part of which

yields the density of states, i.e., the distribution of eigenval-
ues. By using their formula �21� for the case of f�r�=e−r/	,
we obtain that the low-density expansion of the resolvent is

R��� =


2V
� dxdy
 1

� + 2e−r/	 −
1

�
� , �12�

where the integrals are performed over the whole volume.
The second term gives rise to a delta function at the origin,
which comes from the zero eigenvalue the matrix always
possesses, and is of no particular interest since the eigenvec-
tor associated with this eigenvalue cannot be excited while
preserving the particle number. The condition for the ap-
proximation to be valid is 	�rnn, as we shall show later in a
more transparent way.

Since the density of states is given by − Im�R���	
� , we can

use the fact that Im� 1
x+i� 	=−i���x� and obtain the DOS as

P��� =


2V
� dxdy��� + 2e−r/	� . �13�

Performing the integral in one dimension, for eigenvalues
not too close to the minimal value 2e−L/	, leads to the result,

P��� =
− N	

L�
, �14�

with � in the interval �−2,−2e−L/		. Repeating the calculation
in two dimensions, again, for eigenvalues not too close to the
minimal values, yields
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FIG. 4. �Color online� Reciprocal of the distribution of the real
part of the eigenvalues, obtained numerically, averaged over 1000
realizations. The parameters were as for Fig. 3. The fit to the recip-
rocal distribution is linear.
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P��� =

�N	2 log
−
�

2
�

L2�
. �15�

We shall now give a transparent demonstration of these
results. In the low-density limit, we can couple each site to
its nearest neighbor, thus dividing the system into N

2 pairs.
Neglecting the effect of all other sites, we obtain that the
eigenvalues will be similar to those of an ensemble of 2
�2 matrices of the form

M = 
− e−�x−y�/	 e−�x−y�/	

e−�x−y�/	 − e−�x−y�/	 � . �16�

Since the matrix elements of B decay on the scale of 	, this
would be a good approximation for 	�rnn. One eigenvalue
of M is 0, and the other is −2e−�x−y�/	. Therefore, half the
eigenvalues of B will be the zero under this approximation,
and the distribution of the other eigenvalues will be that of
the random variable −2e−r/	, where r is the nearest-neighbor
distance. Notice that the zero eigenvalues correspond to the
second term in Eq. �12�.

The distribution of the nearest-neighbor distance can be
calculated: looking at a typical site, let us calculate the prob-
ability that its nearest neighbor is at least distance r away.
This is equivalent to asking that all of its neighbors are at
least a distance r away, and since they are randomly distrib-
uted, we obtain that

Prob�r� = 
1 − VD
rD

LD�N−1

, �17�

where V1=2 and V2=�.
For r�L, we can approximate

Prob�r� = e−VDN�rD/LD�. �18�

We have assumed that the initial site is not too close to the
boundaries. Since we are interested in the probability, the
sites near the boundary will give a negligible correction to
the above probability: the sites for which Eq. �18� fails are a
distance of order rnn or less from the boundary. Therefore,
their fraction in the system is of order

rnn

L . For N�1, this
fraction is negligible.

The probability distribution can be calculated by differen-
tiating with respect to r, leading to

P�r� = VdDN
rD−1

LD e−VDN�rD/LD�. �19�

By construction, the probability distribution is exactly nor-
malized. In one dimension, the eigenvalue distribution that
follows is

P��� = − N
e−2N	/L�log�−�/2��

L�
	 �

1

�1−� , �20�

with �= 2N	
L �1, while for two dimensions,

P��� =

�N	2 log
−
�

2
�e−��	2/L2�N log2�−�/2�

L2�
. �21�

Aside from the exponential term, Eqs. �20� and �21� co-
incide with the field theory �Eqs. �14� and �15�	. Notice that
in the latter, there is a cutoff on the eigenvalue magnitude,
while for Eqs. �14� and �15�, the distribution is nonzero also
for very small eigenvalues. Figure 5 shows the results of
numerical simulations for the case of low-density distance
matrices in two dimensions and a comparison to the theory.

C. Role of the interactions

The previous section demonstrated that a simplified
model where the energy dependence of the matrix elements
of A was neglected already leads to a 1

� distribution of the
real part of the eigenvalues. What, then, is the role played by
the Coulomb interactions? For one, we know that they lead
to the Coulomb gap, as demonstrated in Fig. 1. It is expected
that this soft gap should influence the conductivity. A natural
question one may ask is whether the interactions should af-
fect the dynamics of the relaxation process and the time
scales involved. Figure 6 shows the numerical result for the
eigenvalue distribution at various values of the interaction
strength. It is seen that P��� follow the same C

� curve �with
the same prefactor C�, but the interactions shift the whole
distribution to lower values: the lower and upper cutoff are
shifted downward, so that the average eigenvalue is smaller
due to the interactions. This can be explained as follows: as
the interactions grow, the width of the site energy distribu-
tion grows as e2

rnn
. Therefore, the typical matrix element of A

will have a larger “penalty” for the energy mismatch between
two random sites, driving the eigenvalues to be smaller yet.
Nevertheless, it is quite remarkable that the same C

� distribu-
tion is followed, with the upper and lower cutoffs renormal-
ized.

D. Relaxation of the conductance

In many cases, a logarithmic relaxation in time is ob-
served for the conductance.3,4,11 One should ask what is the

0 0.5 1 1.5 2
0

0.5

1

−λ

P(
λ)

FIG. 5. �Color online� Distribution of the eigenvalues in two
dimensions for a low density � 	

rnn
=0.05�. N=1000, and the results

were obtained after averaging over 1000 instances. The points were
uniformly distributed in the unit square, and the matrix element
Aij =e−dij/	 with 	=0.0016. The dashed curve is a plot of Eq. �15�,
while the solid curve is a plot of Eq. �21�.
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relation between the relaxation of the conductivity and that
of the occupations for the electron-glass model.

