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Chapter 1

COMPTEX VARIABLES

1.1 Introduction

Acomplex number is defined as a number z of the form z: a * ib,

wheref : 1/ - 1 and a and b are real numbers. a is called the real pait of
z [written as Re (z)] and D the imaginary part of z lwritten as Im (z)]. ThuC;

both Re (z) and Im (z) are real numbers. A complex number with the real
part equal to zero is called a pure imaginary number. Operations involving
complex numbers, zt : at * iDr and zz - az * ibzcanbedefinedasfollows:

Addition and Subtraction: zt * zz: (ar * a) * i(h * bz)

Murtiprication: zn2: r:;::l:;i:n, 
* i2brh

sinc€, i2 : -1, we have zE2: (aoz - brbz) * i(arbz * azb)

^?--! !---- zt at * ih kr * ib)(az - ibz)rrrvrsron: 22: ;]|Fi: G;+1ffi;1[n
a$z -l bbz . azbr - abz

- ---:--:Z-- -r r-aT;T
ozt D2 a2t D2

Alternativc deftnition

Complex numbers !z can also be defined as ordered pairs of real numbers a

and b, z : (a, b), with the follorving rules for their addition. qnd
multiplication:
Addition:

zr : (ar, br), zz : (az, bz)

zr I zz:'(ar, b),* {az,617 : (u * az, h * bz)

Mriltiplication:

ZtZ2: (ar, ht)(az, S2) : (araz - brh, abz * ozbi

a is called'the real part of the complex numbCh 2 - (a, b) dnd a i. called the

imaginary part. The complex number (rr, 0) is to be identified with the real ii

nu*b"ra.-Complexnumbcrs oftheform (0, 6) are called pure imaginary 
I

numbers. ? : (a, D) can be written as i

z : (o, b) : (a,0) + (0, b) : (a,0) + (0, lxr, 0) .i
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If the pure imaginary number (0, l) is denoted by i (no{e that (0, l) (0, I)
: (-i,0) so that i2'- -l), the ordered pair z : (a, b) can be written
z:a*ib.

A complex number is equal to zero if and only if its real and imaginary
parts are both zero, i.e., z : a +ib: 0 implieq a: O, D : 0. This leads

to the result that if two complex numbers are equal their real and imaginary
parts are separately equal. Thus, if zr : 22, zt - 72: (u - az) * i(h ' h)
: 0 end therefore at: azand h: bz.

The complex number z* - s - lD is called the complex conjugatel of z.

Evidently (z*)* * z and zz* : (a * ib)(a - ib): az * b2 is real.

| , I ={V+ P is called the modulous of z.

By putting a: r cos 0 and D : r sin 0, the complex number z can be

written as z : r(cos d * i sin 0\ : pic. This is known as the polar form of
z. r:1/f,a 6z is the modulous of z. 0 is called argument of z (written

arg z) and can be determined from the relation tail g : '{. Sin.. o <
a

\/A +F, it follows that Re (z) < I z [. Similarly Im (z) < I , l.
The complex number z : a * # can be represented by a,point (a,.b) in

the x/-plane, the x-coordinate repre'
senting the real and the y-coordinate
representing the imaginary ,part.
This plane is called the complex plane

or the rplane (Fie. ,.t): lr l:
t/ F + O, is then the distance of the-
point from the origin and 0.':

urn-r + * 2ntr, (n: 0, 1,2, . . .').

is the angle the radius vector to the
X point makes with the r-axis. Thus

the argument of z is not unique. It is
conventional to restrict 0 by thecon-
dition - zr 10 ( z and call it the

principal value ol arg z. The following identities involving moduli and
arguments of complex numbers canbe easily verified;

I zruzl: I zrl. I zzl (1.t1

lzl - ,1 (r.2)\zzl lrrl
arg(zez) arg (zr) * arg(z) (1.3)

"" (#) : ars (z) - ars tzz) (1.4)

The easiest way to verify them is by rvriting the complex numbers zr and
zz in the polar form. Thus, if

zt : rrcio, and z7: y2glct

ZlZ2 : lY2gt(9t*ae\then

Fis. 1.1

lSome anthors use z instead of:* lo denore the complex conjugate of;
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This immediatelygives I ztzz I : rtr2- I zr I . I zz I andarg(zzz) : il i- 0z
-: arg Q) -F aUQz). The other identities follow in a similar manner.

The following inequalities are extremely useful:

lt*zzl(lr,l*lzzl
lzr*zzl >ilnl-lzzll

- (l.s)

(1.6)
(1.5) is known rsthe triangular inequality. This can be proved as follows:

I a )- zzlt : (a * zz)(a * zz)*

- | ztlz * I zzl2 + (zri * zizz)

:lalz+ lzzl2*2Re(zri)
But, riekr,i) 3lzlril = lzr l.l ,i1:yztl.lzzl
Therefore, lr, * zzl2 ( Izr 12 *|zzl2 *2lztl.lzzl

< (lz, I * lzz l)z

lzt*zzl(lrtl+lzzl

( t.s1

of,

To prove (1.6), we use the triangular inequality. lf I a l 2 I zz 
L

lzrl :lQr * z) * (-zz)l ( l,rr * zzl I I -zrl - | n * zzl *l zzl
ort lrrl-lzzl(ln*zzl (1.7)

On the other hand, if I a | < | zz I

I zzl :l(a * zz) * (-:)l ( | zr * zzl * | zrl
or lrrl-lzri(lz-*zzl
(1.7).and (1.8) together are equivalent to (1.6).

The result of measurement of a physical quantity is always a real number.
one may then wonder what is the need for introducing complex rumbers in
physics. The reason is that the theory of functions of complex variables
provide us with many powerful tools for catculation. These tool, con be used
to advantage if one introduces variabres which are complex. A physical
quantity will ultimately b-e related to either the real or imaginary part or the
modulous-square of a complex variable.

1.2 Functiom of rcomplex variable

For a set of values of z, the functiony'(z) is a prescription for assigning
for each za value forf(z). The set of varges of z for whlich the functL, ii
defined is called the domain of z.

As for example let us consider the functions, (l ) /(z) : zz, (2) /'G) -. I z I,
and, (3)/(z) : ln z, where z :. x * iy.
(l) f(z) : 72 q (x * iy)2 : (y2 - f) * 2ixy,
Denoting the real and imaginary parts of the function by a(x, y) and u(x, yl
respectively, we have f(z) : u(x, y) + i,(x, y) wheri u :- * _'y2 and
i' : 2xy
(2\ f(=\ - I : 12 : .yr -1- _r':



4 MtrHruertcllplrysrcs

In this case ,, : xz * y2 and,a : 0. unrike the function in rhe first
examp,le which is complex, this function is real valued. The function of a
complex variablecan be complex, real or pure imaginary:

In the first two examples the domain of z is the set _ oo < x ( * co

"ld - 6 1 I ( * oo, i.e., the domain is the entire rplaae.
(3) Inthethirdexample, if wewrite z: ren,f(z):]11-z: lnr * r0.But
z can also be written as z: ret{zo.n+il, where in is an integer. Thenf(z) :
In r * i(2rn * 0). The peculiarity of this function is that ii is not uniquery
d-efined unless n is specificd. Another way of stating the same thing is to say
that the function'is multlple valued. However, we would like to havre,,csrres--
ponding to every z, a unique assignment-of varue tof(z). rt is possiureti. .

have this for the function tn z by restricting the domain orrsu"trit ai; -'d'-a.nd :- zt I g ( z. The function defined with this restriction is known as
the principal value of ln z.

Similar difficuliies prise with the function.f(z) .= y', where c is comptex.f : axp k ln z) and because ln z is multiple vatued zc is not uniquery
defined. The same ambiguity of definition is there, if c is rear but not equat
to an integer. If, however, c : m : areal integei, then

zm : exp (m ln z) : exp (m ln r * im(2ztn *0))
: rz exp [i(2rmn * ng)l
: P exp(im0)

and* is uniquely defined. The ambiguities inthedefinition of r'can hc
removed by restricting thc domain of arg (z).

As in the case of functions of a real variable, we can define timit, conti-
nuity and derivative of a functioh of a complex variable.

Definition

wo is said to be the limit.of f(z) as z approaches zo, if for each positive
number e there is a positive,number I such thatl f(i)- w0 I ( e, whenever
lz-zol<6.

Intuitively tbis means thatf(z) can be brought arbitrariry crose to wp by
bringing z close to zo, croseness between two comprex numbers bcing
measured by the modulous of their difference. This definition of the limit of
f(z) as z -> zo does not make any reference to the function at z : zo

Definition

The function f(z) is said to be continuous at zo if,

!Y1, f@:.f(zo)

Definition

The derivativc.f '(zo) of a function .f(z) ,atzo is defined as

f'(zol : ,t* f(zo * az) - f(zo\
AZ (1.e;



COMPLEX VARTABLES 5

Obviously, zo must be inside the domain of definition of f(z).
lf .f'(zd exists, the functionl(z) is said to be differentiable at zo. The condi-

lion for the existence of f'(zo) implies that if the point zo in the z-plane is
approached from any direction, the limit will be the same. [n case of real
variables, a point .r0 can be approached from only two directions, either from
the left or from the right of xo. The condition for the existence ofderivatives
of functions of complex variables is thus more stringent. This makes a lot of
functions non-djfferentiable in complex variable theory,

Example L Consider the simple function /(z) : z* . lf we evaluate the limit

\x@P:'ix,#,approachingzoparalleltothereaIaxis,J:.N] U L

Az : Ax, the result is 1. Il on the other hand, z0 is approached parallel to
the imaginary axis, Az : iAy and the lirnit is --1. Thus the limit does not
exist and the function is not differentiable at any point.

Example 2. For the function/(z\ : I zlz,

,. f(zo L. Azl - fGd ,. (zo *
uu-----------------rlll.-

Az\Gi * Az*l -- ziizo

)z+0 Az Az-+O

: lim (ri+
zz-+0 \

Az

Az* * ^#)
Again, if we approach zo parallel to the real axis the limit is (zi f zo), while
approaching z0 parallel to the imaginary axis one gets (zi - zo). Therefore,
the limit does not exist and the function is not differentiable at zo. An
cxception, however, occurs in the case zo : A. Then the above limit reduces
tolim Az*: 0. The function.f(z) : l rl, is differentiableonlyatthe point

Az+O
zo:0.

