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Exercise 1

As an introduction for this and the next exercise, the eigenstates and eigenenergies of the free electron approx-
imation are:

φK(k, r) =
1√
V

eı(k+K)r (1)

εK(k) =
~2

2m
(k + K)

2 (2)

where K notes the band.

Degenerate perturbation theory

In this exercise we investigate a cubic system on the ΓX line which can be parametrized as π
a (0, 0, κ) where a

is the lattice constant and κ ∈ [0, 1]. In this case the bands corresponding to

KD =
2π

a
(1, 0, 0) KE =

2π

a
(0, 1, 0) (3)

KF =
2π

a
(−1, 0, 0) KG =

2π

a
(0,−1, 0) (4)

are degenerate with the energy

εK(k) =
~2π2

2ma2
(
κ2 + 4

)2 (5)

what we get from Eq.(2) after substituting the K values above. The wavefunctions corresponding to these states
are:

φKD/F
(k, r) =

1√
V

eı
π
a (κz±2x) (6)

φKE/G
(k, r) =

1√
V

eı
π
a (κz±2y) (7)

In order to find how the degenerations are split I going to use degenerate perturbation theory and I going
to diagonalize the 4× 4 Hamiltonian matrix spanned by the four degenerate wavefunction. The matrix element
of the perturbation potential what we turn on to lift the degeneracies is:

VK,K′ =

∫
d3rφ∗K(k, r)V (r)φK′(k, r) (8)

=
1

V

∫
d3rV (r) eı(K−K

′)r = VK−K′ (9)

which has the property V ∗K−K′ = VK′−K for a real potential.
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The matrix what we have to diagonalize is:

H =


ε VDE VDF VDG

VED ε VEF VEG
VFD VFE ε VFG
VGD VGE VGF ε

 (10)

It contaions matrix elements for the following wavenumber differences:

KD −KE =
2π

a
(1,−1, 0) KD −KF =

2π

a
(2, 0, 0) KD −KG =

2π

a
(1, 1, 0) (11)

KE −KF =
2π

a
(1, 1, 0) KE −KG =

2π

a
(0, 2, 0) KF −KG =

2π

a
(−1, 1, 0) (12)

and the opposite of them in the lower triangle. If we use the fact that we have cubic symmetry it turns out

that we have only two different matrix element, V1 corresponds to ∆K =
2π

a
(1, 1, 0) and V2 corresponds to

∆K =
2π

a
(2, 0, 0). The matrix which we have to deal with is simplifies a lot after this considerations:

H =


ε V1 V2 V1
V1 ε V1 V2
V2 V1 ε V1
V1 V2 V1 ε

 (13)

This is a very simple matrix so we can try to solve the eigenvalue equation intuitively to save time. There is a
trivial eigenvector v1 = (1, 1, 1, 1) with eigenvalue ε+2V1 +V2. The previous state has a pair, where V1 appears
with minus sign, this is v2 = (1,−1, 1,−1) with self energy ε − 2V1 + V2. The remaining two is then when we
take zero from V1, a guess is v3 = (1, 0,−1, 0), it turns out this is a good eigenvector too with energy ε−V2, and
the last one can be found by find the last member of the orthogonal set, v4 = (0, 1, 0,−1) with energy ε− V2.

So I found the four eigenvector of the Hamiltonian on the degenerate subspace, and they tell that in a cubic
crystal on the ΓX line there are two non-degenerate and a double degenerate band.

Group theory
An other way to investigate the problem is group theory. The small group of the K vector is C4v. I have to
construct a representation of this group on the four degenerate state noted by the K vectors, it going to be a 4
dimension representation with permutation matrices. The generators of the representation is:

ΓC4
=


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 (14)

Γσxv =


1 0 0 0
0 0 0 −1
0 0 1 0
0 −1 0 0

 (15)

the further transformations can be generated by the multiplication table, namely:

ΓC2 = Γ2
C4

(16)

ΓC3
4

= Γ3
C4

(17)

Γσyv = ΓσxvΓC2
(18)

Γσ1
d

= ΓσxvΓC4
(19)

Γσ2
d

= ΓσxvΓC3
4

(20)

After we have all the representing matrices we can calculate the irreducible decomposition of our representation,
the irreducible characters and the characters of our representation show in Tab..
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C4v E 2C4 C2 2σv 2σd

A1 1 1 1 1 1
A2 1 1 1 -1 -1
B1 -1 1 1 1 -1
B2 1 -1 1 -1 1
E 2 0 2 0 0
Γ 4 0 0 2 0

Table 1: The irreducible characters

We can calculate the coefficients of an irreducible representation as:

mµ =
1

dimG

∑
g∈G

χµ(g)∗χ(g) (21)

with the usage of the previous equation on our representation we get:

Γ = A1 ⊕B1 ⊕ E (22)

this is the first result of this calculation, we arrived to the same level structure as before, namely we ha two
one dimension and a two dimension representation. We can find the eigenvectors for this representations if we
construct the projectors which project to the irreducible subspaces,

Pµ =
nµ

dim(G)

∑
g∈G

χµ(g)∗Γ(g) (23)

after checking the action of the projectors to the standard bases vectors of the euclidean space we end up with
the same subspace structure:

vA1
=


1
1
1
1

 vB1
=


1
−1
1
−1

 vE = α


1
0
−1
0

+ β


0
1
0
−1

 (24)

and of course by checking the eigenvalue equation we get the same energies:

εA1
= ε+ 2V1 + V2 εB1

= ε− 2V1 + V2 εE = ε− V2 (25)

Exercise 2

Degenerate perturbation theory

Now we are going to investigate the ΓR line of a cubic crystal which can be parametrized as
πκ

a
(1, 1, 1) where

κ ∈ [0, 1]. In this case we have a threefold degeneracy for the bands with the following K vectors:

KB
2π

a
(0, 0,−1) KF

2π

a
(−1, 0, 0) KC

2π

a
(0,−1, 0) (26)

with degenerate energy:
ε(k) = ε0(2κ2 + (κ− 2)2) (27)

and wavefunctions:

φB =
1√
V

eı
π
a (κx+κy+(κ−2)z) (28)

φF =
1√
V

eı
π
a (κy+κz+(κ−2)x) (29)

φG =
1√
V

eı
π
a (κx+κz+(κ−2)y) (30)
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By following the steps what we made abve first we construct the Hamiltonian matrix of the degenerate subspace
for a small perturbation:

H =

 ε VBF VBG
VFB ε VFG
VGB VGF ε

 (31)

in this case the wavenumber differences for the matrix elements are:

KB −KF =
2π

a
(1, 0,−1) KB −KG =

2π

a
(0, 1,−1) KF −KG =

2π

a
(−1, 1, 0) (32)

since we have cubic symmetry these K vectors can be transformed to each other and minus sign also can be
transformed out so the simplified matrix is:

H =

 ε V1 V1
V1 ε V1
V1 V1 ε

 (33)

The next step is to solve the eigenvalue problem. We follow same arguments as before, this matrix also has the
trivial v1 = (1, 1, 1) eigenstate with ε + 2V1. An other good eigenvector is v2 = (2,−1,−1) which has ε − V1
energy. Then we have to find the third orthogonal vector, which we can do by finding a third orthogonal vector,
this is v3 = (0, 1,−1) and this state has the same energy as the second one. So there is a non-degenerate and
a two times degenerate band.

Group theory
For group theory investigation first of all we need to transform our K vectors to the system K ′ where the 111
direction is parallel with the z axis. In the natural basis the K vectors are the negative basis vectors, if we can
construct the form of them in the new basis we have found the transformation. If we look the cube parallel with
the main diagonal we see that the x, y and z vectors form a triangle where the vectors are separated by 120°,
this is going to be the structure in the (x′, y′) plane in the new coordinate system. The only thing remained is
to calculate the z′ component of the vectors which going to be equal for each of them. After simple geometrical
considerations the z′ component of our K vectors is 1√

3
, so the transformation is:1

0
0

0
1
0

0
0
1

⇒
−

√
6

2
√
3

−
√
2

2
√
3

2
2
√
3



√
6

2
√
3

−
√
2

2
√
3

2
2
√
3


 0√

2√
3
1√
3

 (34)

I note that our K are minus these vectors but it only means a minus sign in the z component which doesn’t
affect the symmetry calculations because it doesn’t change for any symmetry transformation.

Figure 1: The K vectors

The small group of the K vectors in this case is C3v. We can build up a 3 dimensional representation of
the group by permutation matrices. The two generator matrix is:

ΓC3

0 0 1
1 0 0
0 1 0

 and Γσ1
v

1 0 0
0 0 1
0 1 0

 (35)
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The other matrices can be generated as:

ΓC2
3

= ΓC3
ΓC3

(36)

Γσ2
v

= Γσ1
v
ΓC3 (37)

Γσ2
v

= Γσ1
v
ΓC2

3
(38)

The character table of the group and characters of our representation is:

C3v E 2C3 3σv

A1 1 1 1
A2 1 1 -1
E 2 -1 0
Γ 3 0 1

Table 2: The irreducible characters

If we reducate the representation as in the previous example we get:

Γ = A1 ⊕ E (39)

which means we have a non-degenerate and a two times degenerate subspace, now we can project the subspaces
corresponds to these representation with the projectors used in the exercise above. After we acted on the
standard basis vectors with the projectors we get the same structure as for the degenerate perturbation theory,
namely:

vA1 =

1
1
1

 vE = α

 2
−1
−1

+ β

 0
1
−1

 (40)

with energies εA1
= ε+ 2V1 and εE = ε− V1.

