
Problem set 12 for Quantum Field Theory course

2018.05.01.

Topics covered

• Bubble sum in QED

• Renormalization of composite operators

• O(N ) structure at two-loop level

• Power counting

Recommended reading
Peskin–Schroeder: An introduction to quantum field theory

• Sections 7.5

• Sections 10.1

• Sections 12.4

Problem 12.1 Bubble sum in QED

Renormalization of the electric charge is connected to renormalization of the photonic propagator in
QED. Let us call the sum of all 1PI insertions to the propagatorΠµν. A visual depiction is given on Fig.
1.

Figure 1: 1PI "bubble" of the photon propagator.

In the lecture it was shown that the Ward–Takahashi identity leads to a constraint on the tensor struc-
ture:

Πµν = (
qµqν−q2ηµν

)
Π(q2) . (1)

(a) Write the fully dressed photonic propagator as a sum of 1PI insertions (starting from order 0).
Bring it to the form

−iηµν
q2 + −iηµρ

q2 ∆
ρ
νΠ(q2)+ −iηµρ

q2 ∆
ρ
σ∆

σ
νΠ

2(q2)+ ... . (2)

What is ∆ρν?

(b) Show that ∆ρν is a projector:
∆
ρ
σ∆

σ
ν =∆ρν , (3)

and write the fully dressed propagator as a geometrical series. Perform the sum to obtain

−i

q2(1−Π(q2))

(
ηµν−

qµqν
q2

)
+ −i

q2

qµqν
q2 . (4)
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Utilize the Ward identity to show that (at least in the case of S-matrix calculations) terms pro-
portional to qµ or qν vanish, so we are left with

−iηµν
q2(1−Π(q2))

. (5)

Hint: photon propagators end in a vertex in case of S-matrix calculations. The vertex involves the
matrix element of a Noether current jµ that has zero divergence.

(c) Note that expression (5) has a pole at q2 = 0 which implies that the photon mass remains zero at
all orders. Denote its residue coefficient with Z3. Write the amplitude of a low-q2 scattering of
two fermions to show that the physical charge can be expressed with the bare one as:

e =
√

Z3e0 , (6)

where e0 is the bare charge.

Remark: using a nonzero q2 also shows that the effective electric charge (and so the fine structure
constant) obtains a momentum dependence.

(d) Draw the leading order diagram that contributes toΠµν(q2) and write it as a momentum integral
using momentum-space Feynman rules.

Problem 12.2 Renormalization of φ2

So far we treated renormalisation of the propagator and the vertex. This exercise involves similar
calculation for a composite operator, φ2 of the massless φ4-theory.

We aim to compute correlation functions involving φ2, and consider

〈Ω|Tφ(x1)...φ(xn)φ2(x) |Ω〉∝ 〈0|Tφ(x1)...φ(xn)φ2(x)e−
iλ
4!

∫
d4 yφ4(y) |0〉 . (7)

Let us restrict the problem to a two point-function i.e. n = 2.

(a) Use Wick’s theorem and draw the tree-level (λ= 0) diagrams for the matrix element above. Per-
form a Fourier transform in the spatial variables

〈
φ(p)φ(q)φ2(k)

〉= ∫
d4xe i px

∫
d4 ye i q y

∫
d4ze i kz 〈

φ(x)φ(y)φ2(z)
〉

(8)

to show that theφ2 insertion corresponds to an external momentum insertion to the propagator.
Note that the diagram containing the pairing of the two legs of theφ2 insertion vanishes for k 6= 0
due to momentum conservation.

Remark: note that φ2(k) here is the Fourier transform of φ2(x), not [φ(k)]2!

(b) In the massive φ4-theory φ2 appears in the mass term, so insertion of φ2 in a massless theory
corresponds to mass renormalization (this is our motivation for this setting). Use your tree-level
result to set the renormalization condition

〈
φ(q)φ(p)φ2(k)

〉= 2
i

p2

i

q2

∣∣∣
p2=q2=k2=−M 2

, (9)

where M is just a reference point.

Remark: iε-s are dropped for brevity.

(c) Do an O(λ) calculation of (7) in momentum space. Note that it involves a loop integral which
diverges. Derive the result

− i

p2

i

q2

λ

(4π)2

Γ(2−d/2)

∆2−d/2
, (10)

where ∆ is dependent on p, q . What is ∆(p, q)?
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(d) The operator is renormalised by adding a counter term so that the relation between the bare and
the renormalised operator becomes

φ2(x)R = (1+δφ2 )φ2(x)0 (11)

This generates the counter term diagram

with the contribution

2
i

p2

i

q2δφ2 (12)

Show that condition (9) yields

δφ2 = λ

2(4π)2

Γ(2−d/2)

(M 2)2−d/2
. (13)

Problem 12.3 O(N ) structure of renormalization

In this exercise we consider the O(N ) "extension" of two bosonic problems from earlier: setting sun
graph and φ2 renormalization.

(a) Generalise the calculation in Problem 12.2 using

−iλ(δklδmn +δkmδln +δknδml ) (14)

for the vertex and
iδkl

p2 + iε
(15)

for the propagator. Hint: one can easily read off effect of the φ jφ j insertion on the indices by
looking at the pairings. Note that you only need to consider the extra factors due to the O(N )
structure and borrow the results of 12.2 regarding the result of the loop integral.