Definition

A function is said to be analytic at a point zo, if itio differentiable at zo and
is also differentiable at every point in some neighbourhood of zo, I

The condition for analyticity is therefore very severe. .fQ) : 22, e', sin, z
are some examples of analytic functions. The function f(z\ : l/z is analytic
everywhere except &t z :0. On the other hand, the function .f(z):.1 z 12 is
not analytic at any point-not even at the point zo: 0t although it is diffe-
rentiable there. Ifa function is analytic everywhere in the entire z-plane, it
i's called aa entire fwtction. An analytic function is sometimes referred to as

a holomorphic function.

1.3 Cauchy-Riemenn conditions

If the derivative of a function exists at a point, the real and imaginary parts
of the function rnust satisfy certain conditions. Let.f(z) = i(x, i * i(x,l).
If the derivative |,ko) at zo : ....o * l-yo exists, then
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Oul 1al
TA*0.r,:4i,^,r"

Yl : -aolilYlro,to lxl*o,ro

(1. l0a)

(r"r0b)

Equations (r.l0a) and (r.r0b) are known ascauchy-Rremann conditiotu.P::"t 
- 

Let us catcutate the derivarive approact in ; ,;;;';;;;itJtf,"r.ur urir.Then Az : 4x and

-f, (za\ : 1i^ .k* xi\J{rot.
A:+o Z;--

.?ul . tul: -'61*o,o-'6,*.r, (1.12)

- si,ce the derivative exists, the right hand sides of (r.il),ntr (r.12) mustbe equal.

*1,,.,, *'#,1,*," : --,31,",,, -, o*).",,"

: lim Lu(xo * 4x, yd -
4r+0

__ ?ul .Aul-' dil,o,.,o.-' 6il,.r^
If, on the other hand, zo4z: iAy, and

A2u 020

0x2 ?xi)y

Siniilarly, from fi.t0b) we obtain

A?u A2o

?yz 0y0i

1- 4x * ti(xo,

1t.lt)
is approached parallel to the imaginary axis,

(1.I3)

Equating the rear and imaginaiy parts from both sides df (r.r3) one gets theset ofequations given in (1.10).
For convenience of writin& fror now.on, we shall omit the subscripts

xo, vo in the derivativ * *1*,*,*|,,,r""rc. oiff.r"ntiating (I.loa)w.r.t. x,
keeping y fixed ohegets;

In (t.14).and (r.t5), it has been ass'umedthat the second partiar derivatives
exist. If,inaddition, the derivatiu"rfi,#r* continuous, h: #*and hence

(r.14)

(1. rs)

02u-, 02u

N, -r ai :$ (1. t6)
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Similarly, differentiating (1.10a) w.r.t y holding * fixed and (l.l0b) w.r.t x
keeping y fixed, one obtains

Equations (1. 16) and (1. 17) are Laplace's equation (Chapter 2) in two dimen-
sions. A real function ofx and yhavingcontinuous first and second partial
derivatives and satisfying two dimensional Laplace's equation is known as
a harmonic function. The real and imaginary parts of an analytic function
are harmonic.

The Cauchy-Riemann conditions help us determine whether a function is
differentiable at a point or not. Let us consider the functions discussed in
Examples I and 2. For

ffi +'u1: o

f(z) -: z* : x - iy,u : x,0 : - !,

*:, n*,,

(1.17)

(r. r8)

Thus,

For

showing that the cauchy-Riemann conditions are not satisfied at any point.
Forthe function f(z):lrl2:x2*f,u:x2*y2 and a-0, Thus

**: ,*, #,: o, ?, : ,r, !* : o una cauchy-Riemann conditions

can be satisfied at the point x : 0, ! : 0, but cannot be satisfied at any
other point.

If the cauchy'Riemann conditions are not satisfied at a point, the deriva-
tive does not exist and the function is not analytic aithat point. Thus
f(z) : z* is not analytic anywhere in the z-plane. Butthe satisfaction of the
Cauchy-Riemann conditions does not necessarily imply the existence of the
derivative as is illustrated in the following example.

Example 3. Consider the function,

f(z):ry

ztto 
-o

r(z\-@-iy)z _(x-iy)3 _r\" x*iY x2+f
Therefore,

u(x,y)- ffi,
:0,

antl a(x, y) : "r#7,
:Q 

,
l

for .z'* 0

for z:O

t-3xf, ,f-3x2y
x2+f '" x2+y2

\
x * 0,y * ol,

x.:/:0 J

r * 0,/* 0l
r: 'l'=0 t

(t. le)
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Frqm (1.18) and (1.19), it is easy roobtain u* 
,o,o):1, H (0, Q) : 0,

0a Aa.
A* (0,0): O a:ndfi(0,0) : I so that the Cauchy-Riemann condirions

are satisfied at z : 0.

(Az* )z _ nBut, ]X-4";: #l (%)'
If the point z:0 is approached along the line y : mx

Az : Ax * ily: (l + im)Ax, and

':x(#)':t!T,ffi:taffi
The limit ohviously depends on the line along which the point z: 0 is

.approached and therefore does not exist. The function is noi differentiableatz:0.
It can be shown that if the cauchy-Riemann co.ditions are satisfied and

in addition, the partial derivatives of a and a are continuous at a point then
the function is differentiable at that point. one can verify that these condi-
tions are not satisfied in Example 3.

For the function/(z) : I ,li, the ca'uchy-Riemann conditionsare satisfied
at x : o, y :0 and also, the partial derivatives of u and a are continuous
atthq point. Therefore, the function is differentiable at x : 0, !: 0. But
this being the only point at which it is differentiable, the funciion js not
analyticatz:0.

1.4 Cauchy integral theorem 
.

Integrals involving complex functions can be introduced as follows. A ciirve
y : y(x) in the complex plane wilt be called piecewise smooth,.j.f (ilyk) L
continuous, and (2) fiis continuous except at a certain finite set of points

where it changes discontinuously. Let c be a piecewise smooth curve in the
z-plane. Then

I"OOar: tlu * ru)(dx * idy):!"tdx-ady)* ,1. ktdx *udy)
(1.20)

az in(1.2a) has to be along curve c. The direction in which the curve is
traversed has to be specified. If the curve c is closed it is called a contour

and the integral is denoted Ot 
f ,fG) 

Or.

I
Theinte8ralJ 

" 
"flr) dz thus can be expressed as a sum of lineintegrals

involving real variablcs. Green's theorem in connection with this rvill be
useful later.
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Green's Theorem

lf the real function P(x, y) and Q(x,),) and their first partial derivatives are
continuous inside a sipply connected region and C is a piecewise snrooth
simple curve inside the region, thdn

(1.21)

where,.^S is the area enclosed by C.
A curve is said to be simple if it does not

curve is a simple curve joined end to end.
A simply connected domain is a

domain such that every simple closed
curve in it encloses only points inside
the domain. The annular region
between two circles in Fig. 1.2 is. not
simply connected because the simple
closed curve C encloses the shaded
region which is outside the dornain.

Vy'e now state a very. important
theorem involving integrals ofanaly-
tic functions.

intersect itself. A simple closed

Theorem

If/(q) is analytic,at all points within a simply connected region, and C is a
piecewise smooth simple curve in it, then

l,<, a"" * e dy): 
[ ,(X -'*r) -

6 radz: o
Jc

This theorem is known as the Cauchy integral theorem.

Poof: The line inregral 
$ "Xrl 

dz canbe written as

(1,22)

as 
f,nOd, 

: 
f,@dx - ody) + ifrtudx * udy) (r.20)

\
Since/(z) is analytic, its real and imaginary parts u and a and their first

partial derivatives are continuous inside the simplyconnected region. There-
fore, Green's theoremcan be applied to both the integrals on the righthand
side of (1.20)

and

(1.23)

(1.24)

(l.l0a)

f "r"dx 
- o ay) :i,(, *-- H) -

$ "r, 
n* * u dv) : I,W-'r;\ o'

\
t
I

I
I/

Bie. 1.2

Since/(z) is analytic, a and ir satisfy Cauchy-Riemann conditions
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.and(l.lOb) by virtue of which the right band sides of both(1.23) and (1.2a)
f

are zero. Hence O f@ dz : i.
JC

Analyticity of/(z) leads to the ,..utt $ - fQ) dz: 0. On the other hand,
Jc

if it is given that the integral is zero, can we conclude that the function is
analytic under certain conditions ? Yes, we can.

Theorem

If a function is continuous in a simply connected domain and if, for each

simple closed curve C inside the domain 
t " 

ft l dz : 0, then, f(z) is analy-

tic in the domain.
This theorem is known as Morera's Theorem. [n a certain sense, it is the

converse of the Cauchy Integral Theorem.

Cauchy Integrnl lheorem for Multipty Conneeted Regions: bonsider the
multiply connected domain D enclosed between closed curves Cr and i'
(Fig. 1.3).

Fig. 1.3

Catichy integral theorem cannot be applied to the function f(z) which is
analytio in D if the contour of integration encloses C'. Let us make a narrow
cut by joining points H and F on C'to points l' and .E' respectively on Cr
by straight lines. The gap between the lines is supposed to be narrow .and

will vanish in the limit. With the cut, if the set of points between the lines
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!r cr'luded, the domain D becomes simply connected. consider the closed
aurvc C = AJHGFEA in the domain. By-iauchy integral theorem,

t"fl4a':o
or, Ir, M* * 

Irr.f(z)dz * [*r IG,)az +!ru f@a, : o (1.2s)

In the limit, if the width of the strip between the straight lines is made zero,
then

l,,or*ul,,f(z)dz+o
Also the curves EAt and.F/GF become closed contours c and c,,where c is
traversed in the anticlockwise direction but c' is traversed in the clockrvise
direction. Thus (1.25) reduces to,

ft on** 
fir,*dz:o

(1.26)

Reversing'the direction of the second contour C,, we get,

f,o, o,- 
h,re)dz-o

(l:27) . ,:

This is the rBodified cauchy integral theorem for a multiply connected region.
obviously, if the multiply connected domain is the iigion .o"to.ri uy
closed curves cr and ci,ci,. .., cL (Fig. r.4), and if tiecontour of inte-
gration is inside Cr and enctoses all
the other curves;-.th€ contributions
corresponding to each of the closed
curves Ci.Ci, , ..., Cl, inside C have
to be taken into account. Then

h nz)dz- hrr,,,o,

4 
ht'i)- f"r@)dz

- 0 (1.28) Fig. t.4

1.5 Cauchy Integral Formula

The positive sense of a closed contour'is defined as the direction such that
the area enclosed atways remains to thc left of the contour.
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Theorem

Itf(z) is analytic in a domain D, C asimple closed contour in
and zo a point interior to C, then

ftzu): *,f , fl0,
where the contour C is taken in the positive sense.

