
Problem set 1 for Quantum Field Theory course

2019.02.12.

Topics covered

• Dirac equation: spinors and Clifford algebra

• Classical field theory: Euler–Lagrange equation and Noether currents

Recommended reading G. Takács: Lecture notes for Particle Physics MSc course, the following
chapters:

• Chapter 5.1-5.3, 5.5

• Chapter 8

• Chapter 9

Problem 1.1 Spinor transformations

The Dirac equation has the following form:

(iγµ∂µ −m)Ψ = 0, (1)

where the γµ are 4× 4 matrices satisfying the Clifford algebra:

{γµ, γν} = 2ηµν14×4, (2)

and Ψ is a four-component Dirac spinor. Under a Lorentz transformation

x′µ = Λµνx
ν . (3)

Dirac spinors transform as
Ψ′(x′) = S(Λ)Ψ(x). (4)

(a) Show that
S(Λ)γµS(Λ)−1 =

(
Λ−1

)µ
ν
γν . (5)

(Hint: exploit the fact that Eq. (1) must be invariant under Lorentz transformations.)
(b) Show that Lorentz transformed γ-matrices γ′ν =

(
Λ−1

)ν
µ
γµ satisfy (2).

Problem 1.2 Group structure and generators

(a) Prove that S(Λ1)S(Λ2) solves the fundamental relation (5) for Λ1Λ2.

An infinitesimal Lorentz transformation is of the form

Λµν = δµν + εωµν +O(ε2), (6)

where ωµν = −ωνµ. In the spinor representation it is represented as

S(Λ) = 1− i

4
ε ωµνσ

µν +O(ε2), (7)

so spinor transformations are generated by σµν .
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(b) Prove that
[γλ, σµν ] = 2i

(
ηλµγν − ηλνγµ

)
. (8)

(c) Prove that σµν = i
2 [γµ, γν ] satisfies Eq. (8).

Hint: Make use of the Jacobi identity [A, [B,C]] = {{A,B}, C} − {B, {A,C}}.

Problem 1.3 Lagrangian density

Equation (1) is the Euler–Lagrange equation for the following Lagrangian density

L = Ψ(i�∂ −m)Ψ, (9)

where �∂ = γµ∂µ and Ψ = Ψ†γ0. Show that the Lagrangian density is not real:

L∗ = Ψ(−i
←−
�∂ −m)Ψ. (10)

Show that the difference between L and L∗ is a total four-divergence, and so one can introduce
a real Lagrangian density

L′ = 1

2
(L+ L∗) (11)

which differs from (9) by a total four-divergence.

Problem 1.4 Euler–Lagrange equations

The equations of motion for a field can be obtained from its Lagrangian density using the Euler–
Lagrange equation:

∂L
∂Φα

− ∂µ
∂L

∂(∂µΦα)
= 0, (12)

where α labels components of the fields.

(a) Obtain the Klein–Gordon equation from the Lagrangian density of a complex scalar field

L = ∂µΦ∗∂µΦ−m2Φ∗Φ. (13)

Note: this can be done in two ways: first, in term of fields ϕ1 and ϕ2 where Φ = 1√
2
(ϕ1+iϕ2).

Second, choosing our two fields as Φ and Φ∗. Show that both approaches lead to the same
equation!

(b) Derive the Dirac equation (1) and its conjugate from the Lagrangian (9). (Hint: exploit
variational independence of Ψ and Ψ.) Check that you obtain the same equations from
(11).

(c) Obtain Maxwell’s equations from the Lagrangian

L = −1

4
FµνF

µν − jµAµ (14)

expressed in terms of the four-vector potential Aµ and the field strength tensor Fµν =
∂µAν − ∂νAµ.

(d) Derive the equations of motion for a massive vector field:

L = −1

4
FµνF

µν +
1

2
m2AµA

µ. (15)

Prove that the four-divergence of Aµ vanishes if m2 6= 0! (Hint: calculate four-divergence
of the Euler–Lagrange equation!)
Making use of the above fact prove that each component Aν satisfies a Klein–Gordon equa-
tion:

(∂µ∂
µ −m2)Aν = 0. (16)
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Problem 1.5 Noether currents and energy-momentum tensor

An infinitesimal transformation of the fields

Φ′α(x) = Φα(x) + εδΦα(x) +O(ε2) (17)

leaves the equation of motion invariant (i.e. it’s a symmetry) if it changes the Lagrangian density
by a total divergence

L′ = L+ ε∂µK
µ +O(ε2). (18)

Noether’s theorem states that the following current is conserved:

jµ =
∂L

∂(∂µΦα)
δΦα −Kµ. (19)

If we consider a system invariant under global translations:

x′µ = xµ + εµ, (20)

then the conserved current can be written in the form

jµ = −ενT νµ, (21)

where Tµν is called the canonical energy-momentum tensor. It can be expressed by transforma-
tion of the fields:

Tµν =
∂L

∂(∂µΦα)
∂νΦα − ηµνL. (22)

(a) Show that energy-momentum tensor can be redefined using

T ′µν = Tµν + ∂λB
λµν , (23)

where Bλµν = −Bµλν . Use the conservation of Noether current in (21).
Note: the above transformation is called a Belinfante–Rosenfeld redefinition. The freedom
in definition results from the fact that only energy and momentum can be measured direclty,
but not the corresponding currents. Therefore to show the validity of the redefinition it is
necessary to show that (i) it leaves the conserved quantities invariant and (ii) it also leaves
the continuity equation unchanged.

