
Problem set 9 for Quantum Field Theory course

2019.04.16.

Topics covered

• Path integrals at finite temperature

• Fermionic and bosonic path integrals

• Euclidean path integral and Feynman rules

• Casimir effect

• Convergence of perturbative series

Recommended reading

• Peskin–Schroeder: An introduction to quantum field theory

Section 9.5

• R.J. Rivers: Path integral methods in quantum field theory

Sections 1.8, 5.3

Problem 9.1 Finite temperature path integral: harmonic oscillator

Systems at finite temperature are described by the quantum statistical partition function:

Z = Tr
[

e−βH
]
=

∫
DΨ〈Ψ|e−βH |Ψ〉 , (1)

withβ= 1/kB T is the inverse temperature and the trace is performed by integrating over the continuum
space of eigenfunctionsΨ(x).

(a) Write the above expression as a functional integral of a fieldΦ(x,τ) by observing that the inverse
temperature can be thought of as imaginary time. What are the boundary conditions?

(b) This procedure of working with imaginary time is the Wick rotation at the level of path integrals.
It is instructive to perform this rotation on a simple problem:∫

DqDpe i
∫ t f

ti
d t

∑
a[q̇(a)p(a)−H(p(a),q(a))] , (2)

where

H(p, q) = p2

2m
+V (q) , (3)

and a indices the discretization. Use τ = i t , Hamilton’s equations and the derivation from the
lecture to bring (2) to the form below:

N

∫
q(β)=q(0)

Dq(τ)e−
∫ β

0 dτLE (q) . (4)

What is the Euclidean Lagrangian LE ?
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(c) Calculate SE = ∫ β
0 dτLE for the quantum harmonic oscillator with unit mass

LE = 1

2

(
q̇2 +ω2q2) . (5)

Use a Fourier decomposition that satisfies the periodic boundary conditions:

q(τ) =
∞∑

n=−∞
cn√
β

e2πi nτ/β . (6)

Hint: q is real so there is a relation between the complex cn coefficients.

(d) Write the result in terms of the real parameters an and bn :

cn = an + i bnp
2

, (7)

and perform the Gaussian integrals. By using the identity

sinh x

x
=

∞∏
n=1

(
1+ x2

n2π2

)
(8)

show that this path integral (up to aβ-dependent normalization factor) coincides with the partition
function of the quantum harmonic oscillator.

Hint: from statistical physics we know it is given by Z =∑∞
n=0 e−βω(n+1/2).

Problem 9.2 Finite temperature path integral: free boson and fermion

In the previous exercise we have seen that we can use the path integral formalism for finite temperature
systems by performing a Wick rotation. We get for the partition function

Z =
∫

Dφe−SE , (9)

where SE is called the Euclidean action. For a free scalar field it reads

SE =
∫

d d x
∫ β

0
dτ

1

2

(
φ̇2 + (∇φ)2 +m2φ2) . (10)

(a) Perform two partial integrations and use arguments from Problem 8.4 to show that the partition
function is proportional to

Z ∼ [
det

(−∂2
τ−∇2 +m2)]−1/2

. (11)

(b) This determinant can be calculated explicitly with the help of mode expansion. Write φ(τ,x) as

φ(τ,x) =
∞∑

n=−∞
e2πi nτ/β√

β

∫
d d k

(2π)d
e i kxφnk . (12)

Write this back into (10) and use the tricks of Problem 9.1(d) to show that the result is

Z =C
∏

k

e−βωk/2

1−e−βωk
, (13)

where C is a β-dependent constant and

ωk =
√

k2 +m2 . (14)
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(c) Do a similar calculation for a fermionic oscillator. The Euclidean action is

SE =
∫ β

0
dτ

(
ΨΨ̇+ωΨΨ

)
. (15)

If we impose anti-periodic boundary conditions, the mode expansion looks like

Ψ= 1√
β

∞∑
n=−∞

Ψne2πi (n+1/2)τ/β , (16)

and similarly forΨ. Utilize these expressions to write

SE =
∞∑

n=−∞
Ψn

[
2πi

β
(n +1/2)+ω

]
Ψn . (17)

(d) Calculate the partition function

Z =
∫

DΨDΨe−SE . (18)

Bear in mind that these are fermionic fields so they behave as Grassmann numbers which simplifies
the exponential term. A useful identity here is

cosh x =
∞∏

n=0

(
1+ x2

π2(n +1/2)2

)
. (19)

Show that in the end the partition function is

Z =C (β)cosh
(
βω/2

)
, (20)

that is the partition function for a two-state system, the correct result for the case of Fermi–Dirac
statistics with a single degree of freedom.