This theorem goes by the name Cauchy integral formula.

the domain,

0.2e)

Proof. The function 'fQ) is ana-z-zo
lytic everywhere on C and inside C
except at thc point zo. Let us draw
a circle C' of radius r around
za such thar " it lies inside C.
The region between C and C, is
multiply connected and the function

f(z')
z _ h ts analytic everywhere inside

it and also on C. Applyingthemodi-
fied Cauchy integral theorem to the

,/ function, we get

# f,P^a,-$,,fl,,JC z_zo Ic.z_zo--,
where both the contours are in rhe poritiu" ,3rse. But oh C, z - ," ::y,
ar.d dz : iretc d0.

Therefore,

f ,, /+,0,:redf ",*;* f ",9-#) o,

:n,o)$,,jff*f ,,w0,
where,

(1.31)

(1.32)

:2otf(zo) * R

R:6 f(?-fbd ,,J c' z- zo

We shall now shorv that R can be rnade arbitrarily small by making theradius r ofthe circle C,approach zero. From thecontinuityoff(z),forevery
positive small quantity €, there exists a 6 such that

lfQ)-fh)l (e, whenever lz_zol<6
From (1.30) and (t.3t), we have

^:f,*dz--Z"i!(zo)

(1.33)

(1.34)

Since the right hand side does not depencr on r, R is also independent of the
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radius of the circle around zo. Let us choose r such,that I z -- zo | ( E on
the circle. Frorn the continuity of f(z) at zo,l J\z) - f(zo\ I < e, whenever
z is on the circle C'. Therefore, from (l 32)t

ral< $,,Vffir*r
*.t'", #lL^r: ),re

and can be made arbitrarily small. Therefore, I R | : g

A direct consequence of-Cauchy integral formula (1.29) is that for an
analytic function, the derivative of f(z) at z0 exists and is given by

f'(zo): *,{,,e9** (1.36)

Since,/'(zo). : t5,'futffi,from (1.29), we obthin

=,|s *,{"r;- ^Y-hG=;;

( r .35)

(r.37)

From the continuity of IG) on C, one can show that the above limit

: *, { 
" 
dg*rythu s lead i n g to ( l. 36). The derivativ e .f ' (zo)exists because

the integrand J? ,, in ( 1.36) exists at every point on C. The result can belz -* zd-
easily generalized.
Thus,

1"Qd-= lim f'bo * A?') - f '(zo\
az+o Az

:)ixL il{"ce*_ur_{,#*
:*,2'f"{\,,a=

Since"/"(zo) exists at every point zo inside C, f'(zo) is
contour.

The ry'h derivative is given by

f(a)(zo): fi.,r$,ffi0,
Thus we arrive at the following remarkable theorem:

rWe use ttre rcsuft j /,
triangular inequality (1.5).

{fz) tt(z) 
| < /. trra r

(1.38)

analytic inside' the

( r.3e)

I r/z l, rvhich is a consequence of tlre
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Iheorem

If a function f(z) is analytic at the point zo, its derivatives of all orders exist
at the point and are given by

f@(zo') : *,' o, 
{ "i;$., 

o,

The derivatives are also analytic at the point.
Another celebrated theorem wbich is a consequence of cauchy integral

formula is Liouville's theorem which is as follows:

Theorem

If a function is analytic everywhere in the comprex plane and is bounded, it
is a constant function.

lroof: consider a circle c of radius r around an arbitrary point zo. From
(1.36), one gets

1y'Go)t **{"ffit*t (1.40)

Since./(z) is bounded lf tz) I 1 M, agiven positive quahtity. Tben_from
(1.40). we obtain

l.f'(zal * **{1,#h
: +*';

The function f(z)being analytic everywhere in the comprex plane, r. can be
made arbitrarily large without running into difficulty with the gonclusion
(1.4I). Therefore 17'Qo\ I : 0. or f'ko) = 0. But zo is an arbitrary point.
Therefore, the derivative of f(z) is zero at all points of the complex planc
and the function is a constant function.

1.6 Taylor and Laurent Series

certain preliryinary notions about the convergence of an infinite series of
complex numbers will be needed before we can introduce the Taylor series
of a fuhction.

Definition

An infinite series of complex numbers of the form.zr * n * , . . *.zn * . . .

is said to convergeto a sum ^Sif the sequence, Sr : S zn, N : 1,2 ., .,
converges to S. 

n:r

(1,41)
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Definition

The sequence Siv of complex numbers is said to converge to s if, for any
given positive number e there exists a positive integer N such that

! .S - Srv [ ( €, whenever if > ]Vo.

In other words, for a convergrng sequence, the numbers srvcomearbitrarity
close to .s as N becomes very large, where | .s - ,srv I is the measure of,
closeness. If a series does not converge, it is said to diverge.

An infinite series of the form,

ao * or(z - zo) * az(z - zo)z *. . . + ao(z - zo)o + ,..
where, Zo;o$ot>...2dn1 ... aregivencomplexnumbers and z is a $an-
able, is known as a power series.

Iheorem

lf f(z) is analyticeveryfihere inside a circle co centered at,zo, then for every
point z inside Co, the power series

f(zo) * f '(zo)(z - zo) *tf U - zo)z + . . . * #e -. zi)' + . . .

converges to f(z).
The series can thus be represented as

f(z) : f(zo) * f'(a)(z - zo)

"LPQ - zo)2+... * #A - zo)n1- . . . (t.42)

for I z - zo I ( r, where r is the radius of Co.

Proof: Arouucl zo we draw another circlc C' of radius r' I r. Let z'
denote any point on C'and let thc
point 7 be inside C'.

Sincer/(z) is analytic on and inside
C',by Cauchy integra[ formula, we
have

f(z) ; *,{,,# dz' (1.43)

Now

.l I
7-z:G'-za-G-zo)

-v+ * u'44)

where,

z-zo

azoa
.L

z'-zo

Fie.I.6
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(1.43) can thus be rervl.ittcrr in the form:

.r@ : !.8 4Q) .. l d,,2tilc,z'-zol-zr
From the equality,

1 * zr * zi +... -f. ,f-' :

0.45)

(1.46)

(1.47)

(r.4e)

(r.50)

we get,

. I :l* zr*z?+... *z?-t- ,i
- 1-zt ' tLLt4t-t-"'-Tzt -f 

=zrSubstitution of (1.46) in (1.45) gives

.f(z) : *,{,, P^a,' + },{,, * ffi,,, + . . .

**,{",/9,t;ffi* R.(z)

where,

Rok):*,{", j+ffiffir,
:#$",q=fua*' (r.48)

Using Eqn. (1.39) for the derivatives of f(z) one gets from (t.47),

.f(z) : f(zo) * (z - zo).f'(zo) + A;d' f',(ro)+ . . .

. . . + 
'uO:'Y;t tP-r)(zo)* R,(z)

We now show that n, -+ 0 as r? -> co

IR,(z)t * b;uy $,,a!flfi!)u
But, l r' -- rl: lQ' - zo) I (zo - z)l7llz,- ,ol _ | zo__zl.
Therefore,

' 
l R,(z)l *U}rY {,,

(1.51)
Writing, z' - zo: r'ei!', one obtains lz, - zol: ,' andldz, l:,rl d0,.
Thus,

tn,Qit*k#nL{",ffi ( 1.52)



If M is the largest value of I f (z') I on C,, we haye

@

f(z):2 an(z-
n-0
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(l s6)

(1.s7)

0) -2ez: | -l-: -l-'= + ... +\ +...'21 'nl ' 'r'

lR,(z)t*k#L;4

_llz-zol\, M-t / l',Wt- (1.s3)

Since, z is interior to C',1z - zo | < r'and Il, ->0asn -> 6.
Thus, if/(z) is analytic at a point it can be expressed .as a Taylor series

around the point. The series is guaranteed to converge within a circle in
which f(z) is analytic. lf f (z) is expressed as a Tayror series around zo and
zr is the nearest point from zo at which .f(z) is not analytic, the series-is
convergent at all points within a circle of radius I zo- zr l. rnis radius is
called the raclius of convergence.

Familiar examples of Taylor's series are

(1.54)

This is a series around zo : 0. The series converges for iz | < o.

(r.s5)

The seriesconverges for I z | < co

(3) , L-:t+ z-rz2-l-| -z
The radius of convergence in this case is I z I = t.

The Taylor series was developed for a function which is analytic at every
point inside a circle co. If, however, lhe function fails to be analytic ai
certain points, can we develop it in an infinite series? The answer is given in
the following theorem.

