
1 The scattering cross section

1.1 Derivation of the differential cross section for a general 2→ n particle scattering
process

Let us write down the oncoming wave packets as

|i〉 =

∫
d3kA

(2π)3
√

2ωA

∫
d3kB

(2π)3
√

2ωB
φA(~kA)φB(~kB)|~kA,~kB〉

and the outgoing wave packes as

|f〉 =

n∏
i=1

{∫
d3pi

(2π)3
√

2ωi
φi(~pi)

}
|~p1, . . . , ~pn〉

The S matrix is written as
S = 1 + iT

and the transition amplitude can be computed easily

T (~b) = 〈f |T|i〉 =
n∏

i=1

{∫
d3pi

(2π)3
√

2ωi
φi(~pi)

∗
}∫

d3kA
(2π)3

√
2ωA

∫
d3kB

(2π)3
√

2ωB
φA(~kA)φB(~kB)e−i

~b·~kB 〈~p1, . . . , ~pn|T|~kA,~kB〉

where

〈~p1, . . . , ~pn|T|~kA,~kB〉 = −M
(
{~kA,~kB} → {~p1, . . . , ~pn}

)
(2π)4δ(4)

(
kA + kB −

n∑
i=1

pi

)
and the factor e−i~b·~kB corresponds to an incoming projectile B with an impact parameter ~b relative to the target
particle A. The transition probability for this process is

P (~b) = |T (~b)|2

=

n∏
i=1

{∫
d3pi

(2π)3
√

2ωi
φi(~pi)

∗
}∫

d3kA
(2π)3

√
2ωA

∫
d3kB

(2π)3
√

2ωB
φA(~kA)φB(~kB)e−i

~b·~kB 〈~p1, . . . , ~pn|T|~kA,~kB〉

n∏
i=1

{∫
d3p′i

(2π)3
√

2ω′i
φi(~p

′
i)

}∫
d3k′A

(2π)3
√

2ω′A

∫
d3k′B

(2π)3
√

2ωB
′φA(~k′A)∗φB(~k′B)∗ei

~b·~k′
B 〈~p′1, . . . , ~p′n|T|~k′A,~k′B〉∗

=

n∏
i=1

{∫
d3pi

(2π)3
√

2ωi
φi(~pi)

∗
}∫

d3kA
(2π)3

√
2ωA

∫
d3kB

(2π)3
√

2ωB

n∏
i=1

{∫
d3p′i

(2π)3
√

2ω′i
φi(~p

′
i)

}∫
d3k′A

(2π)3
√

2ωA
′

∫
d3k′B

(2π)3
√

2ω′B

φA(~kA)φB(~kB)φA(~k′A)∗φB(~k′B)∗ei
~b·(~k′

B−~kB)(2π)4δ(4)

(
kA + kB −

n∑
i=1

pi

)
(2π)4δ(4)

(
k′A + k′B −

n∑
i=1

p′i

)
M
(
{~kA,~kB} → {~p1, . . . , ~pn}

)
M
(
{~k′A,~k′B} → {~p′1, . . . , ~p′n}

)∗
What is the number of events per second of the incident beam scattering on the target particle? If the beam has a
particle flux jB (particles per second per area) then the number of events per second (event frequency) is

f =

∫
d2bjBP (~b) = jB

∫
d2bP (~b)

where I supposed that the incoming beam flux is homogeneous across it’s transverse area so it can be brought out
of the integration. Then the cross section is just

σ =

∫
d2bP (~b)

Now our first step is to suppose that the outgoing states are narrow wave packets so that φi(~pi)∗φi(~p′i) is only
nonzero when ~pi ≈ ~p′i (what this really means that our detectors measuring the final state have a good momentum
resolution). Using the wave packet normalisation∫

d3p

(2π)3
|φ(~p)|2 = 1
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we can perform the integral over the ~p′i leaving us with

P (~b) =

n∏
i=1

{∫
d3pi

(2π)32ωi

}∫
d3kA

(2π)3
√

2ωA

∫
d3kB

(2π)3
√

2ωB

∫
d3k′A

(2π)3
√

2ωA
′

∫
d3k′B

(2π)3
√

2ω′B

φA(~kA)φB(~kB)φA(~k′A)∗φB(~k′B)∗ei
~b·(~k′

B−~kB)(2π)4δ(4)

(
kA + kB −

n∑
i=1

pi

)
(2π)4δ(4)

