
1 Time reversal

1.1 Without spin

Time-dependent Schrödinger equation:

i~∂tψ (r, t) =

[
− ~2

2m
∆ + V (r)

]
ψ (r, t) (1)

’Local’ time-reversal transformation, T :

t1 < t2 < . . . < tn ⇒ Tt1 > Tt2 > . . . > Ttn (2)

T (t2 − t1) = − (t2 − t1) (3)

T = T−1 (4)

Transformed Schrödinger equation

d (f ◦ T ) (t)

dt
=
f (Tt+ Tdt)− f (Tt)

dt
=
f (Tt− dt)− f (Tt)

dt
= −df (Tt)

dt
(5)

⇓

−i~∂tψ′ (r, T t) =

[
− ~2

2m
∆ + V (r)

]
ψ′ (r, T t) (6)

On the other hand,

−i~∂tψ∗ (r, t) =

[
− ~2

2m
∆ + V (r)

]
ψ∗ (r, t) (7)

⇓

ψ′ (r, T t) = ψ∗ (r, t) = C ψ (r, t) (8)

Properties:
C2 = 1 , C−1 = C (9)

C is anti-hermitian,
〈ψ|Cϕ〉 = 〈ϕ|Cψ〉 = 〈Cψ|ϕ〉∗ (10)

and anti-linear,
C (c1ϕ1 + c2ϕ2) = c∗1Cϕ1 + c∗2Cϕ2 . (11)

However, the transformation C preserves the norm of the wavefunctions,

〈Cψ|Cψ〉 = 〈ψ|ψ〉 . (12)

Relationship to operators:
C (rψ) = r (Cψ) =⇒ Cr = rC (13)

C (pψ) =C

(
~
i
∇ψ
)

= −~
i
∇Cψ = −p (Cψ) =⇒ Cp = −pC (14)

CL = C (r× p) = r× Cp = − (r× p)C = −LC (15)
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1.2 With spin

Hamilton operator

H =
p2

2m
+ V (r) +

µB
~

(L + 2S)B (16)

Pauli-Schrödinger equation

i~∂tψ (r, t) =

[
− ~2

2m
∆ + V (r) +

µB
~

(L + 2S)B

]
ψ (r, t) (17)

Time-reversed magnetic field: B′= −B
Time-reversed Pauli-Schrödinger equation

−i~∂tψ′ (r, T t) =

[
− ~2

2m
∆ + V (r) +

µB
~

(L + 2S)B′
]
ψ′ (r, T t) (18)

=

[
− ~2

2m
∆ + V (r)− µB

~
(L + 2S)B

]
ψ′ (r, T t) (19)

On the other hand:

−i~∂tψ∗ (r, t) =

[
− ~2

2m
∆ + V (r) +

µB
~

(L∗ + 2S∗)B

]
ψ∗ (r, t) (20)

=

[
− ~2

2m
∆ + V (r)− µB

~
(L− 2S∗)B

]
ψ∗ (r, t) (21)

It is then tempting to suppose that ∃ L ∈ L (C2)

ψ′ (r, T t) = LC ψ (r, t) = Lψ∗ (r, t) (22)

⇓

−i~ L∂tψ∗ (r, t) =

[
− ~2

2m
∆ + V (r)− µB

~
(L + 2S)B

]
Lψ∗ (r, t) (23)

⇓

−i~∂tψ∗ (r, t) =

[
− ~2

2m
∆ + V (r)− µB

~
(
L + 2L−1SL

)
B

]
ψ∗ (r, t) (24)

This equation is obviously satisfied if

L−1SL= −S∗ = −C SC =⇒ S LC = −LC S (25)

Let’s introduce the simplified notation: T $ LC

TS = −ST . (26)

It is easy to prove that
T = σy C (27)
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is a satisfactory choice (in many text-books T = iσy C is chosen).

Proof of Eq. (26):

σ∗x =

(
0 1
1 0

)
= σx σ∗y =

(
0 i
−i 0

)
= −σy σ∗z =

(
1 0
0 −1

)
= σz (28)

⇓

T−1σxT = (−σyC)σx (σyC) = σyσxσy = −σx (29)

T−1σyT = (−σyC)σy (σyC) = −σy (30)

T−1σzT = (−σyC)σz (σyC) = σyσzσy = −σz (31)

Properties:
T−1 = Cσy = σ∗yC = −σyC = −T (32)

⇓ (33)

T 2 = −1 (34)