Theorem

Let coand co be two concentric circles around zo. If the function f(z) is
analytic on ce, co and at every point inside the annular region between
Co and C6, then it can be expredsed by the infinite series

,o)'*,!rO".%

where' : *'$"6*fu"' n: o' t'2'.'" (l's8)

," = *{ "tG4#, ar' , n: 1,2, . . . (t.se)

series (1.57) isvalid at each point in theannular regionand is known asthe
Laurent series.
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Both the contours co and cd arc to be taken in the positive sense. Note

that anig (1.58) cannot be equated * ry, because it is not kno.wn

whether f(z) is analytic everywhere inside co. rf .f(z) happens to be analytic

everywhere inside Co, o, : !("#!). Also then the function/(2 ,)f (2, * zo)-,t t 
,

fl: 7,2, . . , , is analytic everywhere on and inside C6 and

u':**' $"tq!ff* dz' : o'

Therefore, in this case the Laurent series reduces to the Taylor series.
Proof: Let z be any point inside the annular region between co and cl

(Fig. 1.7). Draw a circle C around z
such that it lies entirely- in the
annular region. By Cauchy int6-gral-
theorem applied to the muttiply
connected region, we have,

{""*dz,- i.uff,,,,
-{"#dz' : o (r.60)

where, all the contours are taken in
the positive sense. But by Cauchy
integral formula 

,.6r)

,, - *,{"0 #,r, (1.62)

In the firft integral on the r.h.s., writing

11_:z'-z (z'-zo)-(z-zo)
I , (z-zi b-zo\N-r

z'-zo (z'-zo)z I "'' (z'-zo)N I

(z - zdNG,_M [cf. Eqn, (1.46)]

Fig' t'?

{"#dz' :2.,tf (z)

rherefore, fk): *,{""*,

ffi;;a'':
we get,

*,{;"
iv- I
2 an(z

t:0

*,$,,

%.,

where, An:

- zo)n J- Riv(z) ( 1.63)
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(1.64)

(r.65)

(r.66)

As in the proof of Taylor series, we can show that rtr _+ 0 as .lF _+ oo.
ln the secQnd integral on the r.h.s. of (1.62), writing

1l
z' -i- C -ri=Gr=ri

_- I , (.2'-zgl ,(z'-zo)w-rz*zo' (z-zs)z r "' t p=AF
* 

(z' 
: zo)N

e _ ,o)**,(, _ ,): 
#)

one obtains,

-*,{", y+ : i, 6+;a^ * ex(z)

where, b,: *.{"rG#rrr,
and, eu(z)- *;{",##i*r0,,

Following an argument similar to that fOr R,v(z) in case of Taylor,s selies,
we can show that Qu(z) -> 0 as N -> co. Thus

ten(z)r * r.flzf" f,aw!!ffi tr,, 1 (1.67)

I z - z' | : l(z - zd * eo - z,)l >- il z - rol _ lzo _ z, ll.
Therefore

I ex(z) t < frT*;T $,uffiv t dz, 
I

(r.68)
Writing, z' - zo: 7'gic' on C6, we obtain

I Qx(z)l * Z;i;*;f"" $"uffi, or

lf M is the maximum value of I fe') I on cd, it foilolvs from (is9) rtrat

t Qx(z)l < u' (4r)".'.;-5 -
- -i:.-- lz - zol

Since the point z is exterior to c6, I z - zo I ) r,, the radius of c6.Therefore, I QN(z) | + 0 as /V-> o, and

.f(z'):E o,Q-zo),+E = b^
z-o a_t lz _ zo),

0.6q)

0.70)
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where the coefficients a, 
1nd.bn ?regiven by (1.5g) ancl (1.59) respectively.I,aurent series can be obtained wit-hout euatuating the integrals(1.5g) and( 1 .59), by using Taylor series for part of the 

'fu 
nction f(z).

Exampis 4. As an iilustration, consider the Laurent series of the functionf(z) = 1lzz11 - z)which is anarytic.u".y*i"r* except at z : r ancrz - 0.
For I z I < I, the function *can be expanded in a Taylor series:

The result (l'71) is a Laurent series for the given function with ,r : r,hz: l, bl: bq ! !.. :0, ag : ol: ... - or: . ,. :- l. The Laurentseries representation (l.Zl) is valid for i z I < l,z t' 0.If wewant the LaUrent series fcrr the same functionfor lr l > l,-fb)hasto be rewritten as

: I *- z * z2 +...
Tlterefrrre, tk):l I

Z"r;l-l+24-...

.f(z) - -

For lz I > t,'l+l . r, and rhe

Taylor series, as

.texpression can be expanded in a
rlI -- Z

0.71)

(t.7 t)

(t.72)

'(' - *)

lrt

=: 
r-l-;-t 7+"'

z
which-converges for r z-r > I. Therefore, the clesired Laurent series.for thegiven function is given try

.f(z)--*-*-*
Thus,6r - hi - 0,h3 - b4 : .e. - -l,et: a2: ... _ 0.The seriesrepresentation (r.71) is varid inside a circle of radius unityabout the origin (except at z - 0). on the other ha,d, (r.72) is varid dutsidethe circte. Ir can beiaid that {'r.72) is-thean*rytiiionti*,otinot(l.rt)
outside the unit circle around the origin.

Exampre 5. Let us find the Laurent series representation of the function
fQ): * z : 0,and: - i 2zrjn,, - l, r, ..-. 

"16r",r,, ", 
*n,.n

.l'(z) fails to be analytic.

v3

' 4l I "'
o-2l)-a-L42'3!

0.73)
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The denominator of 

-;{r-_,- 
is not zero for f z | < 2rr. Therefore,t*;+rr *...

thc Taylor sericsfol it about z :0 wiilconverge within the circref zl<2r.
: r - (;' ;. il),+;+iE"f,+...

*(;* f , ;)'_(;*,i,nfi)',

.l- I', E=' - j2,r, + ...

.t(z):+.- ++ f,,-fi*+...

+ (-* * +)*.(-*+ {- +)-
Jir o# + j -f,r *),,*..

:t.--Z,2

+ (-
:t*i,

Thus
(t.74)

The represcntation is valid for 0 < i z I < 2l-.

l.? Sinlularities and their Clessificetion

Definition

lf f(z) is not anarytic at ;o but is anarytic at some point in every neighbour-hood of zo, then zo is called a singutarity oi tne functi onf(z).
In Example 4, the functi onf (z) : 

# is analytic at every point
except at z :0 and z : I. Therefore, they are the singularities otf(z),

As another exampre, consider the function f(z) : # This function
is analytic everywhcre exc-ept at the points where sinh"z'1"r. ,n,, happenswhdn e, - e-z:0or, szi: I : [1i"r,--n:0, +1, li2, .... Thus thesingularities of the function are , : 0, *io, a2ro, , . . .A singutarity zo will be called tiototri iirsritrri,r'if *. 

""n find aneighbourhood ot'ao in which it is singurai 
"rrr; ;;;;r,, 

"*,ri, at everyother point. All ihe singurarities consiiered 
"uou. 

ur, .*"rpi"J oi irotot.nt
singularities.Incontrastconsiderthesingularitiesoff(z):

,in 11\'
t \z I,: fr,n: * l, *.2,..., antl 2,,= 0 are the singular points. Every
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neighbourhood of z: 0 wil include other singurarities ofl(z) correspond-
ing to z : I *ith a very rarge value of I n r. Thus, the singurarity at z : 0.
is not isolated, but all the other singularities are.

Definition

If a function f(z) is not anarytic at zo but there exists a positive integer msuch that lry (, - zo)^f(z) = 6ko) exists and 6eo) *- 0, then z: z0 isz'>zo

said to be a pole of Order m of f(z).
A pole of order one is calred a simpre pore. rn Example 4n z :0 is a pore ,

of order two of the function f(z) - #and z : I is a simpte pore.

For the function f(z) : #r, )*,,(, - iw)# : (_r),, where z
is an integer. Therefore z - inn is a simple pole of the function.

If zo is an isotated singutarity of f(z),*" 
""o 

,rpr;;;7i;tif u t"urrnt
series

fQ) :,!oan(z - zo)' * ,?rG+fr
which is valid in some neighbourhood around zo: 0 ( | z _ zol < r. Thepart of the series containing onry negative powers of (z 

'- 
ro) ii '.ul1.i,in.

Principal Part. rt is crear that if the summitidn over ii i, tn, pril;;i p;;;
runs upto co, there wiil exist no positive integer ,, such that lim (z --' ,o):fk)
witl be finite. In such a case.z, is cailed an Essentiar sasuta|'print of f(z).on the other hand, the limit wiil be finite and ,.t iqr"r iJzero, ir theprincipal part of the function is of the form,

h,bzbo,
z --4 r 1, - ^12+ 

.'.'r 
G _fu.

!hys, we can give the foilowing arternative definition of a pole of orderrn:If the principal part of f(z) around z0 contains a finite ,r*b., of terms
and m is the highest negative power of (z - zo), then zo is calred 

" 
p"ro .i

order m off(z).

-, 
t,,r.sometimes possible that a function rails to beanalyiic at z - zo, butthe pnncrpal part of the function at zo is zeto,i.e.,br: bz:...:.0.

f (z): Y ,t an exampre of such a function. Using the Tayror series of

sirr;, we eetf(z): I - 'i* i.+...T.heexpansionisvalidforlzl<oo
except at z : 0 which is a singurar point. such a singularity is known as
rem.ovable singularity. The functio, can be made anaryli" ut i:ouy oenning
,(o) : t.

( l.7s)
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Definition

The coefficient of >_!.. in rhe nrinainol -,\z _ zo) 
in the principal part of the Laurentseries expan_

1on9f afunction/(z)aroundand isolated singular point zo is called the
Residue of the function at zo.

ln (1.75), h is the residue of f(z) at zo. From (1.59), 6r is given by

u, : *,{"rnn * (1.76)

fhis gives us a method of evaluating the integral $ ,rrrrOrif the residue
6r is known. Before proceeding further to the i;,tor. theorem and the
evaluation of lntegrars using it, we discuss a different type of singularity
associated with multi-valued functions.

Branch cut aud branct point

Consider again the function -f(z) : logz: log, r * i0, -rr <,0 < J.
The two points zr: ret('t-c) and zz * 7s:fi+r, lie iery cJose to the'negative
x'axis (Fig' l'8) and as € -> 0 they approach the same point. But rim f(zr)
:log, rf tu andtjyf(zz): Iog" r - tur.As we approach the negalile reale+0

uds frorn above and from berow, the function approaches different rimits.Thc function is not co-ntinuous on the negative x-axis and ir, tt ri"ror", oot
differpntiable at 4ny of these points. etso, /(z) is nor a"nrrJ ioi z :0.
Thus all the points on the'negative real axis including z : 0 are singurar
points of the function. The line d : -?r on which the function fails to be
analytic is called a branch cut. The function log, z : log"r,{ f0,_ , i0 < r is analytic in the given domail and is known L ,n" principal
branch of log, z.