(e) Bonus question: why did we have to impose antiperiodic boundary condition?

Consider the Euclidean two-point function:

GF (τ1,τ2) = 1

Z
Tr

(
e−βH T (Ψ(τ1)Ψ̄(τ2))

)
(21)

Using the relations

T (Ψ(τ1)Ψ̄(τ2)) = θ(τ1 −τ2)Ψ(τ1)Ψ̄(τ2)−θ(τ2 −τ1)Ψ̄(τ2)Ψ(τ1) , (22)

Ψ(τ) = eτHΨ(0)e−τH (23)

show that
GF (0,τ2) =−GF (β,τ2) (24)

implying
Ψ(β) =−Ψ(0) . (25)

Show that the same argument leads to periodicity for bosonic fields!

Food for thought: why is the antiperiodic boundary condition of the fermion field consistent
with the periodic nature of the trace operation?

Problem 9.3 Euclidean path integral: Feynman rules

In this exercise we consider the Wick-rotated (Euclidean) path integral formulation of the φ4 theory.
In Minkowski space, this theory is described by the Lagrangian density

LM = 1

2
(∂µφ)2 − 1

2
m2φ2 − λ

4!
φ4 . (26)

The action is given by

SM =
∫

d 4xLM . (27)
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(a) Perform a Wick rotation in time
x4 = i x0 (28)

and calculate the Euclidean action SE and Lagrangian LE

SE =
∫

d 4x̄LE , (29)

where x̄ = (x1, x2, x3, x4).

(b) Working with the free Lagrangian

LE0 = 1

2
(∇φ)2 + 1

2
m2φ2 (30)

derive the Feynman rule for the propagator.

Hint: a similar calculation was performed at the lecture in Minkowski space-time. It can be done
by calculating the functional integral

〈0|Tφ(x̄1)φ(x̄2) |0〉 =
∫

Dφφ(x̄1)φ(x̄2)e−SE∫
Dφe−SE

. (31)

(c) Now treat the interaction term perturbatively with λ small enough:

LE = 1

2
(∇φ)2 + 1

2
m2φ2 + λ

4!
φ4 . (32)

Expand the exponential with the interaction term up to first order in λ and read off the Feynman
rule for the vertex.

(d) For an arbitrary connected graph the number of loops equals the number of vertices minus
internal propagators plus 1:

L = P −V +1. (33)

Combine this knowledge with your previous result to show that for any connected n-point function
W the Minkowski and Euclidean results are simply related:

WM (p1, p2, ..., pn) = i (−i )nWE (p̄1, p̄2, ..., p̄n) , (34)

where p̄ are Euclidean momenta.

Problem 9.4 Casimir effect

This exercise aims to demonstrate the richness of quantum field theory vacuum. The attractive force
in vacuum experienced by two metallic plates is called the Casimir effect. Let us consider two metallic
plates that are squares of size L, their distance (say, along the z axis) is a.

(a) The ground state energy of a Hamiltonian describing an infinite set of harmonic oscillators is

〈H〉 =∑
k

1

2
ħωk . (35)

Show that using the dispersion relation ωk = ck the energy E stored between the plates can be
written as

E = ħc

2
L2

∫
d 2k‖
(2π)2

[
|k‖|+2

∞∑
n=1

√
k‖2 +

(nπ

a

)2
]

, (36)

where k‖ is the wavenumber component parallel to the plates.
Hint: recall kz is quantized and also that for kz = 0 there is only one polarization instead of two
(why?).
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(b) Write the same energy in the V = aL2 volume without the presence of these plates.

E0 = ħc

2
L2

∫
d 2k‖
(2π)2 a

∫
dkz

2π
2
√

k‖2 +k2
z . (37)

Perform a variable transform
kz = nπ

a
(38)

in the kz integral to get an expression involving an integral over n (similarly to sum over n in the
previous expression).

(c) Let us write the energy difference due to the plates over unit area as

E −E0

L2 . (39)

Write it as an integral over k = |k‖| (the angular integral gives a factor of 2π). This integral is
divergent. Let us introduce a cutoff-function Λ(k) such that Λ(0) = 1, Λ(∞) = 0, and Λ(n)(0) =
Λ(n)(∞) = 0 for any n > 0th derivative ofΛ(k).