Exercise 3
In this and the following exercise we going to investigate the the model of a 1 dimensional chain with two atoms
per unit cell with γ1 intracell and γ2 intercell hopping. The real space Hamiltonian of the system is:

Hαβ
ij = εαδαβδij + γ1(1− δαβ)δij + γ2(δαAδβBδi,j+1 + δαBδβAδi+1,j) (41)

where i, j are indexing the cells and α, β are indexing the atoms in the unit cell. This a chain with two atoms
per unit cell, show on Fig.3

Figure 2: The chain contains two atoms per unit cell, which shaded with yellow and two different hopping(γ1, γ2)
with different colours

For simplicity we take the on-site energies to zero, in this case the matrix form of the Hamiltonian is:

H =



0 γ1 0 0 . . .
γ1 0 γ2 0
0 γ2 0 γ1

0 0 γ1
. . . . . .

...
. . .


(42)
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We want to calcuate the spectrum of this Hamiltonian, we can simply do that if we perform a Bloch Wannier
tranform and we go to momentum space. We have two internal degrees of freedom, so the bulk momentum
space Hamiltonian going to be a 2× 2 matrix:

H(k) =

(
0 γ1 + γ2 e−ıka

γ1 + γ2 eıka 0

)
(43)

A 2 hermitian matrix can be decomposed on the Pauli matrices and can be written in the form H = d(k)0σ0 +
d(k)σ. In this case the decomposition looks like:

H(k) = (γ1 + γ2 cos(ka))σx + γ2 sin(ka)σy (44)

and this is a perfect form to determine the dispersion relation because H(k)2 = E(k)2I2 and H(k)2 = d20+d(k)2

due to the properties of the Pauli matricies. So the dispersion relation is:

E±(k) =±
√

(γ1 + γ2 cos(ka))2 + γ2 sin(ka)
2 (45)

=±
√
γ21 + γ1γ2 cos(ka) + γ22 (46)

from this dispersion relation we want to derive the condition for the existence of a gap. The point where the gap
is the smallest is at the sides of the Brilloune zone at ±πa , in this point the cosine function is −1, if substitute
this to the dispersion relation we get

E±(k) = ±|γ1 − γ2| (47)

so the gap is
Egap = |E+ − E−| = 2|γ1 − γ2|, (48)

which means there is always going to be a gap expect when γ1 = γ2.

Exercise 4
Now we consider a semi infinity chain and we are looking for a localized edge state on the one remained edge.
The energy of the edge state is deeply in the gap, in that case we assume that it is zero and try to find the
eigenvector for this state. The real space Hamiltonian of the system is the same as before:

H =



0 γ1 0 0 . . .
γ1 0 γ2 0
0 γ2 0 γ1

0 0 γ1
. . . . . .

...
. . .


(49)

we are going to solve the eigenvalue equation where the eigenstate is:

x =


a0
b0
a1
b1
...

 (50)

where the ai and bi numbers are the coefficient of the wavefunction on a given sites. The eigenvalue equation
is separeted to a set of simple linear equations:

γ1b0 = 0 (51)
γ2bi−1 + γ1bi = 0 (52)
γ1ai + γ2ai+1 = 0 (53)
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The first thing what we can see is that the equations for ai and bi are decoupled, so they give us two independent
eigenvectors. From the last two equation we get two recursive formula, one for the coefficients on the A sublattice
and and for the B. The recursive formula on the A sublattice is:

ai+1 = −γ1
γ2
ai (54)

the solution of this for the mth cell is:

am =

(
−γ1
γ2

)m
a0 (55)

the probability of the electron is on the ai site is a2i so we need to consider only the absolute value of the
coefficients:

|am| =
(
γ1
γ2

)m
a0 (56)

We can use a simple trick to transform this equation to an exponential one:

|am| =
(

elog
γ1
γ2

)m
a0 (57)

= e−m log
γ2
γ1 a0 = e−m/ξ (58)

where ξ is the localization length, which can be written as:

ξ =
1

log γ2 − log γ1
(59)

So we get an exponentially decaying wavefunction living on the A sublattice and localized to the left edge with
localization length ξ if γ2 > γ1, so if the intercell hopping is the stronger.