Fis. l.t
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If we define the function in a different way, i.e., lo!, z : log" r * i0,
-(2" - a) < e q a, the function will be discontinuous at all points on
the line 0 : e.. This line will then be the branch cut. For a multipte-valued
function, there is thus a branch cut which is in general, a curve oi singular
pdints. The position of the cut in the z-pla4e is soinewhat arbitrarydepend-
ing on the definition of the branch of the multiple-valuedfunction. However,
there will be a point which is common to all the cuts. For the function.
log" z, z : 0 is such a point. This particular singular point is called a
Branch Point. lncidentally, this is not an isolated singularity. For logs.z: lo& r * i0, -t 4 0. 4 n, every neighbourhood of z :0 will contain
points on the negative x-axis which are also singular points of the function.

The function f(z) - ,'!' : il2eiel2 is another example of branch point
singularity. If the domaln of definition of 0 is -r 1,0 ( z,'then thenega-
tive real axis is thetranch cut. The cut can, however, be chosen along the
positive real axis by defining the function for 0 ( g I 2r,z : 0 is the
branch point.

To avoid the ambiguities. associated with the definition of multiple valued
functions, Riemann thought of an ingenious device. The technique is best
illustrated with the help of examples. consider the principal branch of the
functionlogz:.logrr* i0,:r<0 < rz.Otherbranches are given byr < 0 13r,3r < 0 < Jz, etc.If we consider only a particular branch,
the function is analytic. Following Riemann, we now consider each branch
ofthe function to constitute a layer ofthe z - plane. The layers are stacked
one above the other such that the top layer is the principal branch and
the subsequent layers are in the order of lncreasing 0. Each of the branches
has a cut along the negative real axis. The uppet' edge of the cut in the first
Iayer is connected to the lower edge of the cutin the,second tayer. The
upper edge of the cut in the second layer is connectgd to the Iower edge of
the cut in the third layer, and so on. For the function log" z, an infinite
number of such layers are to be connected in tle above way. By-this device
the function is made single valued. The different layers ur" 

"uil.d 
Riemann

sheets.

For the function zttz,the situatisn is a little more complicated. Again, the
branch cut can be chosen along the negative real axis. After consideringthe
branches -t 1 0 < zrand ,, t a < 3lo,asone crosses 3ur one getsback the
values corresponding to thefirStbranch, since rtlzeilz(32+c): rtl2eVnetl2(-z+t,

- fU2eil2(-7,+0),

It is sufficient to have only two Riemann sheets for this function. The
upper edge of the cut. of the first sheet should be connected to the lower
edge of.the cut of the secon{ sheet as before but at the same time the upper
edge ofthe cut ofthe lower sheet should be connected to the lower edge of
the cut of the first sheet. [n practice this is not possible because the two
connections interpenetrate and the whole procdss has to be considered as a
mathematical exercise. The Riemann sheets for the function 2rl,, where z is
an integer, can be constructed in a similar manner. For this function z
Riemanu sheets are required.
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l.t The Residue Theorem

Theorem

Let a simple closed curve c encrbse a finite number of isorated singurar
points zt, zz, . , . t zn of a function -f(z), which is analytic oo C rra i'i Ji
other points interior to c. Then the integral 6^ f a dz hkenin thcpositive
serse, is given by J c

i"ondz - 2ni(R1 * Rz *. . . -1- rr,)

{"on* - {",,r(z)dz

$ "r 
rU, dz : 2niRr, 

$ rrfur r,':

where, Ri is the residue otf(z) at thc singularity zt.
Propf: Let us draw circles Cr, Cz, . . . , Cn around
Zz, . . ., Znrespectively. Theradii of
the circles are so small that, (l) they
lie entirely within the curve C, and
(2) they do not overlap. Cauchy
integral 'thborcm applied _ to tfrl
multiply connected region gives

(1.77)

the singular polnts 2i,

2niRz, . . . f ,,trr) ctz : 2riR,

(1.7e)

-6 fQ)az
JCz,

* 9 
",flz)dz: 

o (r.78)

where all the integr.als are taken in
the positive sense.

But from (1.76),

Substitution from (1.79) in (1,78) gives (1.77).
The rdsidue theorenr gives us a powerful method of evaluating integrars.

To get the integrar around a ctosecr contour all we have to do isio notethe
singularities of the integrancl enclosed by the contour and find the residuesat the singularities. However, we cannot use Eqn. (r.76) tocarcurate theresidues because this will bring us back to the problem of evaluation of theintegral. Fortunatery, the resirjues can be carcurated by other methods.

)

o.,o'
Fig. 1'9
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CALCULATION OF' RESIDUES

1. For a Simple Pole

If zo is a simple pole of .f(z), the Laurent expansion of f(z) around zo valid
for 0 ( | z - zo | < r is of the form,

(1.80).f(z):1o,Q-zo\'+ b'
a-0 Z-ZO

Then, liur (z -- zo).f(z) : b, - the residue of f(z) at zo.
Z*21

2. For a PoIe of Order m

If zo is a pole of orde,n o,tgr1, the Laurent expansion of .f(z)around eo
valid for O < I z - ro I ( r is given by

.f(z): Eo.G--zo\'+ bt -+, b'-+... +--b^-n:o z-zo'(z-zdz' '(r-zo)^
(r.8r)

. Multiplying bot[ sides by (z - zo)* anddifferentiating w.r.t. z. (m - l.\
times, one gets

)rl-l @

fptt, - zo)^f(z)l :,20a^(m * n)(m * n - t) . . . (n * 2)(z

*bt'(m - l\r.

b, : 6!T; ffix, - zo)^f(i)),:^Therefore,

3. lf zo is an essential singularity the above method will not work. But the
Laurent expansion can be used directly in this case to get the residue. Thus

for the function f(z) *.-, (+), z: 0 is an essentialsingularity. The

Laurent expansion around Z : 0,

immediately gives h: l,

*r(+) .-,+***J+

- zo)"fl'

(1.82)

(1.83)

0.84)

4. Sometimes the f'uncrio n f (z) is of the form -f(z) : ffi, *n"r" 6e) and,

*(z) are analytic functions in some domain, If {(zo): 0, then zo is a singu-
Iar point of/(z). If in addition iQd # 0 and {.,(zo) * 0, then zo is a simple
pole ofl(z).

To see this we expand both /(z) and,!(z) around zoin Taylor series:

6Q) : $bo) * (z - zo)6'ko).+ . . .

{(r):(z - zo){'(zdnry{"(zo) +... (1.8s)
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- n)f(z): lim
,-r, (, _

: $(zo)
{'(zo)

is. finite. Therefore, by definition zo is a simpl e pole of f (z) and thc residue isgiven by

br:m.
I.9 Evaluation of Integrals Using Residue Theorem
we now show how the residue theorem can be used to evaluate various
types of integrals.

Exampre 6. Let us evaruate the integrar f ,*rr, where c is the
circle I z I : 2, the contour being taken inifre positive sense.

First we have to find the singurarities encrosld by the contour c. The
singularities ofthe integrand are given by
sinh2z: 0or, g2z - g-22 : 0, or, ct, : I : gt2*n, r, - 0, +1, *2r., .,

itt ttor z : _a1.

AII the singularities rie along the imaginary axis. The circre I z I : 2
etrcloses only the singularities at z: O, *,;.According to the residue
theorem,

f ,A#D: 2oi(Residue at 0 * Residue u * +*Residueat - +)
(1.87)

(1.86)

+\
2

0

-TI /?/

Fis. 1.10

L

x

{r__:&!rA * Q - zd6,Go\ + .. .

{'(zo) * liz -- zd 
{',,(zo) + . . .



28 MATTTEMATIcAL pEysrcs

ir lz:T is a simplepole of unh;, as can be seen by cvaluating

,l:*,,(, - +l#, : )i,fr,( * +\ '

'(, - f )z 
.o,r, 2,1,,,,+ ..,

I: 
7 "*t 1r'r';

rvhere, sinh2z in the denominator has been expanded in a Taylor series

around , : +. Since the limit is finite and not equal to zero, , :'l i" u

simplc polc and the residue at the poirrt : t#,r, : -+.Similarty,

z : 0 and': -'[ ur"also simple potes and the residues at these points

llare , and - f respectively. From (1.87),

f"#,:2"i(+-+-+):-", (1.88)

The residue theorem can also be used to evaluate certain definite
integrals involving trigonometric functions. tf the integral is of the form

J'" "Gin 
0, cos 0) d0 it can be transformed by writing z: et, tothe

f
integral t.ft l dz, wltere C is thc unit circle I z I : t.

Exumpte z. Evatuate ttre'inregral , - li" 7!ffru ffi
Let us pit z : e,o. Then

dz =- ieio ttl, cos d -' *- ,r,' 4- c-ie) : +(, -n ,), cos 3d : *(-. )r)
The integral is now transformed to

1 - d te* i). {r,J"s-r(,*l) iz'

whcre the contour c is the unit circle around thc origin takerr in thc positive
sensc.

': +{, r=:+Ta' i{";o;, $;, ,1

: i u, + nt (r.8e)
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where, ,,:f --?'-gz--= ! , i?'-:-ii +'z' and n : 
ii 

" 
;,Aa*, +=,

Toevaluater,-6 idz
lcQi-:'[\7=tr)'*"notethatthesingularitiesofthe

integrand ate z:: t anelz =- 2 of which only z:. L is inside C

,!iyi,k- +) @=k.z : -J-.
Thus z : I is a simple pole at which the residue is - 1124, and

r,:2oil-*)-- #
In .Iz the singularities of the integrand are z : 0, z : 12 and z : 2.

z : Oand z : $ are inside C. z :{ is a simple pole, but z - }isa pole
of order 3.

Residue at z:* *)fr,(, +) d, _ k;_5:
atz: ois |g + #;r=f,fu: ?
rhus n:z"i(- + . +) : -#and from (r.Se)

,- it:T(h-tD:{1

certain real integrars of the form ['1ru, dx can also be evaluatecl by

the residue theorem- The method is best explained by an example.