By multiplying all divergent contributions withΛ bring the integral to the form

∆E

L2 = ħc

2π

∫ ∞

0
kdk

[
k

2
Λ(k)+

∞∑
n=1

√
k2 +

(nπ

a

)2
Λ(p)−

∫ ∞

0
dn

√
k2 +

(nπ

a

)2
Λ(p)

]
, (40)

where we used the brief notation

Λ(p) =Λ
(√

k2 +
(nπ

a

)2
)

. (41)

(d) Introduce a new variable such that

u = a2k2

π2 , (42)

so the energy difference per unit area is

ħcπ2

4a3

[
1

2
F (0)+

∞∑
n=1

F (n)−
∫ ∞

0
dn F (n)

]
. (43)

What is F (n)?

(e) For taking difference of the sum and integral use the Euler–Maclaurin formula:

n∑
j=m

f ( j ) =
∫ n

m
f (x)d x + f (n)+ f (m)

2
+ ∑

k=1

B2k

(2k)!

[
f (2k−1)(n)− f (2k−1)(m)

]
+R , (44)

where Bi are Bernoulli numbers and R is the residual difference of the two sides. Keep the first
non-vanishing term (with respect to the summation over k) and exploiting the properties ofΛ(k)
show that

∆E

L2 =− ħcπ2

720a3 . (45)

Note that the result is independent of the regulator functionΛ(k).

Hint: it is useful to introduce a variable transform in the integral in F (n) such that its argument
appears only once in the expression.

(f) Calculate the force over unit area
F

L2 =−∂(∆E/L2)

∂a
(46)

to show that the plates experience an attractive force.
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Figure 1: Feynman rules in zero space-time dimensions.

Problem 9.5 Convergence of perturbative series

Perturbation theory is a very efficient method to obtain powerful predictions from Quantum Field
Theory. It is interesting to ask some fundamental questions about the convergence of these perturbative
series. We are going to investigate this topic with the help of a zero-dimensional model.

Let us define a φ4-like theory with the help of the diagrammatic rules shown in Fig. 1.

The m-point function can be expanded as

Gm =
∞∑

p=0
g pG (p)

m , (47)

so G (p)
m is the number of diagrams with m external legs and p vertices since propagators are 1.

(a) We can write the generating functional as

Z [ j ] =
∞∑

m=0

i m j m

m!
Gm , (48)

where i is the complex unit. Show by counting the number of graphs G free
m =G (0)

m in the free g = 0
case that

Zfree[ j ] = exp
[− j 2/2

]
. (49)

(b) By performing a Fourier transform one can write the generating functional of the interacting
theory (applying formulae of Problem 8.5 to the zero-dimensional case)

Z [ j ] = 1p
2π

∫ ∞

−∞
d a exp

(
−a2

2
− g a4

4!
+ i a j

)
. (50)

Use this to write the 2m-point functions as

G2m = 1p
2π

∫ ∞

−∞
d aa2me−S(a)/ħ , (51)

where we reintroduced ħ and

S(a) = 1

2
a2 + g

4!
a4 (52)

is the zero-dimensional action. Rescale the variable a = bħ1/2 to show that we get a għ coefficient
for the interaction term. This means that perturbative expansion in g is equivalent to an expansion
in ħ.

(c) We are going to illustrate limitations of perturbative expansion in ħ on

Z [0] = 1p
2π

∫ ∞

−∞
d ae−S(a)/ħ , (53)

since this can be easily modified for the case of Green’s functions. Perform a variable transform
to u(a) such that

u(a) =
√

S(a), if a ≥ 0 (54)

u(a) =−
√

S(a), if a < 0.

Write Z [0] as an integral over u.
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(d) In the integral 1/u′ appears. Expand it as a power series in u

(u′)−1 =
∞∑

r=0
cr ur . (55)

It has a finite convergence radius rC on the complex u plane. Perform the integration over u
order by order to get

Z [0] =
pħ

2

∞∑
p=0

ħp c2pΓ(p +1/2) . (56)

Use the definition of the convergence radius

lim
p→∞ |c2p |1/2p = rC (57)

to show that expression (56) is divergent for any ħ 6= 0.

Remark: This is a consequence of integrating beyond the convergence radius in u, thus the interchange
between integral and summation leads to divergence. In an analogous way this leads to divergence
of perturbative expansions in non-zero dimensional QFT as well. That, however involves some
additional technicalities, the interested reader is referred to Section 5.5 of Rivers’ book and to [1].
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