
Problem set 7 for Quantum Field Theory course

2019.04.02.

Topics covered

• Mott scattering

• Compton scattering, annihilation and pair creation

• Fermionic polarization sums

• Photonic polarization sums and Ward identity

• Massive vector boson field

Recommended reading
Peskin–Schroeder: An introduction to quantum field theory

• Sections 4.8, 5.1, 5.4-5.5

Problem 7.1 Mott scattering

We return to the problem of a Dirac fermion scattering on a nucleon whose electromagnetic field
described by a vector potential Aµ(x). The interaction Hamiltonian is

HI = e
∫

d 3xΨ(x)γµΨ(x)Aµ(x) (1)

where e is the electric charge.

In Problem 6.4 it was shown that up to leading order the invariant transition matrix element is given
by

iM =−i eūs′(p′)γµus(p)Ãµ(q) , (2)

with q = p ′−p. We are going to work out the solution for the scattering cross-section in the ultrarelativistic
limit.

(a) Taking the z-axis along the direction of p ie. p = (0,0, p3) with p3 > 0, the incoming helicity
eigenstates are given by

us(p) =N

(
χs

~p·~σ
Ep+mχs

)
=N

(
χs

p3σ3

Ep+mχs

)
, (3)

where N = √
Ep +m and χ↑ =

(
1
0

)
, χ↓ =

(
0
1

)
has spin-z equal to ±1/2, respectively. Rewrite the

Dirac spinors in terms of

η= |p|
Ep +m

= p3

Ep +m
, (4)

so we have η → 0 for the non-relativistic case and η → 1 corresponds to an ultrarelativistic
particle.

For the outgoing particle with p′ = |p′|(sinθcosφ, sinθ sinφ,cosθ) pointing in the direction given
by the solid angle (θ,φ), the spin projection basis along p′ is given by

ξ↑ =
(
cos(θ/2)e−iφ/2

sin(θ/2)e iφ/2

)
, ξ↓ =

(−sin(θ/2)e−iφ/2

cos(θ/2)e iφ/2

)
(5)
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Figure 1: Feynman rules for interactions involving the photon. The metric tensor is denoted by gµν.

Check that they are really helicity projections, i.e. they satisfy

~p ′ ·~σ ξ↑,↓ =±|p′|ξ↑,↓ (6)

and write the corresponding helicity basis for the outgoing spinor amplitudes as

us(p′) =N

(
ξs

±|p′|
Ep′+m ξs

)
, (7)

(b) We saw in Problem 6.4 that we can describe the scattering in terms of θ scattering angle. Use a
frame in which incoming and outgoing particles are in the helicity basis written above.

Now calculate all possible spin polarized currents

ū↑/↓(p′)γµu↑/↓(p) . (8)

Show that in the ultrarelativistic limit η→ 1 the helicity is conserved!

(c) Turning to the cross-section, we found earlier that for this process it can be expressed as

dσ

dΩ
= 1

16π2 |M |2
∣∣∣
|p|=|p′|

. (9)

Assuming an unpolarized incoming electron beam we must take a spin average, while if the
outgoing polarisation is undetected it must be summed over, so the total transition probability
can be obtained as

|M |2 = 1

2

∑
si ,s f

|M (e−si
→ e−s f

)|2 , (10)

where si , s f are the polarisations for the incoming and outgoing particles, respectively. Utilize
your previous results at η= 1 to get the ultrarelativistic scattering cross-section:

dσ

dΩ
= Z 2α2

4E 2 sin4(θ/2)
cos2(θ/2) . (11)

Hint: Recall that the Coulomb potential is expressed as A0(q) = Z e/q2 in momentum space and
there is no magnetic field.

Problem 7.2 Elementary QED processes and crossing symmetry

The Feynman rules for photonic terms of QED in momentum space are shown in Fig. 1 (figure from
Peskin&Schroeder). For fermionic rules see Fig. 1. of Problem set 6.

(a) Draw the leading-order diagrams for Compton scattering, i.e. for a e−γ→ e−γ process. What is
the corresponding amplitude?

Hint: Label momenta as follows: p and p ′ for electrons and k, k ′ for photons. Note that there are
two distinct ways to contract external photon legs with the vertices.
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(b) Draw the leading-order diagrams for the annihilation of an electron and a positron: e−e+ → 2γ.
Write the amplitude for this process as well.

(c) The above results show a nice illustration of the so-called crossing symmetry. In terms of diagrams,
it manifests as a −π/2 rotation. What is the corresponding transformation rule for the set of
momenta?

(d) A+π/2 rotation of Compton scattering diagrams results in leading order diagrams for pair creation.
Write down the amplitude for this process directly using crossing symmetry .

(e) Application of crossing symmetry is straightforward at the level of amplitudes. Cross-section
computations, however, involve spin sums:∑

s
us(p)ūs(p) . (12)

What is the result if we naively apply the transformation rule of momenta corresponding to
crossing symmetry?

Problem 7.3 Fermionic polarization sums

Let us consider the annihilation of an electron-positron pair to a muon-antimuon pair e−e+ →µ−µ+.

(a) Draw the leading order diagram for this process, and write down the corresponding amplitude.

Hint: we can apply the same set of fermionic Feynman rules for the muon except that its mass is
mµ instead of me .

(b) When computing scattering cross-sections we have to take absolute value squared of this amplitude.
If the incoming beam is unpolarized we must take the average:

1

2

∑
s

, s ∈ in. (13)

while if using a detector that is insensitive to polarisation, outgoing spins must be summed over:∑
r

, r ∈ out. (14)

Utilizing these prescriptions, write down the formula for the spin average of the squared amplitude.

