
Problem set 4 for Quantum Field Theory course

2019.03.05.

Topics covered

• Representation of C,P, T transformations on Dirac field and bilinears

• Gordon identity and current decomposition

Recommended reading
Peskin–Schroeder: An introduction to quantum field theory

• Section 3.6

Problem 4.1 P transformation of Dirac field

Recall that the Dirac field can be expressed as

Ψ(x) =

∫
d3p

(2π)3
1√
2Ep

2∑
s=1

[
aspu

s(p)e−ipx + bs†p v
s(p)eipx

]
, (1)

with two particle species a and b. Under parity, annihiliation operators transform as

PaspP
−1 = ηaa

s
−p , P bspP

−1 = ηbb
s
−p . (2)

Show that the action of parity on the spinor field Ψ(t,x) can be written as

PΨ(t,x)P−1 = PΨ(t,−x) . (3)

where the constant matrix P is given by

P = ηaγ
0 . (4)

(Hint: you may find useful the relation p̃σ = pσ, where p̃µ = (p0,−p).)

Note that locality of the parity transformed field leads to a relation between ηa and ηb! What is
this relation?

From Eq. (3) derive the analogous transformation rule for Ψ!

Problem 4.2 T transformation of Dirac field

Both momentum and spin must change sign under time reversal, therefore we can write

TaspT
−1 = a−s−p , T bspT

−1 = b−s−p , (5)

where −s refers to the flipped spin.

Remark: in principle one could also allow for a phase ζ in this definition. However, as it was
shown in the previous problem set, it is physically irrelevant. A possible choice is such that product
of phases in CPT combination is equal to one.
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(a) We have to implement the spin flip on spinors. Prove the identity

−→σ σ2 = σ2(−−→σ )∗ , (6)

where −→σ = (σ1, σ2, σ3)T is a vector of Pauli matrices.

(b) Consider a spinor ξ that has +1 spin projected on axis −→n :

−→n−→σ ξ = ξ . (7)

Utilize the identity (6) to show that operator −iσ2 flips the spin (i.e. the eigenvalue of ξ
under −→n−→σ ), so

ξ−s = −iσ2ξs∗ . (8)

(c) Using Eq. (6) show that
u−s(p̃) = −γ1γ3us(p)∗ . (9)

(Hint: think about the projector resolution of √pσ.
(d) After all this preparation, show using (1) that

TΨ(t,x)T−1 = −γ1γ3Ψ(−t,x) . (10)

Problem 4.3 C transformation of Dirac field

Charge conjugation acts on operators as follows

CaspC
−1 = χab

s
p , CbspC

−1 = χba
s
p , (11)

so it relates the two species, i.e. particle and anti-particle.

(a) Using again Eq. (6) prove that positive and negative energy spinors are connected via the
relation

us(p) = −iγ2(vs(p))∗ , (12)

where in us(p) we have the 2-spinor ξs while in vs(p) there is ξ−s in accordance with what
we learned about spin projections in Problem 2.5 e).

(b) Using (1), derive the action of this operator on the Dirac spinor field

CΨC−1 ≡ Ψc = χaCΨ
T
. (13)

Note that locality of the charge conjugate field leads to a relation between χa and χb! What
is this relation?
Show that in Dirac representation

C = −iγ2γ0 (14)

i.e. identical (up to a sign) to the charge conjugation matrix obtained in Problem 2.6.
Perform a similar calculation (or use Eq. (13)) and derive the expression

CΨC−1 ≡ Ψ
c

= −χ∗aΨTC . (15)

Problem 4.4 C, P, T transformation of Dirac field bilinears

(a) The transformation properties of Dirac spinors under discrete symmetry transformations
were derived in Problem 4.1. Combine the results to obtain the action of CPT on a Dirac
spinor.

(b) Show that the product ΨΨ transforms as a scalar under each discrete symmetry.

(c) Derive the transformation properties of ΨγµΨ, ΨσµνΨ, Ψγµγ5Ψ and Ψγ5Ψ under C, P and
T . Note that the P and T transformation show a particular dependence on Lorentz indices.
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(d) Obtain the CPT transformation of the Dirac bilinears.

(e) How does ∂µ transform under C, P and T?

(f) Now we are ready to compute the effect of CPT on the free Dirac Lagrangian L0

L0(x) = Ψ(x)(iγµ∂µ −m)Ψ(x) . (16)

Is the action invariant under CPT?

Problem 4.5 Gordon identity
In this exercise we prove a useful identity and then consider some of its applications.

(a) Prove the Gordon identity

u(p′)γµu(p) = u(p′)
(p+ p′)µ + iσµν(p′ − p)ν

2m
u(p) , (17)

where u(p) are positive energy Dirac spinors.
Hint: starting from the right hand side rewrite σµν using the Clifford algebra and exploit the
Dirac equation in momentum space.

(b) Recall that the U(1) Noether current of Dirac field is

jµ = ΨγµΨ . (18)

Now consider a positive energy wave packet

Ψ+(x) =

∫
d3p

(2π)3
1√
2Ep

2∑
s=1

aspu
s(p)e−ipx , (19)

where the coefficients asp are complex numbers, and calculate the current jµ(+) associated
to it. Show that if the total charge is normalised to unity∫

d3xj0(+)(t,x) = 1 (20)

one can express the total current as

J+ =

∫
d3xj(+)(t,x) =

∑
s

∫
d3p|asp|2

p

Ep
=

〈
p

Ep

〉
, (21)

i.e. it equals the group velocity.
Hint: use the Gordon-identity and orthogonality of spinors (cf. Problem 2.3(f)).

(c) Gordon decomposition of Dirac current
Decompose the current (18) into two parts as

jµ =
1

2
(ΨγµΨ + ΨγµΨ) , (22)

and use free Dirac equation in the first term and the conjugate equation in the second.
Writing the γµγν terms in the form

γµγν = ηµν +
1

i
σµν (23)

derive the Gordon decomposition:

jµ =
i

2m
Ψ
←→
∂µΨ +

1

2m
∂ν(ΨσµνΨ) . (24)
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Note that the first term is similar to scalar U(1) current and so the second can be attributed
to the spin. The coupling to an external electromagnetic field corresponds to an interaction
term

Hint = −
∫
d3xejµAµ , (25)

where e is the electric charge, so ejµ is the electromagnetic current. Focus on the second
term from Gordon decomposition and perform a partial integration to derive the expression

H
(2]
int = − e

2m

∫
d3x

1

2
Fµν(ΨσµνΨ) (26)

Take positive energy solutions in the Dirac representation

Ψ =

(
Ψ+−→σ−→p

p0+mc
Ψ+

)
(27)

in the nonrelativistic approximation p = |~p| � mc, where the lower component is negligible
compared to the upper. Show that in this limit the above interaction can be approximated
at leading order in p/c as

H
(2]
int ' −

e

m

∫
d3x
−→
B ·

(
Ψ†+

−→σ
2

Ψ+

)
, (28)

which is a Pauli interaction term between the spin and the external magnetic field ~B. Given
the non-relativistic spin operator

−→
S =

−→σ
2
, (29)

what is the gyromagnetic ratio?
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