Example 8, Let us evaluate the integrat, - I; "#Ll*r,a ) 0. Since rhe

integrand is an even.function r, f .v
can be written as

,:+[::ffia.
We first.evaluate the reiatecl com-

t eazplex integral I, : 
t rVfu; dr,

where C is the contour shown in
Fig. 1.11. The integrand has singu-
Iarities at z : * ia. If R, the radius
of the semi-circle is greater than a,
then by the residue thcorcm

{"#r*
: 2ni. Residue at z : * iq,

- | uno residue

Fig. t.tt



The I.h.s. can bewritten as

$ "#r, : I:: #" ax + !,f*# o, o el)

The second integral is the contribution from the semicircular arc I-, Now,

ll,#ao,l*1,+#i#
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:Z,ri.l*1,_,.:T (r.e0)

(1.e2)

I siz | :s-t. Since I is in the upper half planery ) 0. Thus, I e,, I < l,
and

ll,#vo,l*1,6
f, z : Reic, dz - iReio dfl,

Iz2+azl>-lzl2-a2:R2
fherefore, one obtains ftom (1.93),

Ifwe now make the radius R of the semi-circle arbitrarily large, R -> oo,

"na fJ" #-,,dzl->0.
Then from (1.90) and (1.91),

f+-el*-rt
I --;4 6t d* : i ,-"

Equating thg real part from both sides, one obtains the desired integral

( I .e6)

The above example shows that a crucial step involvOd in the method is
to show that the contribution from the semi-circular arc J" y4aishes as the
radius R of the semi-circle becomes infinite. In many integrals involving
trigonometric functions, the integrand is of the form e,", i(d, where a is
realand lf@l ->0as lrl- oo.Forsuch integrands, the contribution
fromralways vanishes as R -> oo. This result is known as Jordon,s lemmq.
Proof af Jordon's lemma

On

Also,

ldzl:P66.

-a2

(1.e3)

fi.e4)

(l.es)

ll,;#ao' t p+7.Jo do:;*

Il:#;, * :,1: ;+# dx : i e-"

ll,r*rr,rr,l = 1,, r" | .rrd)r. 
r ctz t



On, J" (Fig. I.1l),
Thus,

As.iR+@, e+$,

l!"'"'fr'l a;

Since, lf(z) l->0as lz
" J;r-'" 

sin o [.,t(fts;e) | R d0

I f(Re") I < ., a preassigned positive quantity. Then,

l[,a'" n'l " l',,Pf" "-o*"'n' 
46

lniz ln
using the result that 

J u "-o* 
sin 0y'l : 

I nir"-o* 
sin c f,Q

we can rewrite (1.98) as

l! ,e,", f(z) ,rl * 2,R f"t' e-o* sh e flo (l .ee)

From the plot of y : sin d and y : )|ln (Fig. l.l2), itis clear that in
the range 0 < A 4 rl2,sin 0 2 )0fr.Thereforc,

l[,'*'"^ "l* z..n 
t"t' "-on 

2J 
ae

=- ZeR.*1, -,-'" ]

coMpLEx VARTABLES 3l

7 : ftsio : .R cos 0 * lrt sip 0, dz : iRe'o d0

(1.97)

-> co, we can choose R large enough so that

(1.e8)

( l. lo0)

l'gll" "ic'f(z) 
a'l* o'

y=29llt
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Example 9. Jordon's lemma can be used in the evaluation of the iutegral

l^ 
t+ dx. As before, we first convert the integral to an integral fromJo x

- co to + @, thus:

[o sinx ,-. I f+.r'r,Y d.:+J-;Y*
and evaluate the related complex integral

8'!r,.
Jc z

In choosing the contour c in this case, we have to be careful because the
singularity, z : 0 of the integrand falls on the real axis. If the contour is,
allowed to pass through this point the residue theorem will not hold. To
avoid this difficulty, the contour near z:0 is bent inthe form of a semi-
circle I' of radius e as shown in Fig. 1.13. Then,

tto,:o)c z

(l.t0t)or, 
I_'_'# o, u l:,'i * * I,,f d, + 1,,* * : o

Fig. l.t3

' r 
* ,, -ro as R + co. Also,By Jordon's 1smma, 

) r z

[,,* * - J:'*'*jJ#*"' 
.iesi, f,o -- - iJor-.,," t+i,cos0d0

Since, the integrand e-.sinr-l'i.coso is a continuous function of e,

l,S Ir, 7 a, - - igj;e-'sra,+,' coro f,o : - itt (r.r02)
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Thus, with R + @ and . --7' 0, we obtain from (J.10I)

(1.103)

(1.104)

f' t dx: itrJ-o x
Equating the imaginary part from both sides, one gets

I]"ry dx:21, V dx:r
In the above example;. the semi-circle .I" wAs drawa in the upper half

plane so that the sinlularity at the origin was outside the contoirr. Alter-
natively .1" could also be drawn in the lower half plane taking the singul-
arity inside.: The value of the integral obtained,would:of course be the
same. This can-be easily verified and is left as an exercise-

In all the examples ofevaluation ofreal integrals, th6 e6ntour has been
chosen in the form of a semicircle. But this nied not be the case. In some
problems the choice of a semi-circle with its base on the real axis aS the
contour is unsuitable as is illustrated in the next example.

Exomple 10. To evaluate a: I]: # dx, we calculate the related

complex integral Ir: {"#ldz, wherethe contour c is yet to be speci'

fied. The singularities of the integrand are given by izz-; - | - sTtt2n*t)a,

z:0, 1,2,....,or z: +11. +1!!... . . Thesingularities all lie along

*" ,rri""" ;;";u ;"f ;; ,'"ur" in number. Ir a semFcircutar
contour of radius .R with the base of the bemi-circle along the real axis is
chosen, as R -+ co more and more singularities will be crossing into the
contour. Such a contour is obviously unsuitable for this particular problem.
Instead, we choose a contour in the form of a rectangle x : * rt,
! : * R' (Fig. l.l4). R' will remain fixed and .R will be made infinitely
large. Then,

Fis. !.14
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t,:ll; #*a*+!l*'''
* f-^ - zzd-J-o*'^'ffitlz

ha'+ffi'.,^'ffi0'

Now,

ll;."' # o, 
I 
*ll**' tW * 1.*'* ffi!)

On the line R+R114! z: R* iy, dz: idy add.yvaries-":''J:l
R'. Also l r l :t/Fffi-7. From (1.106), we get

'lf**'*'#*l* I^'fiPp
<f'($$a,
_ (R2 + p,z) en.R'
- --- an- * j--

Therefore,

Hrll;.*'#a,l:o
Similarly, on the line - -R + ,?'--> - R, z: -R*iy,dz:idyy varies fiom R' to zero. Hence,

I I _...,^,#* | 
* f.yl*f 4 q c+%-r

Thuso mll_*,*,ho,l:o
Finally, on the line .R * lR'-> - R + iR', z: x * iR,, dz: dx, x

varies from R to - R and we get

f-8+ri, -2-z l-R (- r -.D,\r -?+rP,fi::;:#o':I|Wa. ol,)
Substituting from (1.108), (l.ll0) and (l.l1t) in (t.lOS), one obt4ins

n : Jl- # * - I::ffi o. (r.,,2)

If we now let, R' : z

rt - 2 t::# dx * 2tu Il.#, dx : iz lt_r*, o.
(1'll3)

(1. r05)

(1.107)

(1.108)

fl.roe)

(l.uo)
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In the sccond integral on the r.h.s., the inteerand;;ft= is an odd func_
tion of x. Therefore the integral vanishes.

Arso. I::*rr*:l"h:+
rhus, ,,: rl::f# d. _ + (r.rr4)

on the other hand, ,,: $"a*dz:2ri (nesiaue u;) ,{ u.ins
the only singularity eaclosJd by the contour. The integrand is ofthe forrr

ffi,r(T)* o, $(;l: 0 and r(T)* 0. rhererore the residue

i$rlZ) n2l4.i 7*:WiT--21_r:Ti.
rhus, n:2,iff ,): -i (1.u5)

From (t.ll4) and (t.lrs), we r., J]. # o* :* 0.116)

Thenext example involves, integration around p branch point.

la
Exampte II., : I- ff;o*, o ( a < l.

tve evaluate the retated complex t::*.",,

n:9"f *,0'

a l
-R i\

\'

/ _11_

/

Fis. l.ts
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rtrithO <d. < l, the integrand of 1l has a branch point singularityatz: O.

z-4 : e-alogct-rie = g-clogr,--afi == | 7l-c.-cte
If the domain of argument d ig restricted as 0 ( g I 2r, the branch cut is
along the positive real axis. [t is not possible, therefore, to choose a contour
along the real axis. The integrand has also a simple pole at z : - l.

A contour c'as shown in Fig. l.I5 can be chosen in this case. This con-
sists of two lines .Lr and rz running parallel to the branch cut, part of a
ciiclef'of radius P, and part of a circli f of radius R > l. Inthe limit
the straight lines will approach the real axis from above and below, e will
tend to zero and R will be made arbitrarily large.

{"#rdz:2tti' (Residueat?: - I)

- zz,il e-"'a

"r, !,#a, + [,,#,0, * 1,,fta, + l, fi;a,
: )vi'g-lna .

Along Ir in the limit when the line approaches the real axis.

(1. I l7)

(1.118)

"Similarly,

1,,#,0, - f +#- dz - - e-,zna 
f@ ff.a. (r.ue)

[",#0,:l- ff.a'
AIso, ll,#*l* I, #tdzt 4 I#*tczt,
On I, z : ftste , f,y : ftsto| dfi. Therefore,

t1ill, #,r, | * m asi .R 2,, -> o

and H lJ" ff, a,l * I* fr tor- 2.,)->o s.t22)

-substituting from (l.ll9), (t.120), (t.l2t) and (t.t22) in (t.l.t8), we
obtain

(t - e-izor1[' .+- dx + )tti.s-naJ0 t t'r
or, [- ,'," 4y : --o--Jo rtI srn7,cr

1.10 Conformal Mapping

A real valued function fix) of the rear variabre x can be protted in they'direction. For a complbx function/(z), such. a prot i, ;'poGur.. rt"z-plane is needed to indicate the domain of values 
"r;. il;-f;fionf(z)

(1. I 20)

(1.121)

(1.123)
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: w : u * io can however be plotted in a separate plane, the so called"y-plan€" in which u and, a are llotted along two perpendicular axes. One
can consider this a transformation in which a set ofpoints in the e-plane is
mapped into a set of points in the w-plane.