(
k′A + k′B −

n∑
i=1

pi

)
M
(
{~kA,~kB} → {~p1, . . . , ~pn}

)
M
(
{~k′A,~k′B} → {~p1, . . . , ~pn}

)∗
Now we omit the final state integral to write the differential cross section as

dσ =

n∏
i=1

{
d3pi

(2π)32ωi

}∫
d2b

∫
d3kA

(2π)3
√

2ωA

∫
d3kB

(2π)3
√

2ωB

∫
d3k′A

(2π)3
√

2ωA
′

∫
d3k′B

(2π)3
√

2ω′B

φA(~kA)φB(~kB)φA(~k′A)∗φB(~k′B)∗ei
~b·(~k′

B−~kB)(2π)4δ(4)

(
kA + kB −

n∑
i=1

pi

)
(2π)4δ(4)

(
k′A + k′B −

n∑
i=1

pi

)
M
(
{~kA,~kB} → {~p1, . . . , ~pn}

)
M
(
{~k′A,~k′B} → {~p1, . . . , ~pn}

)∗
We can now perform the integral over the impact parameter to get

dσ =

n∏
i=1

{
d3pi

(2π)32ωi

}∫
d3kA

(2π)3
√

2ωA

∫
d3kB

(2π)3
√

2ωB

∫
d3k′A

(2π)3
√

2ω′A

∫
d3k′B

(2π)3
√

2ω′B

φA(~kA)φB(~kB)φA(~k′A)∗φB(~k′B)∗(2π)2δ(2)
(
~k′B⊥ − ~kB⊥

)
(2π)4δ(4)

(
kA + kB −

n∑
i=1

pi

)
(2π)4δ(4)

(
k′A + k′B −

n∑
i=1

pi

)
M
(
{~kA,~kB} → {~p1, . . . , ~pn}

)
M
(
{~k′A,~k′B} → {~p1, . . . , ~pn}

)∗
where ⊥ denotes the components x, y perpendicular to the direction z of the collision. Now the δ-functions enforce
the following identities between the A,B four vectors:

~kA + ~kB = ~k′A + ~k′B
~kB⊥ = ~k′B⊥√

~k2A +m2
A +

√
~k2B +m2

B =

√
~k

′2
A +m2

A +

√
~k

′2
B +m2

B

The first two equalities together enforce

~kA⊥ = ~k′A⊥
~kB⊥ = ~k′B⊥

while the equations for the z components are

kzA + kzB = k
′z
A + k

′z
B

ωA + ωB =

√(
k

′z
A

)
2 + ~k2A⊥ +m2

A +

√(
k

′z
B

)
2 + ~k2B⊥ +m2

B

which enforces
k

′z
A = kzA k

′z
B = kzB

So the result of the k′ integration is∫
d3k′A

(2π)3
√

2ω′A

∫
d3k′B

(2π)3
√

2ω′B
(2π)2δ(2)

(
~k′B⊥ − ~kB⊥

)
(2π)4δ(4) (k′A + k′B − kA − kB) (. . . )

=
1√
2ωA

1√
2ωB

∫
dk

′z
A δ

(√(
k

′z
A

)2
+ ~k2A⊥ +m2

A +

√(
k

′z
B

)2
+ ~k2B⊥ +m2

B − ωA − ωB

)∣∣∣∣
k
′z
B =kz

A+kz
B−k

′z
A

(. . . )|~kA,B=~k′
A,B

=
1√
2ωA

1√
2ωB

1∣∣∣ kz
A

ωA
− kz

B

ωB

∣∣∣ (. . . )|~kA,B=~k′
A,B
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where we used the rule
δ(f(x)) =

1

|f ′(a)|
δ(x− a)

when the function f(x) has a single zero at x = a, and the result

∂

∂k
′z
A

(√(
k

′z
A

)2
+ ~k2A⊥ +m2

A +

√(
k

′z
B

)2
+ ~k2B⊥ +m2

B − ωA − ωB

)∣∣∣∣
k
′z
B =kz

A+kz
B−k

′z
A

=
k

′z
A√(

k
′z
A

)2
+ ~k2A⊥ +m2

A

− k
′z
B√(

k
′z
B

)2
+ ~k2B⊥ +m2

B

which is just equal to
kzA
ωA
− kzB
ωB

once we use that ~kA = ~k′A and ~kB = ~k′B . Now note that

kzA
ωA
− kzB
ωB

= vA − vB

where vA and vB are the velocities of the particles A and B in the direction of the scattering axis z.
So the result is

dσ =

n∏
i=1

{
d3pi

(2π)32ωi

}∫
d3kA

(2π)32ωA

∫
d3kB

(2π)32ωB

1

|vA − vB |

∣∣∣φA(~kA)
∣∣∣2 ∣∣∣φB(~kB)

