1 Time reversal

1.1 Without spin

Time-dependent Schrodinger equation:

ihop) (r,t) = [—%A +V m] W (r, 1)

"Local” time-reversal transformation, 7'

th<to<...<t,=Tt1 >Tty>...>Tt,
T(ty —t1) = — (ta — t1)
T=1T"

Transformed Schrodinger equation

d(foT)(t) f(Tt+Tdt)— f(Tt) f(Tt—dt)— f(Tt) _df(Tt)
dt B dt B dt B dt
\
-2 -
—ihopw' (v, Tt) = —%A +V (r)| ¢ (r,Tt)
On the other hand,
. * [ h2 ] *
_Zhatw (I', t) = __%A +V (I‘)- 'l/) (I', t)
\

' (r, Tt) =" (r,t) = C Y (r,t)

Properties:
cC’=1,0'=C
C' is anti-hermitian,
(¥[Cp) = (p|C) = (CYlp)”
and anti-linear,
C (c1p1 + capa) = 1Cp1 + 5Cps
However, the transformation C preserves the norm of the wavefunctions,
(CYICY) = (Wly) -

Relationship to operators:

C(ry) =r(Cy) = Cr =rC

h h
C(py)=C (;Vz/}) =—;VOy=-p(CY) = Cp=-pC

CL=C(rxp)=rxCp=—(rxp)C=-LC

1

(12)

(13)
(14)

(15)



1.2 With spin

Hamilton operator
2

b KB
H=—+V — (L+29)B
P v+ B os)
Pauli-Schrédinger equation
. h? 1B
ihop (r,t) = | ——A+V (r)+— (L+2S)B| ¢ (r,1)
2m h
Time-reversed magnetic field: B'= —B

Time-reversed Pauli-Schrodinger equation

2

—ihop)' (v, Tt) = [—;—mA +V(r)+ %B (L + 2S) B’] Y (v, Tt)

~ | a V@) - B L8 B| (T

On the other hand:

—ihO* (r,t) = {—%A+V(r)+%(L*+2S*)B} b (r,1)
[ » o HB L g ‘r
— [—2mA+V() 2L QS)BM (r, 1)

It is then tempting to suppose that IL € L (C?)

' (v, Tt) = LC P (r,t) = LY* (r,t)

4
. h? 1B
—thLow™ (r,t) = {—%A +V(r)— - (L +28S) B] Ly™ (r, t)
I

—ihO* (r,t) = [—%A +V(r) - ’%B (L +2L7'SL) B] W* (v, 1)

This equation is obviously satisfied if

L 'SL= -S8*= -CSC = SLC =-LCS

Let’s introduce the simplified notation: T'= LC'

TS =-ST .

It is easy to prove that
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is a satisfactory choice (in many text-books 1" = io, C is chosen).
Proof of Eq. (26):

!
T70,T = (=0,C) 04 (0,C) = 0,0,0y = —0,
7'o,T = (~0,0) 0, (0,C) = —0,

Properties:

From the relationship,
W[Te) = (Y]o,Co) = (0,4]Cp) = (0,°)" (s|Cpr) = (0, Cay )
= (plCoy) = — (p|T) = — (TPlp)" ,

it follows that
(W[Ty) == W|Ty) =0,

i.e. 1 and T% are orthogonal and, also, T" is norm-conserving,

(TY|TY) = — (Y|T*) = W[Y) .

Note also that
(Wl = (VITT ' p) = = (T[T 'p)" = (TY|Tp)" .

The operator of spin-orbit coupling, # (VV x p) o, commutes with 7"

T (VV xp)oT = (T (VV xp)T) (T 'oT) = (VV x (—p)) (—0) = (VV x p)o.

1.3 Quenching of the orbital moment

The angular momentum operator changes sign upon time reversal:

T-'LT = Co,Lo,C = CLC=—-L=TLT =L

In the spinless case, i.e. in case of scalar wavefunctions and non-degenerate eigenstates:

Cop =" = e
(WILY) = (CYICLC™)" = = (CY|LCY)" = — ([Ly)" = — ($[Le) = 0.
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In case of degenerate eigenstates, if 1 is an eigenstate of the Hamiltonian then T (or C) is
also an eigenstate with the same energy, thus, it belongs to the same eigen-subspace. Then

(CYILCY) = (WICLCY)" = = (Y|Lih)" = — (Y|Ly) (42)

where we used that (¢|Lt) € R. Thus by choosing the eigenfunctions

v = Lk Co) (43

(i) = 3 (& COLE & Co)) = 7 (ILOY) + (OV]L))

(CY[Lap) = (CLy|Y) = (CLCCY|yp) = — (LCY ) = — (C|Ly))
4
(Ye|Lape) =0 (44)
i.e. the expectation value of L over any eigen-subspace of the Hamiltonian is zero.