As an example consider the mapping * - +,We have u -l iuz

-l--ry.-ry_ rTD: f; rz-tVr+ yrsothatu:irlE anda: -i-+f
Theseequations can also beinvertedtowrite xandyinterms of uandu.
The easiesr way to do this is to note that z : liw. Thus;

u.air :_;--= and v: -ur*tf ' tl*oz
From the above equations we can easily draw the following conclusions:(l) A horizontal line v : ct in the z-prane will be transfoimed into the

curve, - V*: 
ct or,** (, + *)' : (*)' in th. w-prane.

This is a circle of radius ll2cr.andcbntreat (0, - ll2c).
(2) A vertical line x : c: in the z-plane will be transformed into the

ctctelz]@ : c2 or, (, - *r)' * a2 : &rf

Fis. t.td

(3) A circle * + f : I irr the rplane will be transformed into another

circle @#W + C+ry: 12 o!, u2 + 8: * ,. the w-ptane.

For a point in the interior of thc circle in the z-ptane, x2 + f < /. This
gives,

u2,o2
C+W+ 6ro o;y < F

(1.124)
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or' ;]7'" or u2aoz=1.
rz

Thus the interior of the circre in the z-prane is mapped into the exteriorof the circle in the w-prane. Simirarly, the exterior of the circre in thez'plane is mapped into the interior of the circle in the w-plane. 
--

fl
be- conformal at a point if the angle between two
the point is preserved in magnitude and sense by

Suppose by a mappin g w : f(z), the curves cr and cz in the z-plane arcmapped into the curves I .urd 
i-z in the w-plane. ttre point oi iotlrr""tioo

za of Cr and Cz is mapped into the poin, of iorrrsection wo of ?1and 12.

.f'(zd :1i* A:l
az-+o Az lzo

ars f'(z): uru([T, 4r;,")

Irig. I.17

If the limit exists, then

argf'(zo): j;Sotrrg Aw - aW Az)l,o

: Iim ars.twl _ lig arg4zl (l.tZS)
rf both zo and zo * az n!'ll c,-,,n.,l"i- i;rlt" 

-li" 
u,, the angre the

tangent to Ct atzo makes with the *a*1r*lnqgg il, d* 
11' 

: qr- the angte

:i,ril:iffil'"n 
or the tangent to l-r at " #;'i the a-alil' rhus, ir./'(zo)

Definition

A mapping is said to
curves passing through
the mapping.

it - fu: aryf,(zo) (1.126)
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Similarly, approaching zo along Cz

i, 0z: argf'(zoi) 0:Zl)where' 0z: the angre the tangent at zotoCz makes with the x-axis, and
_ 6, 

= 
the angle ile tansenr i, *, i, 

-r) 
makes with the a_axis.From (r . 126) and (r ,r27i we get 

- -- wrr, Lrrt u-axrs

oz -- ot : d, - O, (l.l28)
But (02 * 0) ,-, Jh. angle between the curves G and Cz at zo and(62 - g; is the angle betweerithe-;;;;;, rr and i;;; ;;:-iherefore, bythe above mapping the angre urt*.., ih" 

"urr., cr and cz is preserved inmagnitude and sense. The mapping uf a"nnition ,;r;ii?ofiy.In amiving at the above r.ruti, ;;";; assumed that f,(zo) exists. Also,if f'(zo) exists but is equal a ,Jr"l,r ,rgument is undefined,and the abovereasoning will not go through. Therefore the necessary conditions for amapping, w : f(z) to be condr,rul;;-;; are, (t) f,(zo).ur, .*r, and, (2)
"f '(zo) * 0. If the mapping is to be .onformal over a domain, f,(z) must
ili::"*1r'#'#;::hlfain and condition (r) i' ;;; ient to r(z)

- conformal mapping finds apprication in arride varietyof physical prob-lems' These 'are problems, (r) which ,re eith", two dimensionut o, effecti-vely two dimensional, ana (i) in *rrlJ-tne variable in question satisfies

ff;::. 
dimensional Laprace,s 

"q;i;o, i.e., the r"riuui"ir-u barmonic

Thus, one may be required to find the steady state temperature at anypoint of a thin, unifiorm, insulated prrir.'irr. temperature r is a harmonic

:::,,:l ffi.* 3# :0. or the tarr *uy be to nnd the erectrostatic
potential inside an infinite half cylinder when the surfaces are maintainedat given potentiars. The later ir u ir.."-aimensional probrent but becausethe cylinder is infinite the potentiai-ir-u ruo",ion of onry two variabres

W* L say)' The erecrros*ii" pri*ri'^ria,rsatisfies Lapiace,s equarion

?-, = #: 0. Such problems are solved by conformal mapping by the
following procedure:

First the configuration in -the z-prane is mapped'into another in thew-plane by a conformal mapping. ir,. ,"ppiog is so chosen that the result-
r-:::lt"* is a simpre on"-*ho-r" ror,rtiol-,' can be obtained easirv. By theInverse mapping, one,then transforms back the ;il;il;#"r-ptane toobtain the sorution of the originaiilil The prescription just given is
f;:l,l|#fli"T: mathematlcai 

";;'t'" 
we state *iir,",t-p,.or the

Theorem

If the mappine.fb) : u(1, il * ia1x,y) is confbrmal .yer a domain in thez'plane, and H(u, z) is a harmori. irrriiorln fl," rr,-prane, then the function
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0(x, y) : H(u(x, !), a(x,y)) obtained by transform ing H(u,a) to the z'plane

is.also a harmonic function in the given domain.

$, A# + #: 0, then the transformed function satisfies '#, - #
: 0. Thus if we have found a solution of Laplace's equation in the

w-plane, then by transforming back by a conformal mapping, we obtain a

solution of Laplace's equation in the z-plane.

TteoreE

Irt the curve C in the z-plane be mapped into the curve lin the ['-plane by

the conformal mapping f(z) : u(x, y) * ia(x, y)' lf H(u, a) is a harmonic

function in,the,w-plane satisfying either of the boundary.conditions H(u, rt)

: cr on I or dilldn': 0 on f @ldn is the derivative normal 1s f), then

function ${x, y) : H(u(x, y), o(x, y) also satisfies the same boundary con-

ditions on C.
Thus, if a solution of Laplace's equation satisfying boundary conditions

as given above, is found in the w-plane, then by transforming back by a

conformal mapping one obtains a solution of Laplace's equation in the

z-plane satisfying corresponding boundary conditions.
. In the following, we solve several problems using conformal rirapping.

Exanple 12. T\[,o co.axial infinite cylinders of radii Pr and p2(h < Pz)

aro maintained at potentials I/r and I'z respectively. We are to find the elec-

trostatic pbtential at any point betwebn the twb cylinders.

If the axis of .the cylinders.is in the z-direction, thc potential cis a

function ofx and/ only. 6: Vt on the surface x2 + f : P?and6: Yz

on rP f y2 : Ptr By the conformal frapping w : log z, (z * 0l the circles

in the z-plane arb mapped ririto two infinitc parallel lines in the w-plane.

Fig. 1.18

u=tn{



The 
^ 
circle x2 -l y2 : p? is mapped into the line u : log, pr and x2 * 72

7 el is mapped into u : log" pz. The problem in the ,r-pfur" now is tofind the harmonic function (the pote,tiar), H(u, a) between the infinite
parallel lines such that H : Vt for u : log"pr, and H : Vz fot u : log p2.
The solution is given by,

H(u, u) : ffi"r(u -' 1og, pt) * vr

Thus,

Z: ew : eu+trt

or x*iy:eucosa*le,sina
Thus, x : eu cos u, and ! : e, sin a

x2* y2:(eu)?

{k,i:

Hkt,V): Yn -ff o

6$, y) - vo - 
2-{o- 6r-,

coMpLEx VARTABLES 4l

(1.129)

(r.r30)

(1. r3l)

(1.132)

(1.133)

The solution to the originar prop-]em rs obtained by transforming back to
the z-plane by putting u - log"{V+}: log, .. Aft., simpiification,
one gets

, ,, tor"(?)
- '' a*;1;1

Example 13. The same mapping can be used to find the potential on the
upper .half of the z-plane if the positive half of the x-axisls ."irtrir"O 

"ipotential Yo arLd the negative hatrf at - Vo.w=log"z:log,r*f0,
-zr<d(z,u:log"rra:0.

Fig, 1.19

The positive half of the x-axis which corresponds to 0 _ 0, is mappedinto the line a : 0, and rhe negative half of rhe x_axis {upprouJing f.o^
above) is mapped into the line a : 2. In the w-plane the ptiential between
the lines is given by,

v
.T

,.^t"(*)' ,,r,(*)

Thus
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Example 14. A solid in the form of an infinite cyrindricar wedge has its
surfaces at 0 : 0 and 0 : do maintained at temperatures 0o and d and the
curved surface r : ro is insulated (Fig. 1.20). To find the tempeiature at

Fig. L20

any point inside, we can again use the mapping w : logo z.The surfaces
d : 0 and 0 : iloare mapped into lines, a : 0 and $": f,o. The solution

of the problern in the w-plane is given by H(u, o) : '* a and the required

temperature, therefore is,

T: tan-t Lx
T;

6
Example 15. Now consider the problem of two infinite half cylinders of
qnit radius with the upper half maintained at potential * vo and the lower
half maintained at constant potential - Vo. We are to find the potential at
any inside point.

!'ig. 1.2t

By thetransformation , :ffi, the interior of the unit circle is mapp-
ed into the upper half of the w'ptane. Inverting the reration, we obtain

.1-z .(l-.r)*iuw:tt+v:iffi
:, 

(1
l--t2-v2

lt | \t r - I*x)2*f
2y

(l+x1z1.yz
:u*ia
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u - 6*S*7 and

If, x2*y2(1.