∣∣∣2
(2π)4δ(4)

(
kA + kB −

n∑
i=1

pi

)∣∣∣M(
{~kA,~kB} → {~p1, . . . , ~pn}

)∣∣∣2
Now we assume that the wave packets φA,B are very narrow (i.e. the incoming particles have a sharply defined
value of momentum) and that the amplitude M varies slowly enough so that it can be taken constant on their
support. Then we can write

dσ =

n∏
i=1

{
d3pi

(2π)32ωi

}
1

2ωA

1

2ωB

1

|vA − vB |
(2π)4δ(4)

(
kA + kB −

n∑
i=1

pi

)∣∣∣M(
{~kA,~kB} → {~p1, . . . , ~pn}

)∣∣∣2
which is our main result.

1.2 Lorentz properties of the cross section
All the ingredients of dσ are Lorentz invariant with the exception of the factor

1

ωAωB |vA − vB |
=

1

|kzAωB − kzBωA|

This should transform as area element in the xy plane. Let us check this explicitly. Lorentz transformations consist
of rotations and boosts in three principal directions x, y and z. Let us go through each of these one by one.

1. Rotations around z axis do not change neither the z component of momentum, nor the energy, so this is
invariant. This is right since rotation leaves an area element perpendicular to the axis invariant.

2. Boosts in direction z with velocity u (in units of c = 1) result in

ω′ = γ(ω − ukz)

k′z = γ(kz − uω) γ = (1− u2)−1/2

So we get

|kzAωB − kzBωA| → γ2 |(kzA − uωA)(ωB − ukzB)− (kzB − uωB)(ωA − ukzA)| = |kzAωB − kzBωA|

which is correct as area elements perpendicular to the boost direction do not undergo Lorentz contraction.
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3. Boosts in direction x with velocity u (in units of c = 1) result in

ω′ = γ(ω − ukx)

k′x = γ(kx − uω) γ = (1− u2)−1/2

Now since the particles move in direction z, kx is zero, so we get

|kzAωB − kzBωA| → γ |kzAωB − kzBωA|

so
dσ → 1

γ
dσ =

√
1− u2dσ

This is just the result of Lorentz contraction in direction x.
The calculation for a boost in direction y is similar, and leads to the same result.

4. Rotation around xor y axis does not change the energy, but changes the direction of the momentum. Since
the original x and y components are zero, the z components of the momentum picks up a factor cosα where
α is the rotation angle, so we get

dσ → dσ

cosα

This is exactly the correct way for the transformation of a cross sectional area element under rotation.

1.3 2→ 2 processes
For the special case of a two-particle scattering process of two particles of masses mA and mB to two other particles
with masses m1 and m2 we have the conservation equations

~kA + ~kB = ~p1 + ~p2

EA + EB = E1 + E2

and the differential cross section is

dσ =
d3p1

(2π)32E1

d3p2
(2π)32E2

1

2EA

1

2EB

1

|vA − vB |
(2π)4δ(4) (kA + kB − p1 − p2)

∣∣∣M(
{~kA,~kB} → {~p1, ~p2}

)∣∣∣2
Note that we have 6 differentials, but also 4 Dirac deltas, which means that we can fix four of the differential
variables (i.e. integrate them out). It is simplest to do this in the centre-of-mass (or zero-momentum frame, in
which ~kA +~kB = 0 which means that the spatial part of δ(4) enforces ~p2 = −~p1. This allows us to integrate over ~p2
to obtain

dσ =
d3p1

(2π)32E1

1

2E2

1

2EA

1

2EB

1

|vA − vB |
2πδ (ECM − E1 − E2) |M|2

where
ECM = EA + EB

is the centre-of-mass total energy. Now the last δ fixes p1 = |~p1| since it means that

ECM −
√
p21 +m2

1 −
√
p21 +m2

2 = 0

To use this we write d3p1 = p21dp1dΩ where Ω is the solid angle parametrizing of the direction of the outgoing
particle A. The derivative of the Dirac delta argument with respect to p1 is

−
(
p1
E1

+
p1
E2

)
so after integration we are left by

dσ =
p21dΩ

4π2

1

2E1

1

2E2

1

2EA

1

2EB

1

|vA − vB |
1

p1

E1
+ p1

E2

|M|2

= dΩ
1

2EA

1

2EB

1

|vA − vB |
|~p1|

16π2(E1 + E2)
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What is all the masses are equal mA = mB = m1 = m2 = m. This leads to
∣∣∣~kA∣∣∣ =