We didn’t said anything about the bi numbers yet. We saw b0 = 0 so on the left edge there is no electron
on the B sublattice. It turns out if we take a finite chain bN going to be finite and we can start the recursion
from the right edge. This going to be the edge state of the right edge.

Exercise 9

In this exercise I going to solve the CPA condition iteratively for the one dimensional chain of a two component
compound. This is the simplest case of CPA, because in that case all of the quantities are scalar. The two
components has energies ±ε0 and we apply a positive V potential to couple them. We are going to work with
dimensionless quantities:

x0 =
ε0
2V

xc =
εc
2V

ω =
z

2V
(60)

here the ω plays the role of the dimensionless complex energy and all of out quantities are depend on ω, the c
in subscript notes the quantities corresponding to the coherent medium of the CPA.

The CPA condition in this formalism is:

xc = (2c− 1)x0 +
x20 − x2c√
ω − xc

2 − 1
(61)

where c ∈ [0, 1] the concentration. This in an implicit equation of xc and it is impossible to express xc as a
function of the other variables, so we need other ways to solve this equation.

(a) The first simplest thin what we can try is successive approximation. We start from x
(1)
c = (2c− 1)x0, the

virtual crystal approximation and we calculate xc from the right hand side of Eq.(60) and this going to
be the next guess. We can stabilize this process with a mixing procedure when we use only an α portion
of the calculated guess. Later it going to turn out that this method has very bad convergence properties.

(b) There is an other way to solve Eq.(60) named after Ginatempo and Staunton. In this method we have an
iteration shame to the change in the xc coherent energy. The method can be illustrated as:
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Figure 3: The flow chart of the Ginatempo–Staunton method

The quantites what are appear is:

G(n)
c (ω) =

1√
ω − x(n)c

2

− 1

(62)

t(n)c (ω) =
c
(
x0 − x(n)c

)
1−

(
x0 − x(n)c

)
G

(n)
c

−
(1− c)

(
x0 + x

(n)
c

)
1 +

(
x0 + x

(n)
c

)
G

(n)
c (ω)

(63)

∆xc(ω) =
t
(n)
c (ω)

1 + t
(n)
c (ω)G

(n)
c (ω)

(64)

At this point I note that when I calculate the Green’s function in the denominator I have to take the square
root with positive imaginary part in order to have a well behaving DOS. It can be seen if a make the following
consideration: in this case the Green’s function has negative imaginary part and then if a take the DOS as in
Eq.(67) it going to be positive, but in the other case I going to have negative DOS what is not physical.

I did the calculation for both methods. The energy of each band, if they are not in the compound, change
between x0 ± 1, so I calculate for ω ∈ [−x0 − 2, x0 + 2] in order to see the cutoff in the DOS. Furthermore
we know that the Green’s function is singular on the spectrum so we need to take a small imaginary part to
perform the calculations, I used 0.02ı as imaginary part. For the (a) method I used α = 0.2 and I calculated
the next iteration as:

x(n+1)
c = αx(n)out

c + (1− α)x(n)inc (65)

where in/out notes the input and the output of the self-consistent equation in the nth iteration. I plotted the
DOS from this calculation in the same iteration when the other method converged. So I can compare them
graphically.

For the Ginatempo–Staunton method I used the same initial value and the same energy points. The only
additional detail is the convergence condition. In order to check the convergence I introduced an error array
from the CPA condition:

e(n)(ω) = x(n)c − (2c− 1)x0 +
x20 − (x

(n)
c )2√

ω − x(n)c

2

− 1

(66)

and I my condition is
∣∣e(n)(ω)

∣∣ < ε where |.| is the euclidean norm of the error as a vector of the discrete ω and
I set the tolerance value to ε = 1e− 10. The results of my calculations are shown on Fig.4, where I plotted the
DOS:

D(ω) = − ImGc(ω) (67)

The first case on Fig. 4 is specific because for x0 = 1 the two bands touch each other at ω = 0, but because
they are in an alloy there going to be a gap, or more precisely the DOS going to decrease dramatically. The
second case is when we open the gap, in this case the band are repel each other. Finally in the third case we
investigated an asymmetric compound are we can say that this is a doped material, in that case the doping
create a tight conduction band above the wide band of the initial material.

We can also see that the (a) method behaves worse and worse as the system becomes more specific. In the
first case it seems like it going to converge on the second graph appears strange peaks and at the third it become
awful.
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(a) c = 0.5, x0 = 1

(b) c = 0.5, x0 = 2

(c) c = 0.1, x0 = 1

Figure 4: The plot of the DOS of two component 1D componds with specific c and x0 parameters. (a) notes
the successive approximation and (b) notes the Ginatempo–Staunton method, the (a) is plotted for as many
iteration as what needed for (b) to converge
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