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Free electron gas in HF approximation
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Basic theorems of DFT

Hohenberg - Kohn theorems
Bijection between Vext and ρ(r) for ground state

V external potential =⇒ Ψ(r1, r2, . . . rN) =⇒ ρ(r)
ρ(r) =⇒ V

E = 〈Ψ|H|Ψ〉 < 〈Ψ′|H|Ψ′〉 = 〈Ψ′|H ′ − V ′ + V |Ψ′〉 =
E ′ + 〈Ψ′|V − V ′|Ψ′〉 = E ′ +

R

ρ(r)(v(r) − v ′(r))d3r
E ′ = 〈Ψ′|H ′|Ψ′〉 < 〈Ψ|H − V + V ′|Ψ〉 = E −

R

ρ(r)(v(r) − v ′(r))d3

E − E ′ < E ′ − E

For a given external potential V the exact density ρ(r)
minimizes the ground-state energy E0, which is a uniquely
determined functional.
Levy-Lieb functional

{Ψi} where
R

Ψidr3
2 dr3

3 . . . dr3
N = ρ(r) E [ρ] = min{〈Ψ|H|Ψ〉}
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Kohn-Sham equation

E = T + V + W

T : kinetic energy of interacting electrons.
Kohn-Sham picture

T : kinetic energy of non interacting electrons
ρ(r) =

∑

i φ
∗

i (r)φi (r) |φi〉φj 〉 = δij

E [ρ] =
∑

i

∫

φi∆φi d
3r +

∫

ρ(r)v(r)d3r +

∫

ρ(r)ρ(r ′)
|r − r ′|

d3rd3r ′ + Exc [ρ]

Kohn-Sham equation

−△φi(r) + (v(r) + vH(r) + vxc(r)) φi(r) = λiφi(r)

vH(r) =

∫

ρ(r ′)
|r − r ′|

d3r ′, vxc(r) =
δExc [ρ(r)]
δρ(r)
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Properties of the Khon-Sham equations

Expression for total energy:

E =
X

i

λi−
1
2

Z

ρ(r)ρ(r′)
|r − r′|

+Exc[ρ]−

Z

vxc(r)ρ(r)dr3−µB

Z

Bxc(r)m(r)dr3

Interpretation of Kohn-Sham Lagrange multiplier λi

Local effective potential
No Koopman’s theorem - can not be interpreted as
one-particle energies
Exact Fermi level for metals and top and bottom of the
valence and conduction band for semiconductors

EN − EN−1 =

∫

δE
δρ
δρ(r)dr3 =

∫

µδρ(r)dr3 = µ = λHOMO
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Local Density Approximation

E(ρ0) = ε(ρ0)ρ0 is determined for free electron gas
ρ0 is substituted by ρ(r)

Exc =

∫

ε(ρ(r)ρ(r)d3r

From HF results Ex ∼ ρ4/3, vx (r) ∼ ρ1/3

Analytic methods
U. von Barth and L. Hedin, J. Phys. C 5, 1629 (1972)
O. Gunnarsson and B. I. Lundqvist, Phys. Rev. B 13, 4274
(1976)
Vosko, Wilk, and Nusair, Can. J. Phys. 58, 1200 (1980)
Perdew and Zunger Phys. Rev. B 23, 5048 (1981)
J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992)

QMC
Ceperley and Alder, Phys. Rev. Lett. 45, 566 (1980)
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Success of LDA

Geometries
The accuracy of geometries is better than 0.1 Å
For certain geometries even comparable to accuracy of CI
calculations (10?2 Å)
Lattice constants are obtained within 4% or better

Accuracy for calculated energies better than 0.2 eV/atom,
in special cases even better than 0.01 eV/atom.
Atomization energies in simple molecules: up to 4 kcal/mol
( 0.2 eV/atom)
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Success of LDA

The difference between the exchange (left) and correlation (right)
energy densities computed using variation quantum Monte Carlo and
the local density approximation in bulk Silicon (Phys. Rev. Lett. 78
3350 1997)

exchange energy underestimated
correlation energy overestimated

}

cancellation of errors

Author Ab-initio methods



Density Functional Theory
Introduction
Solution of Kohn-Sham..
ave-function methods