From the relationship,

〈ψ|Tϕ〉 = 〈ψ|σyCϕ〉 = 〈σyψ|Cϕ〉 =
(
σrsy
)∗ 〈ψs|Cϕr〉 =

〈
ϕr|Cσrsy ψs

〉

= 〈ϕ|Cσyψ〉 = −〈ϕ|Tψ〉 = −〈Tψ|ϕ〉∗ , (35)

it follows that
〈ψ|Tψ〉 = −〈ψ|Tψ〉 = 0 , (36)

i.e. ψ and Tψ are orthogonal and, also, T is norm-conserving,

〈Tψ|Tψ〉 = −
〈
ψ|T 2ψ

〉
= 〈ψ|ψ〉 . (37)

Note also that
〈ψ|ϕ〉 =

〈
ψ|TT−1ϕ

〉
= −

〈
Tψ|T−1ϕ

〉∗
= 〈Tψ|Tϕ〉∗ .

The operator of spin-orbit coupling, ~
4m2c2

(∇V × p)σ, commutes with T :

T−1 (∇V × p)σT =
(
T−1 (∇V × p)T

) (
T−1σT

)
= (∇V × (−p)) (−σ) = (∇V × p)σ . (38)

1.3 Quenching of the orbital moment

The angular momentum operator changes sign upon time reversal:

T−1LT = CσyLσyC = CLC=− L =⇒TLT = L (39)

In the spinless case, i.e. in case of scalar wavefunctions and non-degenerate eigenstates :

Cψ = ψ∗ = eiαψ (40)

〈ψ|Lψ〉 =
〈
Cψ|CLC2ψ

〉∗
= −〈Cψ|LCψ〉∗ = −〈ψ|Lψ〉∗ = −〈ψ|Lψ〉 = 0 . (41)
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In case of degenerate eigenstates, if ψ is an eigenstate of the Hamiltonian then Tψ (or Cψ) is
also an eigenstate with the same energy, thus, it belongs to the same eigen-subspace. Then

〈Cψ|LCψ〉 = 〈ψ|CLCψ〉∗ = −〈ψ|Lψ〉∗ = −〈ψ|Lψ〉 (42)

where we used that 〈ψ|Lψ〉 ∈ R. Thus by choosing the eigenfunctions

ψ± =

√
2

2
(ψ ± Cψ) (43)

〈ψ±|Lψ±〉 =
1

2
〈(ψ ± Cψ)|L(ψ ± Cψ)〉 = ±1

2
(〈ψ|LCψ〉+ 〈Cψ|Lψ〉)

〈Cψ|Lψ〉 = 〈CLψ|ψ〉 = 〈CLCCψ|ψ〉 = −〈LCψ|ψ〉 = −〈Cψ|Lψ〉

⇓

〈ψ±|Lψ±〉 = 0 (44)

i.e. the expectation value of L over any eigen-subspace of the Hamiltonian is zero.

In case of a system spin-polarized along the z direction with no spin-orbit coupling and the
Landau paramagnetic term neglected, the eigenstates are pure spinors:

ψ+ =

(
u+
0

)
ψ− =

(
0
u−

)
(45)

where
H±u± = ε±u± (46)

with

H± =
p2

2m
+ V (r)± µBBz (r) . (47)

The theorem proven for scalar wavefunctions then applies separately for both the spin channels,
i.e the orbital moment vanishes again.

1.4 Kramers degeneracy

Let us consider an eigenfunction, ψ (r1s1, . . . , rNsN) of the N -electron Hamiltonian,

Hψ = Eψ (48)

where
T−1HT = H . (49)

The time-reversed wavefunction, Tψ, is then also eigenfunction of H with the same eigenvalue,

T−1HTψ = Eψ =⇒ H (Tψ) = E (Tψ) . (50)

The representation of T which satisfies

TS(k) = −S(k)T . (51)
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for any k = 1, . . . , N, is

T = σ(1)
y . . . σ(N)

y C = (−1)N Cσ(1)
y . . . σ(N)

y = (−1)N T−1 =⇒ T 2 = (−1)N . (52)

that means
T−1 = (−1)N T . (53)

Furthermore,

〈ψ|Tψ〉 =
〈
ψ|σ(1)

y . . . σ(N)
y Cψ

〉
=
〈
σ(1)
y . . . σ(N)

y ψ|C ψ
〉

=
Eq. (10)

〈
ψ|Cσ(1)

y . . . σ(N)
y ψ

〉

= (−1)N
〈
ψ|σ1

y . . . σ
N
y C ψ

〉
= (−1)N 〈ψ|Tψ〉 (54)

Corollary : For odd number of electrons ψ and Tψ are orthogonal, therefore, the eigenstates of
the system are at least twofold degenerate.