In case of a system spin-polarized along the z direction with no spin-orbit coupling and the
Landau paramagnetic term neglected, the eigenstates are pure spinors:

w+:(“0+> w:(u0_> (45)

Hiui = E4U+ (46)

where

with )
H, = 2p_m LV (1) + pupB. (r) . (47)

The theorem proven for scalar wavefunctions then applies separately for both the spin channels,
i.e the orbital moment vanishes again.

1.4 Kramers degeneracy

Let us consider an eigenfunction, ¥ (r1$1,...,rysy) of the N-electron Hamiltonian,
Hy =Ey (48)
where
T'HT = H . (49)

The time-reversed wavefunction, T, is then also eigenfunction of H with the same eigenvalue,

T 'HTy = By = H (Ty) = E(TY) . (50)

The representation of 1" which satisfies

TS®) = sk (51)



forany k=1,..., N, is

T=o0...oMC=(-)"ColV ..ol = (-)"T7!' = 1% =(-1)" . (52)
that means
Tt =(-)VT. (53)
Furthermore,
W|TY) = (WlofD .. .olMCy) = (olV) .. aMy|C ) b o) (p|Call .. oM )
= (=1)" (¢loy...0,)Cv) = (=1)" (¥|T¥) (54)

Corollary: For odd number of electrons 1 and T are orthogonal, therefore, the eigenstates of
the system are at least twofold degenerate.

1.5 Kramers degeneracy of Bloch-states

We consider the Hamiltonian derived from the Dirac equation up to first order of 1/c¢?:

p2 p4 h2 A
H=—+V(r)— - + Ay AV (r)+ —— (VV (r) xp)o (55)

2m 4m?2c?
This one-electron Hamiltonian is invariant w.r.t. time-reversal,

T'HT =H . (56)

From the previous section it follows that the eigenstates are at least two-fold degenerate:

Hi = e (57)
H(Ty) =¢e(Ty) (58)

and T is orthogonal to .
Let’s see what is T%? A Bloch-state eigenfunction is defined as
Uk (r) = ™ uy (1) (59)
Hkuk = ExUk (60)

Hamiltonian for non-spinpolarized periodic solid:

(p + k) (p+ k)t R
Hk = T + Vv (I') — 8m302 8m202 AV (I') + m (VV (I') X (p —+ hk)) g (61)
It is straightforward to show that
T'H,T = H (62)
thus,
T~ Hyuy = e Ty (63)
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How (T uy) = ex (T uk) (64)

\
E_k = €k (65)

and the two degenerate wavefunctions are:

o) = (1) = e (R0 (66)

) (r) _iufq (r)

1.6 Space inversion

Let’s consider the case when also space inversion (i) applies:

Viir)=V (-r)=V(r) (67)
VV(ir) ==VV (r) (68)
AV (ir) = AV (r) (69)
ipflir)=—pf(-1) (70)

4
Hy (ir)ux (ir) = H_j (r) ug (—1) (71)

4
H_y (r) uk (—r) = eug (—r) (72)

This also implies that

E_x = €k (73)

and
Uy (r) = ux (—r) .

The corresponding Bloch-eigenfunction for —k,

W =t (BT (74)

Uy (—r)

In case of both time-reversal and inversion symmetry, the two eigenfunctions for —k with the
same energy €_x (= €x) are orthogonal:

[ et = =i [l @) (-1) ~ g 1w (x =0 (75)

Corollary: The Bloch-states (related to a given k) of a nonmagnetic centro-symmetric crystal
are at least twofold degenerate.



1.7 Sorting out the eigenstates by spin-expectation value

In general, the eigenfunctions wl({“ ) (n = 1,2) are not eigenfunctions of the spin-operator S, for
any chosen quantization axis z. This is only the case in the absence of spin-orbit coupling.
Nevertheless, it is possible to construct the orthonormal linear combinations,

¢1(<+) = 01%((1) + 62101(3) (76>
U = =l + v (77)
such that |ci|” + |eo” = 1
(e ol o) = (6 oy ) =0 (78)
and
(W o i) = £ (79)
0< P <1 (80)

Thus we can sort out the two degenerate states by the ’spin-character’, Py.
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FIG. 2: Band structure of Pt from the fully relativistic (red)
and the relativistic with the spin-orbit coupling scaled to zero
(black) calculation.
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FIG. 3: Calculated fully relativistic band structure of bcc Fe.
The small inset shows a comparison to the calculation with
the spin-orbit coupling scaled to zero (x=0). The spin-orbit
interaction leads to avoided crossings.
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FIG. 4: Calculated relativistic Fermi surface of Cu (upper
left), Au (upper right) and Pt (lower left: 9th band, lower
right: 11th band), and the expectation values of Baz for the
|\I!;:> states are indicated as color code. Note the different
scale for Cu and Au in comparison to Pt.
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FIG. 5: Calculated relativistic Fermi surface for the bands
7-10 of bcec Fe. The expectation values of the Bo. operator
are given as color code.
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