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Problem set 2 for the course ”Many -body physics 1”, 2017

Rules: You can solve any number of problems. You can collect 30 points at maximum, and you must collect 10
points to pass. You can help each-other and discuss, give hints to each-other (this is even encouraged), but you are
not allowed to copy.
Deadline: May 10.

1. (10 p) Pairing.

Consider the bosonic field operators ψ(x) = ψ(r, t) =
∑
µ ϕµ(r, t)bµ and ψ†(r, t) = ψ†(x) and show that the

pairing of ψ(x) and ψ(x′) vanishes while that of ψ(x) and ψ†(x′) is just a scalar function, i D0(x, x′).

2. (10 p) Investigation of the polarization bubble.

a. (1 p) Use the momentum space diagrammatic rules, and construct the integral expression of the polarization
bubble Π0(ω,q) (i.e., the unperturbed density-density time-ordered correlation function) of a 3-dimensional
electron gas.

b. (3 p) Evaluate first the frequency integral using the tricks shown at class, do the analytical continuation, and
derive the expression for the retarded density-density response function:

χ0(ω,q) = −2

∫
d3p

(2π)3
f(p)− f(p + q)

ω + ξ(p)− ξ(p + q) + i δ
.

c. (6 p) Evaluate the imaginary part of χ0, and plot it as a function of ω for various values of q < 2pF and
for q > 2pF , too. [Hint: Assume a parabolic dispersion, ξ = (p2 − p2F )/2m, and introduce appropriate polar
coordinates.] Remember that this quantity is proportional to the inelastic scattering cross section.

3. (5 p) Application of diagram rules.
Write explicitely the self-energy- and density-density correlation function corrections both in real and in momentum
space for the following diagrams:

4. (15 p) Evaluation of the Fock term for an interacting electron gas.

a. (1 p) Using the diagrammatic rules, write down the momentum space expression for the “Fock term”, corre-
sponding to the diagram shown below. (In reality, the Fock term contains the full Green’s function, but for an
interacting electron gas it turns out to be the same as the diagram below.)

Evaluate first the frequency integral and obtain the following expression:

δΣF (p) = −
∫
|q|<pF

d3q

(2π)3
4π e2

|p− q|2
.

Be careful with closing the contour.
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a. (4 p) Evaluate the previous integral using polar coordinates to get the expression discussed at class.

b. (10 p) Evaluate the integral above using a Thomas-Fermi screened Coulomb interaction, too,

4π e2

|q|2
→ 4π e2

|q|2 + q2T
.

Compute the renormalized Fermi velocity and show that it is finite at the Fermi energy. (You can also use
Mathematica or Maple to carry out the integrals.)

5. (30 p) Atomic Hartree-Fock approximation. In this exercise you will show that the self-consistent diagram-
matic approach discussed at class reduces to the usual Hartree-Fock approximation.

a. (5 p) First consider a non-interacting Hamiltonian of the form:

H =

∫
dr ψ†σ(r)H(r)ψσ(r) . (1)

Express the Green’s function in terms of the eigenfunctions ϕn(r) and eigenenergies εn of H(r) and show that
it is given by

G(r, r′, ω) =
∑
n

ϕn(r)ϕ?n(r′)

ω − εn + i δ sgn(ω − µ)
, (2)

where we now explicitly displayed the dependence on the chemical potential, which we now defined as the energy
of the last occupied state, and the label n incorporates the spin of the electrons. Express also G−1(r, r′, ω) in a
similar way. (Hint: Use the eigenstates ϕn(r) to express the field operators, and then obtain first G(r, r′, t) and
from that G(r, r′, ω). To get G−1(r, r′, ω), think of G(r, r′, ω) as an integral kernel, and use G−1(ω) ∗ G(ω) =
δ(r− r′).)

b. (5 p) To obtain the Hatree-Fock equations, we shall assume that with some (yet undetermined) functions,
ϕn(r), the full Green’s function takes on the form, (2), while the self-energy is just given by the Hartee term
(or Hartree + Fock terms), shown in the figure.

As a first step, divide the atomic Hamiltonian into two parts, H = H0 +Hint:

H0 =
∑
σ

∫
dr ψ†σ(r)[− 1

2M
∆r + V (r)]ψσ(r) (3)

Hint =
1

2

∑
σ,σ′

∫
dr

∫
dr′

e2

|r− r′|2
ψ†σ(r)ψ†σ′(r

′)ψσ′(r′)ψσ(r) . (4)

Evaluate first the Hartree diagram using the Ansatz (2) for the total Green’s function, and show that the Hartree
self-energy is

ΣH(r, r′, ω) = δ(r− r′)
∑
εn<µ

∫
dr′′

e2

|r− r′′|2
|ϕn(r′′)|2 . (5)

(Notice that in real space the self-energy is also an integral operator, and the multiplication in momentum space
becomes a “convolution”.)
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c. (5 p) Prove that the inverse of the unperturbed Green’s function, G−10 , can be expressed as

G−10 (r, r′, ω) = (ω −H0(r)) δ(r− r′) , (6)

with H0(r) = − 1
2M∆r + V (r). [Hint: Show that G−10 ∗G0 = δ(r− r′).]

d. (5 p) Now consider the Dyson equation (written for G−1 as G−1 = G−10 − ΣH) and show using the above
expression that the self-consistent solution of the Dyson equation with the Hartree self-energy can be found in
a form (2) provided that the ϕn’s satisfy the following integral equation:

(− 1

2M
∆r + V (r) + V H(r))ϕn = εn ϕn , (7)

V H(r) =
∑
εn<µ

∫
dr′′

e2

|r− r′|2
|ϕn(r′′)|2 . (8)

[Hint: Act with the inverse G−1 as computed from Eq. (2) on the one hand, and also with G−10 − ΣH on the
other hand, on ϕn.]

d. (10 p) Generalize the above procedure for the Fock diagram, too, and obtain the Hartree-Fock equations.

6. (25 p) Spin-spin correlation function and susceptibility for local electron-electron interaction.

a. (5 p) First, compute the Fourier transform of the spin-spin correlation function of a non-interacting electron
gas,

Gσσ ≡ −i〈T{σz(r, t)σz(r′, t′)}〉0 , (9)

where σi(r, t) =
∑
αβ ψ

†
α(r, t)σiαβψβ(r, t) .

b. (5 p) Next show that the leading Coulomb diagrams discussed at class give no correction to the spin-spin
correlation function. (Evaluate the simplest RPA-type diagram shown below, and show that the various terms
cancel.)

c. (10 p) Now approximate the electron-electron interaction by a local interaction (this mimics a screened inter-
action, discussed at class), V (x− x′) = V0δ

4(x− x′), and sum up the “ladder” series in momentum space in the
Figure below. (These are the leading diagrams for the spin-spin correlation function.)

...

d. (5 p) Compute the renormalized spin susceptibility and recover the Pauli susceptibility for V0 = 0. Is it
increased or decreased by a repulsive electron-electron interaction? Try to explain it. What happens if you
increase V0?


