
Problem set 5 for Quantum Field Theory course

2019.03.12.

Topics covered

• Feynman integral techniques: Wick rotation and Feynman parametrisation

• Dimensional regularisation

• Wick’s theorem

Recommended reading
Peskin–Schroeder: An introduction to quantum field theory

• Sections 4.3, 4.5

Problem 5.1 Feynman parametrisation

Recall the form of Feynman propagator for a Dirac field

SF(x− y) =

∫
d4p

(2π)4

i(�p+m)

p2 −m2 + iε
e−ip(x−y) . (1)

The Feynman perturbative expansion in interacting field theories often involves integrals con-
taining the product of two (or more) propagators, e.g.

∫
d4k

(2π)4

i(�k +m)

k2 −m2 + iε

i(�p+�k +m)

(p+ k)2 −m2 + iε
. (2)

The following exercises develop some useful techniques to handle this kind of integrals.

(a) The first step is to combine the two denominators. The so-called Feynman parametrisation
utilizes the following identity:

1

AB
=

∫ 1

0
dx

1

[xA+ (1− x)B]2
=

∫ 1

0
dx

∫ 1

0
dy δ(x+ y − 1)

1

(xA+ yB)2
. (3)

Prove this equation by explicit calculation.

(b) Show that taking derivative of both sides with respect to B n− 1 times yields

1

ABn
=

∫ 1

0
dx

∫ 1

0
dy δ(x+ y − 1)

nyn−1

(xA+ yB)n+1
. (4)

(c) One can also generalise (3) in a different way:

n∏
i=1

1

Ai
=

n∏
i=1

(∫ 1

0
dxi

)
δ

(
n∑
i=1

xi − 1

)
(n− 1)!

(
∑n

i=1 xiAi)
n . (5)

Prove this formula by induction starting from (3).
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Figure 1: Integration line and placement of poles on complex l0 plane.

(d) Using the derivative trick introduced above, derive the most general case of Feynman
parametrisation:

n∏
i=1

1

Ami
i

=
n∏
i=1

(∫ 1

0
dxi

)
δ

(
n∑
i=1

xi − 1

)
Γ (
∑n

i=1mi)∏n
i=1 Γ(mi)

∏n
i=1 x

mi−1
i

(
∑n

i=1 xiAi)
∑n

i=1mi
. (6)

Problem 5.2 Wick rotation
Consider the following integral:∫

d4k

(2π)4

1

k2 −m2 + iε

1

(p+ k)2 −m2 + iε
. (7)

(a) Rewrite the expression using identity (3) (use the single-variable version). Introducing a
new variable lµ = kµ + xpµ, complete the square to obtain:∫ 1

0
dx

∫
d4l

(2π)4

1

(l2 −∆ + iε)2 , (8)

with ∆ = m2 − x(1− x)p2.

(b) Recall that ε corresponds to a slight displacement of poles from the integration line that
coincides with the real axis (see Figure 1). Use this to argue that integration along the real
axis and integration along the imaginary axis yield the same result. This operation is called
Wick rotation.

(c) For the integral along the imaginary l0 axis one can introduce a new variable l4. The
Minkowski length becomes Euclidean l2 = −l2E with l2E = (l1)2 + (l2)2 + (l3)2 + (l4)2 so the
integral is now rotationally invariant and one can easily take the ε→ 0 limit:∫

d4l

(2π)4

1

(l2 −∆ + iε)2 =
i

(2π)4

∫
d4lE

1(
l2E + ∆

)2 =
i

(2π)4

∫
dΩ4

∫ ∞
0

dlE
l3E(

l2E + ∆
)2 , (9)

where dΩ4 is the surface area element for the 4-dimensional unit sphere.
Unfortunately, this integral is divergent. Replace the second power in the denominator with
a general power m and calculate this integral. For what m does it converge?
(Hint: Use a variable transform s = ∆

l2E+∆
and the indentity

∫ 1

0
sx−1(1− s)y−1ds = B(x, y) =

Γ(x)Γ(y)

Γ(x+ y)
, (10)

where B(x, y) is Euler’s beta function.)
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(d) Return to the integral ∫ ∞
0

dlE
l3E(

l2E + ∆
)m . (11)

A common method for regularization is replacing the upper limit ∞ with a cutoff Λ. With
the same variable transform as above, perform this integral explicitly in two cases m = 2, 3.
What is the cutoff-dependence in the limit Λ→∞?