(b) Compute the energy-momentum tensor for a scalar field with Lagrangian density (13).

(c) Calculate Tµν from the Lagrangian density L′ of the Dirac field and show that it is real.
What if we computed Tµν from L of (9) instead?

(d) Derive the energy-momentum tensor of electrodynamics (Eq. (14)) with jµ = 0. Unfortu-
nately, the result is not gauge invariant. Correct for this by applying a BR transformation
with

Bλµν = F λµAν , (24)

and show that Θµν = Tµν + ∂λB
λµν is the energy-momentum tensor obtained in classical

electrodynamics with the components

Θ00 =
1

2
(E2 + B2), (25)

Θ0j = (E×B)j = Sj , (26)

Θij = −EiEj +
1

2
δijE2 −BiBj +

1

2
δijB2. (27)

(e) What is Tµν for a massive vector field (15)? What Θµν do we obtain applying the same
transformation as for the electromagnetic field?
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Problem 1.6 U(1) Noether current for Dirac field

The (real) Lagrangian density of the Dirac fermion can be written as

L =
i

2
Ψγµ

↔
∂µΨ−mΨΨ =

i

2
Ψγµ∂µΨ− i

2
(∂µΨ)γµΨ−mΨΨ . (28)

(a) L is invariant under the global transformation Ψ → e−iαΨ, Ψ → eiαΨ. Show that the
associated Noether current is jµ = ΨγµΨ.

(b) Using the Euler–Lagrange equations show explicitly that jµ is conserved.

(c) We can define another current as jµA = Ψγµγ5Ψ. Compute the four-divergence of jµA. When
is this current conserved?

(d) Write down the energy momentum tensor! What is the Hamiltonian density?
(Bonus: prove by explicit calculation that the energy momentum tensor is real.)

Problem 1.7? Relativistic motion of a charged particle

The equation of motion of a relativistic point particle of charge q in an electromagnetic field is

dpµ

dτ
= qFµνuν , (29)

where τ is the proper time and

uµ =
dxµ

dτ
(30)

is the four-velocity, related to the four-momentum by pµ = muµ. Show that in coordinate time t
the spatial part of this equation accounts for the Lorentz force and the time component captures
the work of the field on the particle.

Problem 1.8 Scalar electrodynamics

Consider the Lagrangian density of the free complex scalar field

L = ∂µΦ∗∂µΦ−m2Φ∗Φ. (31)

(a) L is invariant under the global transformation

Φ→ e−iqαΦ , Φ∗ → eiqαΦ∗ . (32)

Show that the associated Noether current is

jµ = iq (Φ∗∂µΦ− Φ∂µΦ∗) . (33)

(b) Let us take now a local gauge transformation,

Φ→ e−iqα(x)Φ , Φ∗ → eiqα(x)Φ∗ . (34)

Show that the Lagrangian density of scalar electrodynamics is

L = (DµΦ)∗(DµΦ)−m2Φ∗Φ− 1

4
FµνF

µν (35)

is invariant under these transformations if the covariant derivative is defined as

Dµ = ∂µ + iqAµ (36)

and we also transform Aµ as Aµ → Aµ + ∂µΛ.

(c) Show that the Euler–Lagrange equation obtained by varying with respect to Φ∗ can be
written as

(DµD
µ +m2)Φ = 0 . (37)

4



(d) Derive the Euler–Lagrange equation corresponding to the variation of Aµ and write it in
terms of Fµν and jµ. Note the difference with respect to the equation you found in 1.4 c).

(e) Note that the current is not gauge invariant. Using its transformation property show that
the equation of motion derived in d) is gauge invariant.

Problem 1.9 Yukawa theory

Yukawa proposed that the strong interaction is mediated by the π meson between protons and
neutrons. The proton and the neutron are described by Dirac 4-spinors and (neglecting their
mass difference) form a doublet under SU(2)I isospin symmetry. This can be formulated by the
following Lagrangian:

L = Ψ(i�∂ −M)Ψ +
1

2
∂µπ

j∂µπj − 1

2
m2
ππ

jπj − λ

4
(πjπj)2 + gΨγ5σjΨπj , (38)

where j = 1, 2, 3 with summation over repeated indices, Ψ =

(
Ψp

Ψn

)
is the nucleon doublet

composed of the Dirac spinors of the proton and neutron, and σj are the Pauli matrices.

(a) Derive the Euler–Lagrange equations.

(b) Obtain the Noether current corresponding to an SU(2)I symmetry transfromation.
Note: remember that we can get our familiar pions with π3 = π0, and π± = 1√

2
(π1 ± π2).

Also note that they form an isospin triplet: π0 = |1, 0〉 and π± = |1,±1〉.
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