(b) Show that the result for the counter-term is

δφ2 = (N +2)
λ

2(4π)2

Γ(2−d/2)

(M 2)2−d/2
δkl . (16)

(c) Write down the momentum-integral for the O(N ) setting sun (see Problem set 11, Figure 2).
What is the dependence on N ?

Hint: here again one can simply superpose the index structure on the expressions in Problem 11.2.

Problem 12.4 Power counting in QED and Yukawa theory

In general, the degree of divergence for a given graph in any theory can be computed as

D = d −∑
i

Vi [λi ]−∑
i

Ni [φi ] , (17)

where d is the number of spacetime dimensions, Vi is the number of vertices involving a coupling
λi . Ni is the number of external legs of a field φi , and the braces denote the energy dimension of
couplings and fields.

(a) Using the Yukawa Feynman rules, compute the degree of divergence in d = 4 in a graph with
Nφ external and Iφ internal scalar, Nψ external and Iψ internal fermion lines and V vertices
following the arguments at the lecture. Check that the result is the same as from the expression
(17) i.e.

DY = 4−Nφ−3/2Nψ (18)

Do the same for QED and show that

DQED = 4−NA −3/2Nψ (19)

where NA is the number of external photon lines.
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(b) Draw the possible divergent graphs of QED. What is their "naive" degree of divergence obtained
by applying (19) to them?

Hint: graphs with an odd number of fermion legs are zero, and those with Nψ = 0 and an odd
number of photonic legs are excluded by the Ward identity.

(c) For the photon polarisation expression (19) yields a higher degree of divergence D than the ac-
tual graphs. Also, photon-photon scattering appears to be logarithmically divergent, although it
is actually convergent. What could be the reason behind these phenomena? (Hint: consider the
implications of the Ward identity.)

Remark: a similar effect happens for the electron self-energy, which is predicted to be linearly
divergent, but in fact diverges only logarithmically. This means that the mass counter term is only
logarithmically divergent. This is due to the fact that for m = 0 there is an enhanced chiral U (1)
symmetry (separate U (1) transformation of left/right handed fermions). Therefore the fermion
mass renormalisation vanishes for m = 0, and so the divergence can only depend on the cut-off Λ
as

δm ∝ m log
Λ

m
(20)

(d) Draw the possible divergent graphs for the Yukawa theory. How many counter-terms do we need
to renormalize our theory?

(e) How do the above results change when we consider the pseudo-scalar Yukawa theory with in-
teraction λφψ̄γ5ψ?

Hint: in this theory φ is odd under parity, so the interaction term is parity invariant. This implies
that graphs with no external fermion lines and odd number of external boson lines vanish.

Problem 12.5 Power counting in other models

(a) Consider the Dirac fermion with four-fermion interaction

L = ψ̄(i�∂−M)ψ− g (ψ̄ψ)2 (21)

In four dimensions, what is the degree of divergence of a diagram with N external fermion lines
and V vertices? What counter-terms are required at order g 2? What about order g 3? Is the theory
renormalisable?

(b) What about the four-fermi interaction in two dimensions i.e. d = 2?

(c) Consider a boson with general polynomial interactions in space-time dimension d :

L = 1

2
(∂φ)2 −

∞∑
k=2

gk

k !
φk (22)

First suppose that besides the mass term g2, only a single interaction term gk with k > 2 is
present. What is the condition on d for the theory to be renormalisable? In particular, in what
space time dimensions are the interactions φ3, φ4 and φ6 renormalisable?

Is there a space-time dimension in which the theory including all powers is renormalisable?

Hint: use the general relation (17) for power counting.

Addendum Proof of the general power counting formula (17)

In general power counting can be done by simple dimensional analysis. Note that the degree of diver-
gence of an integral ∫

dnk
1

kα
(23)

is the same as its energy dimension i.e. n −α.

The dimension of the n-point function in momentum space

G̃α1...αn (p1, . . . , pn) =
∫

dd x1e i p1x1 · · ·
∫

dd xne i pn xn 〈φα1 (x1) . . .φαn (xn)〉 (24)
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is [G̃] =−nd +
n∑

k=1
[φαk ]. Due to translational invariance, one can always factor out a delta function

G̃α1...αn (p1, . . . , pn) = Ḡα1...αn (p1, . . . , pn)(2π)dδ(d)(p1 +·· ·+pn) (25)

with [Ḡ] =−(n −1)d +
n∑

k=1
[φαk ].

Primitive divergences are one-particle irreducible, so the legs can be amputated to isolate them:

Ḡamp
α1...αn

(p1, . . . , pn) = Ḡα1...αn (p1, . . . , pn)

Ḡα1α1 (p1,−p1) . . .Ḡαnαn (pn ,−pn)
(26)

with

[Ḡamp ] =−(n −1)d +
n∑

k=1
[φαk ]−

n∑
k=1

(−d +2[φαk ]) = d −
n∑

k=1
[φαk ] (27)

Let us denote the number of vertices by V , and the coupling at the l th vertex by λl . The total di-
mension of a graph contributing to Ḡamp can also be obtained as the sum of the dimension D of the
momentum integral plus the dimensions of the couplings

d −
n∑

k=1
[φαk ] = D +

V∑
l=1

[λl ] (28)

Since D is identical to the degree of divergence, relation (17) follows.

5