Problem 5.3 Dimensional regularisation

Problem 5.2(c) concluded with the divergent integral

I =
i

(2π)4

∫
dΩ4

∫ ∞
0

dlE
l
(4−1)
E(

l2E + ∆
)2 . (12)

An effective way to deal with such divergences is provided by dimensional regularisation. If this
integral were defined in dimension d < 4, it would converge.

(a) Write the above integral in d ∈ R dimensions:

I =
i

(2π)d

∫
dΩd

∫ ∞
0

dlE
l
(d−1)
E(

l2E + ∆
)m . (13)

Derive the following formula for Ωd =
∫
dΩd:

Ωd =
2πd/2

Γ(d/2)
. (14)

(Hint: Use the identity (
√
π)
d

=
(∫∞

0 dxe−x
2
)d

and write the latter as a rotationally in-
variant d-dimensional integral. Use the definition of Γ(z).)

(b) Continue the evaluation of integral (13) utilizing the hint in Problem 5.2(c). Derive the
result

I =
i

(4π)d/2
∆d/2−mΓ(m− d/2)

Γ(m)
. (15)

Notice that the result is proportional to Γ(0) for d = 4 and m = 2. Using Γ(z + 1) = zΓ(z)
show that the Gamma function has simple poles if z is a non-positive integer.

(c) Perform similar steps to evaluate I2

I2 = i

∫
ddlE
(2π)d

l2E
(l2E + ∆)m

(16)

with the result
I2 = i

d/2

(4π)d/2
∆d/2−m+1 Γ(m− d/2− 1)

Γ(m)
. (17)

(Hint: use recursive relations of Γ(z).)
(d) Turning back to the divergence of I, consider the case where m = 2 and d = 4 − ε. An

expansion of Γ(ε) for small ε yields:

Γ(ε) =
1

ε
− γE +O(ε) , (18)

where γE = lim
n→∞

(∑n
i=1

1
k − ln(n)

)
= 0.5772... is the Euler–Mascheroni constant.

Using this result derive the following formula for I (m = 2):

I =
i

(4π)2

(
2

ε
− γE − ln

∆

4π

)
+O(ε) . (19)

(Hint: do not forget to expand the power of ∆
4π in terms of ε.)
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(e) Our result (19) involves the logarithm of a dimensionful quantity ∆ which reveals a loophole
of the above calculation. This is due to the fact that dimensional regularisation changes the
units of the integration measure: [

d4l
]
6=
[
ddl
]
. (20)

This can be cured by introducing µ with [µ] = 1 and replacing

d4l −→ µ4−dddl . (21)

Show that this choice leads to a dimensionless argument of the logarithmic function

ln
∆

4πµ2
. (22)

Remark: dimensional regularisation is a powerful tool in identifying and handling diver-
gences. Apparently, it works fine for evaluating integrals. Where can it cause problems that
we replace d = 4 with d ∈ R?

Problem 5.4 Wick’s theorem and scalar fields

Consider a theory with the following Lagrangian density

L =
1

2
(∂νΦ)2 − 1

2
M2Φ2 +

1

2
(∂νϕ)2 − 1

2
m2ϕ2 − µ

2
Φϕϕ (23)

of two real scalar fields and their interaction with strength µ. In the interaction picture they can
be expanded as usual(

Φ̂
ϕ̂

)
(x) =

∫
d3k

(2π)3

1√
2Ek

[(
âk
b̂k

)
e−ikx +

(
â†k
b̂†k

)
eikx

]
, (24)

where the creation and annihiliation operators satisfy canonical commutation relations.

The normalization condition for the interacting vacuum can be written as

1 = 〈Ω|Ω〉 = N 〈0|T exp

(
−i
∫
d4xHI

)
|0〉 , (25)

where T is time-ordering operator and

HI =
µ

2
Φϕϕ . (26)

(a) Perform a perturbative expansion and calculate N up to second order in µ.

(b) Use Wick’s theorem to show that only even order terms contribute to N .

(c) Now consider a state that consisting of a single Φ particle with momentum q,

|q〉Φ =
√

2Eqâ
†
q |0〉 . (27)

Calculate pairing of Φ(x) with this state:

Φ(x) |q〉Φ = Φ(+)(x) |q〉Φ = e−iqx |0〉 , (28)

where

Φ(+)(x) =

∫
d3k

(2π)3

1√
2Ek

ake
−ikx (29)

is the positive energy part of Φ(x) field. Normal ordering ensures that positive energy parts
are always placed on the right.
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Similarly, outgoing particle states has to be contracted with negative energy part of the
field, which are always placed to the left under normal ordering. What is the value of the
pairing

Φ 〈q|Φ(x) = Φ 〈q|Φ(−)(x) , (30)

where

Φ(−)(x) =

∫
d3k

(2π)3

1√
2Ek

a†ke
+ikx (31)

is the negative energy part of the Φ(x) field?
(Remark: similar relations are valid for ϕ(x).)