Hint: you can treat the electronic and muonic part separately, since they are scalars in spinor
space. Then write the products with explicit spinor indices and use the known spinor sum rules.

(c) Exploit the trace identities (Problem 3.2(b)) to bring the expression to the form:

|M |2avg =
8e4

q4 (p
′µpν− (pp ′)ηµν+pµp

′ν−m2
eη

µν)(k ′
µkν− (kk ′)ηµν+kµk ′

ν−m2
µηµν) , (15)

using the notation p, p ′ for electronic and k,k ′ for muonic momenta and q = p +p ′.

(d) Considering that mµÀ me it is a good approximation to set me = 0. Working in this limit, derive
the nice expression

|M |2avg =
8e4

q4

[
2(pk ′)(p ′k)+2(pk)(p ′k ′)+2m2

µ(pp ′)
]

. (16)

Problem 7.4 Photon polarisation sums

Many elementary QED processes have external photon legs. Consequently, polarisation four-vectors
εµ(k) appear in amplitudes of such processes. When calculating cross-section, we often must perform
polarisation sums of photon legs as well (for the fermionic counterpart, see Problem 7.3).
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(a) Consider a process with an outgoing external photon leg with momentum k. Its invariant amplitude
can be written as

iM = iε∗µ(k)Mµ(k) . (17)

The polarisation sum is then expressed as

|M |2 =
2∑

λ=1
|ε(λ)∗
µ (k)Mµ(k)|2 =

2∑
λ=1

ε(λ)∗
µ (k)ε(λ)

ν (k)Mµ(k)M ν∗(k) , (18)

since only physical polarisations can occur in outgoing states.

Adapting our usual frame kµ = (k,0,0,k) and ε(1)µ = (0,1,0,0), ε(2)µ = (0,0,1,0) write the polarisation
sum explicitly.

(b) Recall that the photon is created by the jµAµ term, where jµ is the Dirac current. Then we can
write the amplitude in question as

Mµ(k) =
∫

d 4xe i kx 〈
f
∣∣ jµ(x) |i 〉 . (19)

Show that assuming this form the Ward identity is true, i.e.

kµMµ = 0. (20)

(c) Use the Ward identity (taking advantage of the special frame) to show that we can replace

2∑
λ=1

ε(λ)∗
µ (k)ε(λ)

ν (k) −→−ηµν . (21)

(d) Consider the amplitude of Compton scattering:

iM =−i e2ε∗µ(k ′)εν(k)ū(p ′)
[
γµ(�p +�k +m)γν

(p +k)2 −m2 + γν(�p −�k ′+m)γµ

(p −k ′)2 −m2

]
u(p) . (22)

Show by explicit calculation that it satisfies the Ward identity, i.e. we get zero if we replace εµ(k ′)
with k ′µ and similarly for εν(k) replaced with kν.

Hint: a clever insertion of the momentum space Dirac equation does the trick.

Problem 7.5 Physics of a massive vector boson field

The Lagrangian density of a charged massive vector field can be written as

L =−1

2
(∂µW †

ν −∂νW †
µ )(∂µW ν−∂νW µ)+M 2

W W †
µW µ . (23)

(a) Write down the Euler-Lagrange equations of motion. Take the divergence to show that ∂µW µ = 0,
and that the equations can be reduced to a simpler form.

(b) After quantisation we can write the following plane-wave expansion:

Wµ =
∫

d 3k

(2π)3

1p
2Ek

3∑
λ=1

[
aλ(k)ελµ(k)e−i kx +bλ†(k)ελ∗µ (k)e i kx

]
. (24)

Remark: from ∂µW µ = 0 it is easy to see that there are only 3 independent polarisation vectors.

Show that the following quantisation conditions:[
aλ(k), aλ

′†(k′)
]
= (2π)3δλλ

′
δ(3)(k−k′),

[
bλ(k),bλ

′†(k′)
]
= (2π)3δλλ

′
δ(3)(k−k′) , (25)

(with all other commutators vanishing), combined with the completeness relations of the polarisations
ε:

3∑
λ=1

ελµ(k)ελ∗ν (k) =−ηµν+
kµkν

M 2
W

(26)

4



lead to the following form for the equal-time commutation relations:

[
W †
µ (t ,x),Ẇν(t ,y)

]
=−i

(
ηµν+

∂µ∂ν

M 2
W

)
δ(3)(x−y) , (27)

where the differential operator projects the canonical commutation relations to the subspace
which is Lorentz orthogonal to the momentum. This is a consequence of the divergence constraint
on the field: note that the 4×4 matrix

P ν
µ (k) =−δ ν

µ + kµkν

M 2
W

(28)

is a projector on the subspace Lorentz orthogonal to k, i.e. it satisfies

P (k)2 = P (k) and P ν
µ (k)kν = 0. (29)

(c) Apart from the two transversal polarisations the presence of nonzero mass also allows for a
physical longitudinal polarization. Write the corresponding polarisation vector as

ε3
µ(k) =N0(ε0,k) . (30)

Imposing the orthonormality of polarisation vectors

ελµ(k)εµλ
′
(k) =−δλλ′

, (31)

combined with divergence condition, calculate N0 and ε0.

(d) * Compute the commutator function [
Wµ(x),W †

ν (y)
]
=? (32)

and the Feynman propagator

〈0|T Wµ(x)W †
ν (y)|0〉 = i

∫
d 4k

(2π)4 e−i k·(x−y) −ηµν+kµkν/M 2
W

k2 −M 2
W + iε

− 2i

M 2
W

δµ0δν0δ
(4)(x − y) (33)

Remark: the presence of the non-covariant last term may seem surprising at first, but its effects
can be shown to cancel, leaving only Lorentz-invariant physical amplitudes.
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