Extensions of LDA

LSDA Exc[ρ, m], ρ = ρ↑ + ρ↓, m = ρ↑ − ρ↓

„„

−
~

2

2m
△ + v(r) + vH(r) + vxc(r)

«

I + Bxcσz

« „

φi↑(r)
φi↓(r)

«

= λi

„

φi↑(r)
φi↓(r)

«

GGA (Generalized Gradient Correction)

Exc =

∫

F (ρ↑(r), ρ↓(r),∆ρ↑(r),∆ρ↓(r)) dr3

Perdew: More ab-initio
Becke: More semi empirical. Most widely applied

Hybrid functionals: LDA + GGA + HF
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SIC

Self Interaction Correction

Both in the Hartree and in the exchange terms the
electrons interact themselves

For delocalized electrons the error decreases as 1/V .

For localized electrons the error could be large.

ESIC
xc (ρ↑, ρ↓) = Exc(ρ↑, ρ↓)−

X

i

(EH(ρi↑) + Exc(ρi↑, 0))−
X

i

(EH(ρi↓) + Exc(ρi↓, 0))

ρiα = |φiα(r)|2
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Solution of the Kohn-Sham equation

Wave-function methods: PW, APW,LMTO,LAPW

Green’s function methods: KKR, LMTO
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Plane Wave method

Basis functions are plane waves:
χK(k, r) = 1

V ei(k+K)r, ψ(k) =
∑

K cK(k)χK(k, r)
Eigen value equation for the coefficients:

(

~
2

2m
(k + K)2δK,K′ + VK,K′

)

cK′(k) = ε(k)cK(k)

VK,K′ =
1
V

∫

V
Veff (r)ei(K′

−K)rd3r

Core electrons have nodes
close to the nucleus. The
smallest distance between the
nucleus and the nodes deter-
mines the maxim of K. Huge
number of K points are needed!
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Pseudo Potentials

|ψc〉 and |ψv 〉 are the core and valence wave-functions.

Choose a smooth function |φv 〉:
|ψv 〉 = |φv 〉 −

∑

c |ψc〉〈ψc |φv 〉

(H − (Ec − Ev )|ψc〉〈ψc |) |φv 〉 = Ev |φv 〉

Pseudo potential: w = v − (Ec − Ev )|ψc〉〈ψc |
Generally the pseudo potential is looked for in the form of:
w(r, r′) =

∑

L Y ∗
lm(̂r)wl(r)δ(r − r ′)Ylm(r̂′)
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Properties of the pseudo wave-functions

The pseudo and the exact radial wave-functions must be
identical if r > rl .
The norm of the pseudo and exact wave-functions must be
the same.
One-particle energies must be the same.

Example: Troulier-Martins Potential
Chose a smooth radial wave-functions:

Rl(r) =

{

Rexact
l (r) if r > rl

r lep(r) if r < rl
p(r) =

6
∑

n=0

cnr2n

Find a potential which results in Rl(r) as a solution of the
atomic Kohn-Sham equation.

wl(r) = ε−
l(l + 1)

2r2 +
1

2rRl(r)
d2

dr2 (rRl(r))
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Augmented Plane Wave Method

Muffin-tin potential

Basis: linear combination of the
radial solution of the KS equation
inside MT sphere, plane wave
outside

χ(r,E) =

{ ∑

L AlmYlm (̂rRl(r ,E) if r < rMT

eikr if r > rMT

The basis is continuous on the
MT sphere but the radial
derivative is not.
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Linearized Augmented Plane Wave Method

The Wigner-Seitz cell is divided into MT sphere and
interstitial space but the potential is not necessary MT
potential.

The radial wave-function is calculated at fixed energy and
the basis is linear combination of the radial solution of the
KS equation and its derivative with respect of the energy
inside MT sphere.

χ(r,E) =

{

∑

L

(

AlmYlm(̂rRl(r ,E) + BlmYlm r̂Ṙl(r)
)

( if r < rMT

eikr if r > rMT

The logarithmic derivative of the basis is continuous.
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