(d) Let us assume M > 2m, i.e. the decay of Φ to 2ϕ is kinematically allowed. Calculate the
amplitude of such a process up to first order in µ, i.e. the following matrix element:

ϕ 〈p1p2| − i
µ

2
T

∫
d4xΦ(x)ϕ(x)ϕ(x) |q〉Φ . (32)

Hint: be careful with possible number of pairings! What is the symmetry factor?
Argue that this result is true up to second order. Given this set of initial and final states is
it possible for any even order of µ to contribute?

(e) Now consider scattering of two "light" particles on each other:

ϕ

〈
p′,k′

∣∣T exp

(
−iµ

2

∫
d4xΦϕϕ

)
|p,k〉ϕ . (33)

Compute this matrix element up to second order in µ. What is the amplitude of such a
process?
Note: only take into account fully connected terms, i.e. where all external particles are
connected to a vertex inside.

Problem 5.5 Dimensional regularisation - tensors and Dirac matrices

Dimensional regularisation is the redefinition of the integral measure∫
d4p

(2π)4
−→

∫
ddp

(2π)d
µ4−d , (34)

with d ∈ R.

(a) Consider an integrand which is a two-index tensor (that would be a Lorentz tensor prior to
Wick rotation) multiplied with a scalar:

Iij =

∫
ddp

(2π)d
pipjf(p2) . (35)

By separating rotationally noninvariant parts:

I12 =

∫ ∞
−∞

dp1dp2p1p2

∫
dd−2p⊥
(2π)d

f(p2
1 + p2

2 + p2
⊥) = 0 (36)

(where we denoted vector components with lower indices in order to ease notations) we see
that due to parity properties the integral is proportional to the Kronecker delta. Prove that
the result is

Iij =
δij

d

∫
ddp

(2π)d
p2f(p2) . (37)

Hint: utilize (14) in p⊥ integral and perform the following variable transform: p2
⊥ = xp2

and p2
1 = (1− x)p2 with x running from 0 to 1 and p from 0 to ∞.
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(b) *One can extend the above reasoning for tensors with multiple indices. What is the result?
What changes if we do not perform Wick rotation and work with Lorentz indices µ and ν
in place of i and j?

(c) Replacing d0 = 4 with an arbitrary d ∈ R also affects Dirac matrices as they are representa-
tions of the Clifford algebra, which so far we only worked out in four space-time dimensions.
In general, representations of the Clifford algebra satisfy the anticommutation relations

{γµ, γν} = 2ηµν1 (38)

and hermiticity

γµ† = γµ =

{
γµ, if µ = 0

−γµ, if µ ≥ 1 ,
(39)

The generalisation of Clifford’s theorem to an even integer dimension d = 2n states that
the irreducible representation of Clifford algebra has 2n dimensions and is unique up to
similarity transformation (i.e. change of the basis in the spinor space).
These constraints can be satisfied using the following construction. Assume that we have a
2n dimensional representation γµ(n) with 0 ≤ µ ≤ 2n− 1. In order to get a 2n+1-dimensional
representation (for 2n+2 space-time dimensions) we first construct γµ(n+1) for µ ∈ [0, 2n− 1]
as

γµ(n+1) =

(
γµ(n) 0

0 γµ(n)

)
, (40)

Then we define
γ̂(n) = in−1γ0

(n) . . . γ
2n−1
(n) . (41)

Show that
γ̂†(n) = γ̂(n) , γ̂2

(n) = 1 , {γ̂(n), γ
µ
(n)} = 0 . (42)

The γ-matrices for the remaining two µ indices can be introduced as

γ2n
(n+1) =

(
0 γ̂(n)

−γ̂(n) 0

)
, γ2n+1

(n+1) =

(
0 iγ̂(n)

iγ̂(n) 0

)
. (43)

Show that this also satisfies (38) and (39), hence we have a representation for any even
space-time dimension d = 2n.

(d) Defining ηµµ = d prove the following identities:

γµγµ = d1 , γµγνγµ = (2− d)γν (44)

(e) For Feynman graph calculations trace identities involving γ matrices are also needed. The
analytic continuation of the trace operation for any d ∈ R is defined to be linear and
invariant under cyclic permutation. d-dependence is only in trace of identity matrix

tr 1 = f(d) . (45)

Calculate the trace of an even number of γs and for an odd number of them generalizing
results of Problem 3.2.
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