∣∣∣~kB∣∣∣ = |~p1| = |~p2| and so
EA = EB = E1 = E2 = ECM/2. In addition

vA − vB =
kzA
EA
− kzB
EB

= 2
kzA
EA

= 2
|~p1|

ECM/2
= 4

|~p1|
ECM

so we get (
dσ

dΩ

)
CM

=
|M|2

64π2E2
CM

In our scalar example we hadM = λ+O(λ2), so the differential cross section to first order is(
dσ

dΩ

)
CM

=
λ2

64π2E2
CM

Note that
E2

CM = (p1 + p2)2

where the square denotes the Lorentz “norm”. The Mandelstam variable

s = (p1 + p2)2

provides a Lorentz-invariant expression for the centre-of-mass energy (squared).
The total cross section can be obtained by

σ =
1

2

∫
dΩ

(
dσ

dΩ

)
CM

=
λ2

32πs

where the factor 1/2 takes into account that there are two identical particles in the end state and we cannot
distinguish which one was emitted in the given angular direction over which we integrate.

2 The decay rate
If there is only a single particle in the initial state, the process describes the decay. As discussed in the class, the
proper way of obtaining the decay rate Γ is via the construction of the relativistic Breit-Wigner distribution of the
unstable (resonant) excitation, but the end result can be easily guessed modifying the formula for dσ by eliminating
one of the incoming particles. The result is

dΓ =

n∏
i=1

{
d3pi

(2π)32ωi

}
1

2ωA
(2π)4δ(4)

(
kA −

n∑
i=1

pi

)∣∣∣M(
{~kA} → {~p1, . . . , ~pn}

)∣∣∣2
The total decay rate can be obtained by integrating over all the final states. Note that the decay rate Γ0 in the rest
frame is obtained by substituting ωA by the mass mA, therefore

Γ =
mA

ωA
Γ0

Since the decay rate is related to the lifetime τby Γ = 1/τ , we obtain

τ =
ωA

mA
τ0

where
ωA

mA
=

1√
1− u2A

with uA being the velocity of particle A in c = 1 units. This is just the correct formula for relativistic time dilation,
thus supporting our guess. In fact, the formula for the decay rate can be proven rigorously using the so-called
optical theorem (cf. Section 7.3 in Peskin-Schroeder).
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3 Some dimensional analysis
The dimensions (in units of energy) of a momentum Dirac delta can be obtained from∫

d3pδ(3)(~p) = 1

Since
[
d3p
]

= 3 we get
[
δ(3)(~p)

]
= −3. Now our states have inner products

〈~p′|~p〉 = 2ω~pδ
(3)(~p− ~p′)

The left hand side has dimension -2, so a one-particle state has dimension -1. Therefore, the dimensionality of a
multi-particle state is given by

[|~p1, . . . , ~pn〉] = −n

Now the S-matrix is dimensionless since it is a (time-ordered) exponential of the time-integrated Hamiltonian
density, and so is T. Therefore, using

〈~p1, . . . , ~pn|T|~k1, . . . ,~km〉 = −M
(
{~k1, . . . ,~km} → {~p1, . . . , ~pn}

)
(2π)4δ(4)

 m∑
j=1

~kj −
n∑

i=1

pi


we obtain that [

M
(
{~k1, . . . ,~km} → {~p1, . . . , ~pn}

)]
= −n−m+ 4

Let us check the dimensionality of the cross section

dσ =

n∏
i=1

{
d3pi

(2π)32ωi

}
1

2ωA

1

2ωB

1

|vA − vB |
(2π)4δ(4)

(
kA + kB −

n∑
i=1

pi

)∣∣∣M(
{~kA,~kB} → {~p1, . . . , ~pn}

)∣∣∣2
We obtaind that this is

[dσ] = n(3− 1)− 2− 4 + 2(4− n− 2) = −2

which is just right for an area.
For the decay rate

dΓ =

n∏
i=1

{
d3pi

(2π)32ωi

}
1

2ωA
(2π)4δ(4)

(
kA −

n∑
i=1

pi

)∣∣∣M(
{~kA} → {~p1, . . . , ~pn}

)∣∣∣2
we get

[dΓ] = n(3− 1)− 1− 4 + 2(4− n− 1) = 1

which is correct since it must have the same units as energy (being inversely proportional to time).
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