1.5 Kramers degeneracy of Bloch-states

We consider the Hamiltonian derived from the Dirac equation up to first order of 1/c2:

H =
p2

2m
+ V (r)− p4

8m3c2
+

~2

8m2c2
∆V (r) +

~
4m2c2

(∇V (r)× p)σ (55)

This one-electron Hamiltonian is invariant w.r.t. time-reversal,

T−1HT = H . (56)

From the previous section it follows that the eigenstates are at least two-fold degenerate:

Hψ = εψ (57)

H (Tψ) = ε (Tψ) (58)

and Tψ is orthogonal to ψ.

Let’s see what is Tψ? A Bloch-state eigenfunction is defined as

ψk (r) = eikruk (r) (59)

Hkuk = εkuk (60)

Hamiltonian for non-spinpolarized periodic solid:

Hk =
(p + ~k)2

2m
+ V (r)− (p + ~k)4

8m3c2
+

~2

8m2c2
∆V (r) +

~
4m2c2

(∇V (r)× (p + ~k))σ (61)

It is straightforward to show that
T−1HkT = H−k (62)

thus,
T−1Hkuk = εkT

−1uk (63)

⇓
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H−k
(
T−1uk

)
= εk

(
T−1uk

)
(64)

⇓

ε−k = εk (65)

and the two degenerate wavefunctions are:

ψk (r) = eikr
(
uk↑ (r)
uk↓ (r)

)
and ψ

(1)
−k (r) = e−ikr

(
iu∗k↓ (r)
−iu∗k↑ (r)

)
(66)

1.6 Space inversion

Let’s consider the case when also space inversion (i) applies:

V (i r) = V (−r) = V (r) (67)

∇V (i r) = −∇V (r) (68)

∆V (i r) = ∆V (r) (69)

ip f (i r) = −p f (−r) (70)

⇓

Hk (i r)uk (i r) = H−k (r)uk (−r) (71)

⇓

H−k (r)uk (−r) = εkuk (−r) (72)

This also implies that
ε−k = εk (73)

and
u−k (r) = uk (−r) .

The corresponding Bloch-eigenfunction for −k,

ψ
(2)
−k (r) = e−ikr

(
uk↑ (−r)
uk↓ (−r)

)
. (74)

In case of both time-reversal and inversion symmetry, the two eigenfunctions for −k with the
same energy ε−k (= εk) are orthogonal:

∫
ψ

(1)+
−k (r)ψ

(2)
−k (r) d3r = −i

∫
[uk↓ (r)uk↑ (−r)− uk↑ (r)uk↓ (−r)] d3r = 0 (75)

Corollary : The Bloch-states (related to a given k) of a nonmagnetic centro-symmetric crystal
are at least twofold degenerate.
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1.7 Sorting out the eigenstates by spin-expectation value

In general, the eigenfunctions ψ
(µ)
k (µ = 1, 2) are not eigenfunctions of the spin-operator Sz for

any chosen quantization axis z. This is only the case in the absence of spin-orbit coupling.
Nevertheless, it is possible to construct the orthonormal linear combinations,

ψ
(+)
k = c1ψ

(1)
k + c2ψ

(2)
k (76)

ψ
(−)
k = −c∗2ψ

(1)
k + c∗1ψ

(2)
k (77)

such that |c1|2 + |c2|2 = 1

〈
ψ

(+/−)
k |σx|ψ(+/−)

k

〉
=
〈
ψ

(+/−)
k |σy|ψ(+/−)

k

〉
= 0 (78)

and
〈
ψ

(+/−)
k |σz|ψ(+/−)

k

〉
= ±Pk (79)

0 ≤ Pk ≤ 1 (80)

Thus we can sort out the two degenerate states by the ’spin-character’, Pk.
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FIG. 2: Band structure of Pt from the fully relativistic (red)
and the relativistic with the spin-orbit coupling scaled to zero
(black) calculation.

FIG. 3: Calculated fully relativistic band structure of bcc Fe.
The small inset shows a comparison to the calculation with
the spin-orbit coupling scaled to zero (x=0). The spin-orbit
interaction leads to avoided crossings.
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FIG. 4: Calculated relativistic Fermi surface of Cu (upper
left), Au (upper right) and Pt (lower left: 9th band, lower

right: 11th band), and the expectation values of β̂σz for the∣∣Ψ+
k

〉
states are indicated as color code. Note the different

scale for Cu and Au in comparison to Pt.
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FIG. 5: Calculated relativistic Fermi surface for the bands
7-10 of bcc Fe. The expectation values of the β̂σz operator
are given as color code.
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