$(x, y) - vo -2b. t "-,(!-!-- Y'l

Finally, we show in the next exampre how the principle of superpositioncombined with conformar mapping can be used tt ,otu. 
".rtuin iiout.rnr.

Example 16. An infinite ho[ow cylinder of unit radius and axis arong thez-axis is cut into four eq,ral parts by -the planes r : 0, , : O. il" ,egmentsin the first and third quadrant are mainta'ined at potent id * vo and _ Vorespectively, and the segments in the second ana rouitrr q,r"uJ.un, ur.maintained at 
^zero 

potentiar. To find the- potentiar at an inside point, weuse the principle of superposition in electrostatics:If d.r and 6z are potentiars due to configurations (r) and (2),then thepotential due to the combined configuration is just fu * {2. Using thisprinciple, the probrem at hand can bJ 
"oiria"r"a as a superposition of twopotentials'due to configurations (l) and (2) irig. t.22). 

-fi;;;;fiat 
ducto coofiguration (r) has arready ueen carcutaied in the previous exampre, as

6{x,y):+ - }ru,-,(#) r,.,rur
To obtain iz,we note that the configuration (2) is obtained from (l) by

,- 7-x'-f

a)0.
Thus' the interior oJ the- circre is mapped into the upper harf of thew-plane. If x2 * f :1, andy ) A,a: b-and, > 0. The'upp., t,ulf ofthe circle is therefore mapped lnto tire positive r-axis. sirir".r'yi tr,e rowerhalf of the circre is mapped into the negative a-axis. rnl prJitm in ttewalane is thus ro find a harmonic functioi H(u, t)i, th, ;;;;;"harf of thew-plane, which has the value * Vo on the positive z-axis and the value- vo on the negative a-axis. This has arready been sorveJ iiut in thc

z-plane) in Example 13. From (1.133), H(u, t) - yo _ ! tunn l.
Therefore the required potential 6{x, y) inside the cylinder is given by

(l + x1z -1 ,z
(1.1 34)

(r.135)

(1)



(1.138)

conformal mapping is a convenient metbod of solving cerlain problems.

But its usefulness is limited by the following,facte:
(l) only thi solution of two dimenional Laplace's equation can be

oUtuin.a by 
"onforrnul 

mapping. The problem must either be two dimen-

sional or effectively two dimensional'
(2) Knowledge of a lot of mappings is required to find a suitable mapping

for a -eiven 
problem.
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its rotation by r12 about the z-azis in the clockwise direction'

of this transformation y -> xand x * - y,

4,G, i : + - +.*o-' (t - *- )''z 
I

And the potential $tx, il at any inside point is given by

${x,y) : vo - !2- 61,'' ('t#+l
- *o"-' (1 =#!\

EXERCISE:I

Prove that if zaz:0 than at least one of the factors is'zero'

Prove that ll nl - I zz ll ( | zr -- zzl ( I zr l+.1 zz-l

In Example 2, it,wds shown that the function f(z) :' 1 z.l? is d-iffe'

rentiabli only at the point z - 0. Examine the contintiity of the

function in the z-Plane.
Detgrmine whether the tunctious, (a\ f(z) : il(x,.y), (b) f(z):
io(*, y) are differentiable anywherg in the z-plane, where a and a are

real functions.
5. Obtain the cauchy-Riemann conditions in polar co-ordinates.

6. Determine whether the function

I(z):=+-, z* -1r-r /
satisfies Cauchy-Riemann conditions.

7. (a) Obtain the analytic function whose real part is u(x, y) :
ex eos y.-

(b) Obtain the analytic function whose

- icos x cosh 7.
(Hint : Use the Cauchy-Riernann conditions)

8. If a funbtion/(z) is not analytic irt a dornain

As .a result

(1. l 37)

iuragrnary part ls u(x, /) :

l.
)

4.

f
9, ft,1ds is not zero in

I

general. Show that i'. Onrlz depends on the path.
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9. Show that itf(z) is analytic in some domain thenthe integrat$u fir1d,
Jo

is path independent.
I0. Choosing suitable paths evaluate the integrals:

ti rl +, rt+i
(a) 

), e'dz (b) 
),_. 

z2 dz (") Jo [(x'* xv) + ibfr + xv)]dz

F

ll. Showthat 0 / dz :0, if n zt - |Jc 
:zrir, if n:-l

where, z is an integer and C is a circle around z : 0
12. Prove that if f(z) is analytic and not constant in the interior of a

region, then l/(z) | has no maximum value in that interior.
13. Prove the fundamental theortm of algebra: aay polynomial of degree

n ) I has at least one zero. Hence prove that forz.2l, apolynomial
of degree n has no more than n distinct zeros. (Hint: apply Liouville's
Theorem to the inverse of tbe polynomial).

14. Use Cauchy integral formula to evaluate the following integrals:

ot $,air a'

b) f"ryd,

$){,ffiTd,
@){"ffi:d?

where, C is the circle I z | : 2.

15. Expand the following functions in Taylor:series:

I

h) fG\ around z : 0-\/ 11-z
I

$) fb)::' arottndz:i' l-z

(c) .f(z): ?+ around.e: I

(d) f(z): sinh z around z : it
(e) f(z): log, (i * z) arouncl z : O

In each case give the legion of validity, In (e). state clearly which branch
is being usecl,

16. Obtain the Laurent series expansion of the following functions:

,4(a)f(z):, 
-aroundz:0t1"z

(b) f(z): *, for lz --il> t/T
(c) f(z): ,r+*, arouncl z == o

for lzl> l.
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(d) f(z) : ;r=#+T for 2 < z < 3.

17. Evaluate the following integrals.using the rcsidue theorem:f
(a) 

9"tanh' d'. cis the circle I zl : 2

{u) $" ,;p-fi 31 ' c is the contour I z l: 2

G) 
{ "s9*3- 

dr, c is thc square whose sides

are.x,:*2, y:*.2.
t

(d) 
fc ffidz,wherecisthecurvexa * f :4.
(Hint: use polar form df tha curve to determine whether thesingutrptities are within the contour.)

I8. Show that

,, l:"#-n#;,, tat<r
$) f" , +-#.;r:V#F , lat > tat

n'f ,#r:;i
,, fi sin2n| d0 : W, z is a positive integer.

I9. Evaluating the following integrals prove that

o'I; #" :i+a
*' I; r+r o*: I
n f ffio*:h(t*ab)e-6, (a,b)o).

", I:: @TffieTaax :17fi\('; - T),r>, > o)

n, Il: #ffi o* - i e- sirr o, (a > o)

ur1,# dx-;
G, [- #"a*: #, c c i< r)

&, I]:affi. dx:secl, (-zrq a,-,,)

1.



20.

21.
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(i) I-# dx:]cos"-,ff (o<c<2)
fo -o,r:lJ;(rftF*:#, oal<r)

(n) I'1+# o* : *
In Example 4, thc Laurent series expansion ofl(e) : p1f7 for

irl > I was obtained (Eqn 1.72) and itwas found that 6r, the co-
efrcient of l/2, was equal to zerc. f(z) has asimptepoleat z: l.
Calculate the residue of f(z) at z : I and explain why this is not
equal to Dr.

The function f(z) : #has the Laurent series expansion,

f(zt:-*-*-* (Eqn 1.72)

for I z I > 1. Explain why this does not imply that f(z) has &r eSser-
tial singularity at z: 0. (Note thatf(z) hai a pole at z : O).
show that the mapping, w : sin z transforms the rectangle bounded

by x : +*,, : 0, ! : k toan ellipse.

Showthatthetransfo ' z-1
[matroD, w : 1fi transformspart of the z-

plane to the right of they-axis to the interior of a circle.
Iff(z) : u(x, y) * io(x, y) is analytic, prove that

vri o:o.
The relation i 

". 
i a : 0 in the preceding problem shows that if the

set ofcurves, z : constant, represents equipotentials then the curves,
,, : constant, represent the lines of force (or vice-versa).

An infinite plane is maintained at z,ero potential and the surface of
an infinite cylinder whose axis is parallel to the plane, is maintain-
ed at constant potential, Zo. Using the mapping, z: ia tan wl2, (a is
real), find the equations for the equipotentials and the lines of iorce.
In Example 15, find the potential to the exterior of the two half
cylinders.

Use the transformation, lr, : 
" + + to find the electrostatic potentialz

at any point when a conducting cylinder ofunit radius is placed in a
uniform electric field with the axis of the cylinder perpendicular to
the original direction of the ficld.
conformal mapping has also applications in hydrodynamics. Again,
the motion has to be effectively two-dimensional. Assume thai the
motion is the same in all planes parallel to the ,/:plane and the

22.

23.

24.

25.

26.

27..

28.
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velocity is parallel to the plane. For an incompressible fluid having

no viscosity, the velocity /can b" written ,* ? : - grad {. The
function {, calledthe velocity potenttal, satisfi€s:

426 426

z-*r* e7 : o'

Suppose $(x, y) is a real function such that $(x, y) * t{(x, y) is analytic

in some domain. Then 9(x, /) is also harmonic. eho, iqr.if : 0. Thus
-++

the velocity / is normal to Vl and therefore the tangent to {(x,./) : con-
stant at any point gives the direction of velocity. l' is called the stream
function.

An infinite cylinder of unit radius is placed in a fluid in uniform motion
such that the axis of the cylindcr is perpendicular to the original direction

offlow. Using the mapping V[/ : z + I, find the stream-lines, equipoten-

tials and velocity at any point. Comoare with the previous problem.

REFERENCES

1. R. V. Churchil!, J. ril. Brown and R. F. Verhey: Complex Variables and Ap4tica-
Irbns, McGraw:hill, International Stud€nt Ed., 1974.

2. P.M. Morse and H. Feshbach: IVlethods of Theoretical Physics, McGraw-Hi[,
New York, 1953.

3, E. T. Copson: An htroductiox to the Theory of Functions of a Complex Yariable,
Oxford University Press, New York, 1962.


	Part1.1
	Part2
	Part3