We now present an intuitive argument motivating the
speculation that the time relaxation of the conductance
should be similar to that of the occupations. The essence of
the argument is the claim that at low temperatures, any per-
turbation of the equilibrium configuration will lead to en-
hanced conductance:33 if this is true, it is reasonable that as
the typical deviation of the occupation number relaxes, so
does the enhanced conductivity, until it reaches its equilib-
rium value. For small enough deviations, the two will be
proportional to each other, as one can always take the lowest
order term in the expansion of the dependence of the out-of-
equilibrium conductivity on the occupation number devia-
tion.

Let us explain our claim that any perturbation will lead to
enhanced conductivity. This may come about by two physi-
cally different mechanisms: first of all, we note that when the
system is excited, we create vacant sites well below the
Fermi surface and add electrons above it. Electrons will tun-
nel between these sites and, thus, even at very low tempera-
tures current may flow through the system.

It should be mentioned that isolated relaxing modes,
which are essentially those which give rise to the logarithmic
relaxation of the occupation numbers, will also influence the
resistance of the system. To see this, it is instructive to look
at the Miller–Abrahams resistor network. The resistance of
the system, in equilibrium, will be determined by a small
subset of resistors that are part of the so-called backbone or
percolation path. Due to the long-ranged Coulomb interac-
tions, small changes in the mean occupation numbers far
away from the backbone will change the electrostatic poten-
tial on the electronic sites belonging to the backbone and,
therefore, may significantly change the values of the resistors
or change the backbone geometry altogether. The formal di-

vergence of sums of the type of Eq. �5� means that sites far
away from the backbone will also be important to this pro-
cess.

The percolation picture may also account for the separa-
tion of scales between the time scales involved in the trans-
port process and those of the relaxation processes: the resis-
tance of the system, within this picture, is determined by the
bottleneck of the resistor network. Thus, the time scale asso-
ciated with transport is given by the relation R= kT

e2�
,12 where

R is the resistance of the bottleneck resistor, comparable to
that of the system, which is Rqe�T0 / T�1/2

. One may find iso-
lated relaxing modes with much longer time scale since these
are not constrained to belong to the resistor backbone, which
allows for a much larger phase space. Moreover, some relax-
ations can occur only through multiparticle transitions,
which are not considered in the current mean-field approach.
These would make this time scale even longer.

The second mechanism of conductance relaxation is more
subtle and is related to the Coulomb gap. Let us look at the
Einstein relation,34 �=e2 dn

d�D. We do not expect to have any
anomalies in the thermodynamic DOS, dn

d� , but the diffusion
constant D should be much smaller. This is because the
single-particle DOS at the chemical potential vanishes: mov-
ing an electron from a site with energy close to the chemical
potential to another site will necessitate an energy of order of
the width of the Coulomb gap. Therefore, the Coulomb gap
may significantly lower the conductivity and, upon perturb-
ing the system, the conductivity increases with the single-
particle DOS at � �Ref. 35� �for systems close to a local
equilibrium, which exhibit the Coulomb gap�. The tempera-
ture should be low enough such that the local equilibrium
Coulomb gap would not be smeared.19 Let us suppose that
due to our initial perturbation of the local equilibrium con-
figuration, we have some excess �positive or negative� �ni in
the occupation number at site i. Assuming these numbers to
be random with a standard deviation �n, the energy at site j

will now have an additional contribution �i
�ni

rij
. A finite

single-particle DOS at � will arise, which is proportional to
�n. It should be noted that the sum would diverge for an
infinite system due to the long-range nature of the Coulomb
potential, unless correlations exist among the �ni. Since we
have not discussed the relation of �ni to the perturbation
applied, we will not address this issue here. The proportion-
ality to �n is the crux of the matter here and suggests that
within this model, the conductance relaxation should have a
similar time dependence to that of the occupation number
relaxation.

IV. CONCLUSIONS

We have studied a finite temperature mean-field model for
the dynamics of the electron glass system. For a perturbation
that drives the system not too far from the �mean-field� local
equilibrium, we mapped the problem onto rate equations
with a random relaxation matrix A. The matrix A belongs to
a class different than the Gaussian random matrix ensembles.
We found that the distribution of the eigenvalues is � 1

��� and
naturally yields a logarithmic decay of the occupation num-
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FIG. 6. �Color online� The effect of interactions on the distribu-
tion of the eigenvalues of A. The graph shows P��� for various
interaction strengths, each denoted by a different color and mark
�dots are the case with strongest interaction, while stars are the
weakest�. The temperature, disorder, density, and localization length
were as for Fig. 3, and e2

rnnT was varied from 1 to 10. It is observed
that P��� follow the same � 1

� dependence with the same prefactor,
but as the interaction strength grows, the lower and upper cutoffs
are pushed to lower eigenvalues.
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bers. This may lead to a logarithmic decay of the conduc-
tance. Such a logarithmic decay of the conductance is experi-
mentally observed in many cases. We should stress that
transitions among different metastable states are not captured
within the present mean-field model and may be important
for the dynamics at larger time scales. Nevertheless, we em-
phasize the remark made before that the 1

� distribution of
decay eigenvalues should be much more general than the
specific model considered. It might also hold, for example, in
the case of multiparticle transitions. Further research is
needed to obtain additional predictions of this model, such as

the time dependence of the Coulomb gap and the voltage-
dependent conductance in the “two-dip” experiment.8
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